
Complex Event Detection at Wire Speed with FPGAs

Louis Woods Jens Teubner Gustavo Alonso
Systems Group, Department of Computer Science

ETH Zurich, Switzerland

{louis.woods,jens.teubner,gustavo.alonso}@inf.ethz.ch

ABSTRACT
Complex event detection is an advanced form of data stream
processing where the stream(s) are scrutinized to identify
given event patterns. The challenge for many complex event
processing (CEP) systems is to be able to evaluate event pat-
terns on high-volume data streams while adhering to real-
time constraints. To solve this problem, in this paper we
present a hardware-based complex event detection system
implemented on field-programmable gate arrays (FPGAs).
By inserting the FPGA directly into the data path between
the network interface and the CPU, our solution can detect
complex events at gigabit wire speed with constant and fully
predictable latency, independently of network load, packet
size, or data distribution. This is a significant improvement
over CPU-based systems and an architectural approach that
opens up interesting opportunities for hybrid stream engines
that combine the flexibility of the CPU with the parallelism
and processing power of FPGAs.

1. INTRODUCTION
An increasing number of applications in areas such as fi-

nance, network surveillance, supply chain management, or
healthcare are confronted with the need to process high-
volume event streams in real time [6]. Typically, the in-
dividual data items (tuples) in those streams only become
meaningful when put into context with other items of the
same stream.

Complex event processing (CEP) aims at inferring mean-
ingful higher-level events (complex events) from a sequence
of low-level events [1]. Existing complex event detection
engines face the problem that the data items of the event
stream first need to be brought to the CPU via main mem-
ory before the CPU can start processing them. For instance,
when events arrive from the network, they are typically
wrapped in small UDP packets. Once the packet rate ex-
ceeds a certain threshold, CPU-based systems are no longer
able to sustain the network load and start dropping UDP
packets [12].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

In this paper, we propose to move the complex event de-
tection engine as close as possible to the origin of the event
stream (in this case to the network interface) so as to avoid
the network-memory-CPU bottleneck.

We have implemented our solution using a field-program-
mable gate array (FPGA). FPGAs are chips that host con-
figurable logic and provide a substrate to implement arbi-
trary (data processing) functionality in hardware. Our sys-
tem decodes network packets directly on the FPGA and can
handle any packet size equally well at the highest frequency
that a gigabit Ethernet link allows. Besides benefiting from
data proximity, our system heavily exploits the inherent par-
allelism that FPGAs can offer. For example, separate hard-
ware components can concurrently deal with Ethernet frame
decoding, complex event detection, and stream partitioning.

Whereas regular expressions have been used in existing
FPGA solutions [2, 10, 20] for, e.g., deep packet inspection
in network intrusion detection systems1, our solution uses
regular expressions to define the complex events of interest.

Contributions. Our main contribution is a high-throughput
complex event detection system based on regular expression
matching in hardware. It can be attached directly to the
network interface and it operates at gigabit wire speed while
guaranteeing constant latencies. The design of an FPGA-
based solution is non-trivial. The bottleneck in the FPGA is
the real estate on the chip. Unlike software-based solutions,
we cannot use deterministic finite automata (DFA) because
of the exponential state explosion. Instead, we need to use
non-deterministic finite automata (NFA) that guarantee a
bound on the space required.

In the paper, we show how complex event patterns can be
expressed in a declarative query language based on a re-
cent standardization effort [21] to extend SQL with pattern
matching capabilities (Section 2). In the process, we iden-
tify key differences between classical regular expressions and
complex event patterns.

We give a detailed description of how to compile complex
event patterns specified in the aforementioned language into
actual hardware circuits and compare different implemen-
tation approaches (Section 4). Furthermore, we present a
hardware solution for the partitioning of streams to support
sub-stream pattern matching (Section 6).

The results in each section are backed by experiments on
actual hardware (Section 7). We conclude the paper with
a survey of related work (Section 8) and a summary of the
results (Section 9).

1SNORT. http://snort.org, BRO. http://bro-ids.org

660

2. COMPLEX EVENT PATTERNS
In this section, we further illustrate the idea behind com-

plex event detection and introduce a query language for
defining complex event patterns. Our language closely re-
sembles parts of the MATCH-RECOGNIZE clause of the current
ANSI draft for a SQL pattern matching extension [21]. Nev-
ertheless, since our focus is on Boolean, regular expression-
based complex event detection, we have derived a simplified
and less verbose version of the language.

2.1 Regular Expression Patterns
To demonstrate the query language and show how it can

be used to define complex events, we take the New York
marathon as an example. Assume the runners need to pass
an electronic checkpoint in each of the five boroughs Staten
Island (A), Brooklyn (B), Queens (C), the Bronx (D) and
Manhattan (E). While there is nothing wrong with a runner
passing any single of the checkpoints, an incorrect order of
passing them may indicate cheating. The expression

A (A|C|D|E)* C | A (A|B|D|E)* D | A (A|B|C|E)* E ,

for instance, could be used to describe the complex event
where a runner reached one of the checkpoints C, D, or E

(from start point A), but has not passed the respective pre-
decessor B, C, or D.

The appeal of regular expressions comes from the fact that
they provide sufficient expressiveness for most real-world use
cases, yet they can be implemented as finite state automata,
which can ensure the necessary (constant) space and latency
guarantees. In this work we use the dialect shown in Table 1
to describe regular expressions over events that we denote
with identifiers in capital letters.

A, NOTA, B . . . event
. wildcard: any event

(r) grouping: bypass default binding
r* closure: zero or more repetitions of r

r1 r2 sequence: r1 followed by r2
r1 | r2 choice: either r1 or r2

Table 1: Regular expression dialect. Quantifier *

binds stronger than the sequence operator, which
binds stronger than choice |.

Notice that many other commonly known regular expres-
sion operators are pure syntactic sugar, e.g., r+ is just a
short-hand for rr*. Hence, we do not consider them here
any further.

2.2 Tuples, Predicates and Events
Regular expression engines for text typically operate over

an alphabet of 8-bit characters, i.e., at most 256 different
characters. Stream processors, by contrast, react to events
that may be triggered by large input tuples. In our hypo-
thetical marathon scenario, readers at the five checkpoints
might produce a tuple stream marathon of schema:

〈 time : timestamp, checkpoint : string,
runner : int, speed : float 〉

The size of the corresponding alphabet, the value domain,
of such a stream can be enormous and explicit value enumer-
ation clearly is not feasible. Value ranges that may appear

inside a complex event pattern are thus described as predi-
cates over input tuples. A predicate is a condition that each
incoming tuple either satisfies or does not. A basic event
in a complex event pattern is the equivalent to a satisfied
predicate. For instance, our earlier pattern for cheating in
a marathon might read:

1 PATTERN (A NOTB* C | A NOTC* D | A NOTD* E)

2 DEFINE

3 A AS (checkpoint = 'Staten Island')

4 NOTB AS (checkpoint != 'Brooklyn')

5 C AS (checkpoint = 'Queens')

6 NOTC AS (checkpoint != 'Queens')

7 D AS (checkpoint = 'Bronx')

8 NOTD AS (checkpoint != 'Bronx')

9 E AS (checkpoint = 'Manhattan')

This query consists of a PATTERN clause and a DEFINE

clause. In the PATTERN clause the complex event is specified
using regular expression operators and predicate identifiers.
The predicates are defined in the subsequent DEFINE clause.
Observe that the absence of checkpoint readings (previously
expressed, e.g., as (A|C|D|E)*) can be described in a more
readable way by using negation (NOTx definitions above).

Stream Pattern Peculiarities. The predicates in our regular
expressions are different from the characters in classical reg-
ular expressions where a character unambiguously defines
some element of the value domain. A predicate can encom-
pass a whole range of values and is thus rather comparable
to a character class, e.g., [a-z] in a classical regular expres-
sion. The fundamental difference is that predicates can be
satisfied simultaneously by the same input tuple just as over-
lapping character classes may match the same input charac-
ter. This has consequences for the finite state machine that
implements the regular expression. We will further discuss
this issue in Section 4.

2.3 Stream Partitioning
Real-world streams often contain the interleaved union of

a number of semantical sub-streams. In our running exam-
ple, the marathon stream contains one sub-stream or parti-
tion for each participant in the race. When analyzing such
streams, patterns become meaningful only within each parti-
tion. A PARTITION clause can be used to divide the marathon
stream by runner id into multiple sub-streams:

1 PARTITION runner

2 PATTERN (A NOTB* C | A NOTC* D | A NOTD* E)

3 DEFINE

4 A AS (checkpoint = ’Staten Island’)

5 ...

The partitioning attribute (runner) determines to which
sub-stream the current tuple belongs. A hardware imple-
mentation of a partition strategy is given in Section 6.

3. SYSTEM ARCHITECTURE
In this section, we give a high-level overview of the com-

plex event detection system we have developed and its key
components. The system is connected directly to the Eth-
ernet MAC component of the physical network interface to
achieve full wire speed performance. Figure 1 depicts the
placement of the FPGA in the data path between network
interface and CPU.

661

Complex Event

Detection Engine

Network

Packet

Decoding

Tuple

Extraction

FPGA
E

th
er

n
et

A
tt

ac
h

m
en

t

N
o

ti
fi

ca
ti

o
n

Figure 1: FPGA placed in Data Path

On the FPGA we have implemented a Network Packet
Decoding component which takes care of processing the raw
Ethernet frames. Its main task is to properly unpack the
payloads of the network packets. Nevertheless, it can also
act as a filter by dropping packets, e.g., based on an IP
address in the IP header or a port in the UDP header.

As soon as the first payload bytes arrive at the FPGA, the
Network Packet Decoding component forwards them to the
Tuple Extraction component, which has knowledge about
the tuple schema. Note that a network packet can contain
more than one tuple. The job of the Tuple Extraction com-
ponent is to convert the payload bytes into tuples and for-
ward them to the Complex Event Detection Engine, which
is the actual heart of our system and is illustrated in more
detail in Figure 2.

T
u

p
le

Pattern

Matcher

R
ep

o
rt

 M
at

ch

Predicate

Decoder

Stream Partitioner

Predicate Buffer

update

Figure 2: Complex Event Detection Engine

As illustrated in the figure, the Complex Event Detection
Engine is made up of several sub-components. For each tu-
ple, the Predicate Decoder evaluates all defined predicates
and returns a predicate vector that captures which predi-
cates where satisfied by the tuple.

Concurrently, the Stream Partitioner retrieves the pat-
tern matching state that corresponds to the sub-stream the
current tuple belongs to and returns this information in the
form of a state vector. As we will further explain in Sec-
tion 6 the Stream Partitioner has longer latency than the
Predicate Decoder. Therefore, predicate vectors need to be
buffered by means of a FIFO buffer.

Finally, predicate vector and state vector are both fed to
the Pattern Matcher. This component is responsible for the
actual complex event detection. The Pattern Matcher up-
dates the state vector and returns it to the Stream Parti-
tioner. If a pattern was matched, i.e., a complex event was
detected, the end system needs to be informed, e.g., per
CPU interrupt.

4. PATTERN MATCHING WITH FPGAS
Pattern matching with regular expressions in software is

a well studied problem [7]. However, the implementation
in hardware is very different given the completely different
design constraints. For instance, since processing many ac-
tive NFA states is not a bottleneck on a massively parallel
platform such as an FPGA, the claim that DFAs are more
efficient to execute than NFAs does not hold. Thinking out-

side the box helps in the quest for good hardware designs.
In this section, we show how complex event patterns can be
compiled to hardware circuits and we discuss the implica-
tions of doing so.

4.1 Finite State Automata
Two important types of finite automata are typically dis-

tinguished: deterministic finite automata (DFA) and non-
deterministic finite automata (NFA). While both types pro-
vide equal expressiveness, DFAs differ substantially from
NFAs in the way they process data. An essential property
of DFAs is that at any given point in time only one state
is active, i.e., for each input symbol a single state needs to
be processed. In contrast, an NFA can have multiple active
states at the same time which all need to be processed when
the next input symbol is read. Therefore, in software, DFAs
tend to run much faster than NFAs which makes DFAs the
method of choice in CPU-based systems.

To compile a regular expression into a DFA, the expression
is usually mapped to an NFA first, e.g., using Thompson’s
algorithm [17]. Then the NFA is converted into an equiva-
lent DFA with the powerset construction [7]. This eliminates
non-determinism by inserting new DFA states that incorpo-
rate all active NFA states at any one time. As a result DFAs
are usually larger than NFAs which can be seen, for example,
in the automaton for the expression

(0|1)* 1 (0|1)
i (?)

where (0|1)i denotes an i-fold repetition of subexpression
(0|1). Whereas a non-deterministic automaton for this ex-
pression can be built with 1+(i+1) states, a corresponding
DFA requires at least 1 + (2i+1 − 1) states. In general, a
DFA may require up to 2n states compared to an equiva-
lent NFA with only n states [7]. The consequences of this
phenomenon, known as state explosion, can be exceptionally
severe for implementations in hardware where resources are
more scarce, as we will show in Section 4.4.

4.2 Overlapping Predicates
With classical regular expressions it depends solely on

the regular expression whether NFA→DFA conversion leads
to state explosion. Unfortunately, the use of predicates to
specify event patterns additionally fosters state explosion in
DFAs. This is because predicates can overlap and therefore
a single tuple might satisfy more than one predicate at the
same time. As an example, consider the regular expression
A B | B A (which matches either “AB” or “BA”). If the predi-
cates for A and B are mutually exclusive, the corresponding
NFA and DFA both look the same:

q0start

q1

q2

q3

A

B

B

A

(1)

For non-exclusive predicates, this automaton would vio-
late the DFA property, since two transitions had to be fol-
lowed for a tuple that satisfies A and B. To re-establish the
DFA property, the overlap has to be made explicit by intro-
ducing a new state and additional transitions:

662

q0start

q1

q2

q3

q4

A ∧ ¬B

¬A ∧ B

A ∧ B

B

A

A ∨ B

(2)

With the possibility of overlapping predicates, the 2n fac-
tor in the number of DFA states becomes a problem. Where
k target states were sufficient in an NFA to support k in-
dependent predicates, 2k − 1 target states are needed in a
DFA to cover all potential predicate overlaps. In addition,
transition conditions turn into k-way conjunctive predicates
— with the corresponding high cost for evaluation.

4.3 NFAs in Hardware
The main asset provided by FPGAs is an amount of chip

space that contains resources of different types. Most im-
portantly, lookup tables (LUTs) are a configurable means to
implement Boolean logic and flip-flop registers can be used
to hold individual bits of state (more details in Appendix A).

The availability of both resource types is limited and may
quickly become a problem when DFA sizes become too large.
On the other hand, FPGA hardware operates in an inher-
ently parallel manner, which we can exploit to construct
NFAs that run equally fast as their DFA counterparts.

Figure 3 illustrates how an NFA can be realized using
FPGA resources. It implements the Automaton 1 shown
above (i.e., the regular expression A B | B A). Each of the
four states q0 to q3 is mapped to one flip-flop that signi-
fies whether that state is active or not (D and Q contacts of
each flip-flop indicate its data input and output port, respec-
tively). State transitions become wires in the interconnect
network, and they are conditioned using Boolean logic (AND
and OR gates built from FPGA lookup tables).

D Q1

and D Q

and D Q

and

and

D Qor

input data

q0

q1

q2

q3

Figure 3: Hardware implementation of non-deter-
ministic automaton 1 (regular expression A B | B A)

In Figure 3, we assume that the input character set is
a 2-bit alphabet where A ≡ 01 and B ≡ 10. The top-left
AND gate is used in such a way that state q1 becomes active
when state q0 is active and the next input symbol is A (
indicates negated input). Likewise, state q3 becomes active
when state q1 is active and the next input symbol is B or
when state q2 is active and the next input symbol is A (thus
the OR gate left of state q3).

We note that this NFA design fits well the typical archi-
tecture of FPGAs (see Appendix A). In particular, lookup
tables and flip-flops are paired within so-called slices in the
same way as the predicate-state combination in Figure 3.

4.4 Evaluation: State Explosion
The space savings on the chip due to the use of an NFA

can be significant. To demonstrate the effect, we determined
the chip space consumption that is needed to implement the
different automata types for the regular expression (?) that
we discussed above. As mentioned before, the corresponding
NFA will consist of 1 + (i + 1) states, while the equivalent
DFA will need as many as 1 + (2i+1 − 1) states. This is
reflected in Figure 4, where the use of an NFA shows signif-
icant scalability advantages over DFA-based approaches for
increasing values of i.

0 1 2 3 4 5 6 7 8 9 10

i in (0|1)* 1 (0|1)i

0

1

2

3

4

5

6

7

S
li
ce

co
n
su

m
p
ti

o
n

in
%

NFA

DFA

DFA (compressed)

Figure 4: Effect of State Explosion

To obtain Figure 4, we conducted experiments with NFAs
and two different variants of DFAs. For each configuration,
we compiled the respective automaton into a VHDL cir-
cuit description and used vendor-specific FPGA tools (Xil-
inx ISE 11) to obtain space occupation numbers. Figure 4
shows the consumption of slices for each approach. Flip-flop
and lookup table consumption are shown in Appendix D.

NFA (). Figure 4 clearly illustrates that in this exam-
ple NFAs are by far superior to both DFA variants when
it comes to FPGA resource consumption. The number of
flip-flops and lookup tables (and effectively the number of
slices) grows linearly with respect to i.

DFA (). This variant of deterministic finite automaton
was implemented in VHDL with a large switch-case state-
ment. It turned out that the Xilinx synthesizer would use
one-hot encoding for DFA state representation. Therefore,
flip-flop consumption is proportional to the number of states
of the DFA, which is reflected in the exponential consump-
tion of slices shown in Figure 4. Note that for this simple
regular expression with i set to only 10 the DFA already
uses up roughly 6% of the entire FPGA chip.

DFA Compressed (). The exponential increase in flip-
flop consumption can be reduced by compressing DFA states.
Since we know that only one DFA state can be active at a
time, we can compress the state representation into a single
integer value that indexes the current state (k values can
be indexed by an integer of size log2 k bits). While this
brings flip-flop consumption back to linear scaling (see Ap-
pendix D), the DFA still experiences exponential growth in
terms of lookup table consumption, because the transitions
for all of the 1+(2i+1−1) states still need to be implemented
in logic. Thus, also for this DFA variant slice consumption
is far from optimal.

663

4.5 From Patterns to Circuits
Converting a regular expression to an NFA is straight-

forward and can be achieved using, e.g., Thompson’s Al-
gorithm [17] or the McNaughton-Yamada construction [9].
The concepts behind these algorithms can also be applied to
generate NFAs directly in hardware, as was done in earlier
work [20]. Here we focus on the process of compiling com-
plex event patterns to NFA-based pattern matching circuits.

The first step for a compiler is to parse the complex event
query and transform it into an abstract syntax tree (AST).
This is an intermediate representation of the regular expres-

.

.

A

*

B

C

sion, used for further processing.
For instance, the complex event
pattern A B* C translates to the ab-
stract syntax tree depicted on the
left. The leaves of this tree rep-
resent the predicates and the inner
nodes correspond to regular expres-
sion operators (the sequence oper-

ator (·) is denoted with a dot). For every predicate in the
regular expression we generate an NFA state — a hardware
entity consisting of a single flip-flop and some combinatorial
logic. These entities are then interconnected according to
the inner nodes (regular expression operators) of the AST.

From the abstract syntax tree above our compiler gen-
erates the hardware NFA that is schematically depicted in
Figure 5. The rounded boxes represent the entities that are
generated for each leaf of the AST (A, B and C). These enti-
ties run fully in parallel, e.g., each entity concurrently checks
with the Predicate Decoder if the current tuple satisfied the
appropriate predicate.

activation

predicate
output

activation

predicate
output

activation

predicate
output

Predicate Decoder

A B C

A B C

1

Figure 5: Hardwired NFA for A B∗ C

When an entity is active and the proper predicate is sat-
isfied, the flip-flop of that entity is set to logic high, i.e.,
the corresponding output wire will carry a ‘1’. An entity
is either active per default or it can be activated by one of
its predecessors. For example, entity A in Figure 5 is active
per default because A B* C can match anywhere in the tuple
stream. When predicate A is satisfied, entity B and C will
be activated by entity A since the output wire of entity A is
connected to the activation port of entity B and C. In the
next section, we explain how the compiler can decide which
output wires need to be connected to which activation ports.

4.6 The Wiring Algorithm
The compiler can determine the proper activation wiring

by traversing the abstract syntax tree and following a few
basic rules depending on the regular expression operators
encountered in the inner nodes of the tree. As the tree
is traversed a set of activation signals is constantly being
updated and when a leaf node is encountered the current
set of signals is assigned to that node. Figure 6 illustrates
this idea and each step is explained below.

.

.

A

*

1

{‘1‘}

2

{A}

3

{A}

{A}

4

57

{B}

{A,B} {A,B}

6

8

9

{A,B}

B

C

Figure 6: Wiring algorithm

Initially, the set of activation signals {‘1’} has only one
element. The starting point for the algorithm is the root
of the tree, which in this case is a sequence node. (1) For
this node, the rule is to first process the left child and then
the right one, i.e., {‘1’} is passed down to the left child. (2)
Since this is a leaf node, the activation signals are applied.
‘1’ in this case means default activation. Then the output
signal of the entity that this leaf node represents is passed
back to the parent. (3) The parent updates the activation
set ({A}) and passes it down to its right child. (4) This
node is again a sequence node and is processed analog to
the previous one, i.e., {A} is passed down to the closure
node. (5) Since the sub-expression in a closure can activate
itself, we first need to get the output signals from the sub-
expression. For this purpose the empty set is passed down
to the sub-tree. (6) The child of the closure node is a leaf
node, but since the activation set is empty no signals are
applied. Nevertheless, the output signal of this node {B}
is returned to the parent. (7) At the closure node the two
activation sets are merged to {A,B} and passed down to the
child again where the activation signals are applied. (8) The
set {A,B} is also returned to the parent of the closure node
(9) and from there down to the parents right child.

5. PREDICATE DECODER
The Predicate Decoder is a separate component, consist-

ing of pure combinatorial logic that takes a tuple as input
and returns a predicate vector as output. The predicate vec-
tor has one bit for each predicate indicating whether it was
satisfied by the current tuple. Based on this information the
NFA can decide which transitions to take next. Decoding
predicates outside the NFA in a separate component may re-
duce area consumption significantly (see Appendix C). Our
approach is based on a similar idea suggested in [2], where an
8-to-256 character pre-decoder was used to share the char-
acter comparators among states of their NFAs.

6. STREAM PARTITIONER
A key difficulty in complex event processing on FPGAs, as

compared to, e.g., pattern matching in intrusion detection
systems, comes from the partitioning functionality outlined
in Section 2.3. Thereby, a partition identifier (an attribute
in the input stream) divides an input tuple stream into mul-
tiple logical sub-streams (partitions).

To do pattern matching on a partition basis, in principle,
we need a separate NFA to process each partition individ-
ually. However, since every tuple belongs to exactly one
partition and we have to process only one tuple at a time,

664

it is sufficient to store the state vector of the NFA sepa-
rately for every partition. The state vector contains a bit
for every state of the NFA indicating whether that state is
active. The NFA takes a state vector and a predicate vector
as inputs and returns the updated state vector as output.
The job of the Stream Partitioner is to find the state vector
corresponding to a given partition identifier and forward it
to the NFA.

6.1 A Pipeline-Based Stream Partitioner
One can think of many different approaches to implement

the Stream Partitioner in hardware. Nevertheless, many
designs that work well for a few partitions, will not scale
to support a large number of partitions. In this paper, we
propose to implement the Stream Partitioner as a pipeline.
As was shown in [16], a pipeline exhibits very good scaling
properties on FPGAs, where large fan-outs and long signal
paths need to be avoided (see Appendix A). In a pipeline,
every pipeline element is connected only to its left and right
neighbor. Therefore, the signal paths are very short and
supporting more partitions does not increase fan-out.

6.2 The Pipeline Design
Our pipeline is a chain of pipeline elements (pe1,. . . , pek).

Every element besides the first and last one is wired with its
left and right neighbor. A pipeline element can be free or
associated with a partition. In the latter case, the pipeline
element stores the partition identifier (pei.pid) and the NFA
state vector (pei.statevec) of the associated partition. When
a new tuple arrives, the partition identifier is extracted and
inserted into the pipeline. It is then handed from one pipeline
element to the next, once every clock cycle. The key idea is
that pipeline elements can be swapped under certain condi-
tions. Swapping means that two neighbors exchange their
stored partition identifier and NFA state vector. For exam-
ple, when an associated pipeline element matches a partition
identifier passing by, that element is swapped towards the
end of the pipeline. Thus, when the partition identifier has
been propagated through the entire pipeline, the last ele-
ment will be the one it is associated with. The NFA state
vector is then retrieved from that element and passed to the
NFA (jointly with the predicate vector (predvec(t)) of the
respective tuple t), which in return stores the updated state
vector in the last pipeline element (pek.statevec) again.

ABBN UBSN CSGN

CSGNXXXXABBN CSGN

Figure 7: Stream Partitioner Pipeline

To exemplify, a pipeline is illustrated in Figure 7. The
large circles represent pipeline elements with stored parti-
tion identifier and NFA state vector. The rectangle boxes
above the circles are the partition identifiers that traverse
the pipeline. Note that a new partition identifier can be in-
jected into the pipeline only every other clock cycle. The rea-
son is that within one clock period only every other pipeline
element should trigger a swap. This is a requirement to
avoid conflicting swap operations.

Pipeline elements are allocated dynamically. Initially the
pipeline is empty, i.e., all elements are free. The first free
element encountered by a traversing partition identifier is
swapped towards the end of the pipeline, as long as no
associated pipeline element can be found. Hence, if the
last pipeline element is free after the partition identifier has
passed through the pipeline, then that element is allocated,
i.e., the partition identifier is stored there. If so, the NFA
takes the null vector (nullvec) for the current state vector
and stores the updated version in the last pipeline element
as well. The swapping algorithm is displayed in Figure 8.

foreach tuple t ∈ InputStream do1

i← 1;2

while i < k do3

if pei.pid = t.pid then4

swap (pei, pei+1);5

else if pei = free and pei+1.pid 6= t.pid then6

swap (pei, pei+1);7

i← i + 1;8

/* process last element in pipeline */

if pek.pid = t.pid then9

pek.statevec = NFA (pek.statevec, predvec(t));10

else if pek = free then11

pek.pid = t.pid;12

pek.statevec = NFA (nullvec, predvec(t));13

else14

discard (t);15

Figure 8: Pipeline Swapping Algorithm

When a partition identifier reaches the end of the pipeline
the last pipeline element is in one of three states: (1) the
pipeline element is associated with the partition identifier,
(2) the pipeline element is free, (3) the pipeline element is
associated with some other partition identifier. Notice that
the third case can only occur when all pipeline elements are
associated with other partitions, i.e., the pipeline is full. In
that case, our only option is to discard the current tuple.

6.3 Temporary Pipeline Element Allocation
The number of partitions that can be handled is limited

by the size of the pipeline, i.e., by FPGA real estate, as we
show in the next section. We can relax this limitation some-
what by dynamically allocating (see previous section) and
releasing pipeline elements, as they are needed. The difficult
question is at what point in time to release a pipeline ele-
ment. We could release a pipeline element when the NFA de-
tects a match in the corresponding partition (ignoring over-
lapping matches), but for those partitions where a match
never occurs the pipeline elements would be kept allocated
indefinitely. Thus, we propose to add a lightweight timer
(four bits) to every pipeline element allowing each element
to be automatically freed when its timer runs down. The
timeout-range can be tailored to meet application-specific
requirements by adjusting the frequency of a global update-
timer signal. For example, if we want to allow a time window
of one second, the timer needs to be updated roughly every
8 × 106 clock cycles of a 125MHz clock since a 4-bit timer
can be decremented 16 times.

665

6.4 Evaluation of the Pipeline Approach
The number of supported concurrent partitions directly

translates to the number of pipeline elements, i.e., the depth
of the pipeline. Obviously, there is a limit to how many
pipeline elements can be placed on a single FPGA chip. Ad-
dressing this matter, we have conducted experiments on a
Virtex-5 FPGA from Xilinx. It should be noted at this
point that next generation Virtex-6 FPGAs have signifi-
cantly more resources to offer (see Appendix B). In Figure 9
we show the percentage of FPGA resources consumed by a
pipeline of varying depths. In this experiment, the partition
identifier was a 16-bit attribute of a 128-bit tuple and the
pattern we tested was A(B|C*)D, i.e., the NFA state vector
had four bits.

0 100 200 300 400 500 600 700 800

Pipeline depth → number of partitions

0

20

40

60

80

100

R
es

o
u
rc

e
co

n
su

m
p
ti

o
n

%

Flip-Flops

LUTs

Slices

Figure 9: FF, LUT and Slice Consumption

From the graph in Figure 9 it can be seen that we run
out of lookup tables before we run out of flip-flops. Also, re-
source consumption increases linearly with respect to pipeline
depth. The fact that 800 processing elements, occupying
89% of the available slices on our FPGA, did not lead to
timing constraint violations or other problems, is a clear
indication that our solutions exhibits excellent scaling.

Pipelining is a common technique in electrical engineering
to increase throughput. However, the longer a pipeline the
higher is the latency. In our pipeline, a partition identifier
progresses from one pipeline element to the next every 16
nanoseconds (half the outside clock frequency of 125 MHz).
Therefore, with an 800 element-deep pipeline the latency
is 800 × 16 nanoseconds = 12.8 microseconds. Thus, the
latency is still very low and we consider it irrelevant when
compared with the arrival rate of standard streams.

7. SYSTEM EVALUATION
In this section, we present evaluation results of our com-

plex event detection system as a whole. The implementation
is on a Virtex-5 FPGA from Xilinx (see Appendix B). Be-
sides verifying the correctness of our system, the main goal
of this implementation was to be able to perform through-
put measurements and to check the maximal sustainable
load with data arriving from a gigabit Ethernet link.

Experimental Setup. Tuples are transmitted to the FPGA
over the network using UDP. Every UDP packet contains
a fixed number of 128-bit wide tuples. To generate enough
network load, we ran the tuple generator concurrently on
three machines, which we connected to the FPGA via a
switch. We measured tuple and (Ethernet) frame through-

put directly on the FPGA with additional circuitry devel-
oped especially for this purpose.

7.1 Throughput Measurements
If there was no network communication overhead then the

theoretical upper bound of tuples that could hit our sys-
tem on a gigabit link would be 7,812,500 tuples per sec-
ond (1Gbit/s divided by 128 bit). To reduce communica-
tion overhead we can increase the size of the UDP packets
so that more tuples fit into a single packet. In Figure 10
we measured tuple and (Ethernet) frame throughput of our
complex event detection system with varying UDP packet
sizes.

0 10 20 30 40 50 60 70 80 90

Tuples per Packet

0

2

4

6

8

10

M
il
li
o
n

F
ra

m
es

/
S
ec

o
n
d

0

2

4

6

8

10

M
il
li
o
n

T
u
p
le

s
/

S
ec

o
n
d

FramesTuples

Figure 10: Experimental Results: Throughput

The communication overhead for each Ethernet frame in-
cludes 20 bytes for the IP header and 8 bytes for the UDP
header next to the overhead for the frame itself (38 bytes),
i.e., the per frame overhead is 66 bytes (528 bits). With
large frames, e.g., of size 1,440 bytes containing 90 tuples
(528+90×128 bits), we were able to process up to 7,279,215
tuples per second — close to the theoretical upper limit
stated above.

Knowing the frame overhead (Foverhead = 528 bits), we
can calculate the bandwidth utilization (Butil) using the fol-
lowing formula:

Butil = Nframes/s × (Foverhead + Ntpp × 128) .

The number of frames per second (Nframes/s) is multiplied
with the network communication overhead (Foverhead) and
the UDP payload, which is the number of tuples per packet
(Ntpp) times tuple size (128 bits). For the example above (90
tuples per packet) we measured that the FPGA processed
approximately 80,880 frames per second which results in a
bandwidth utilization of:

Butil = 80, 880× (528 + 90× 128) = 974 Mbit/s .

Though this number is impressive, it needs to be said that
it is typically not the large network packets that CPU-based
systems have trouble with. As was shown in [12], commodity
systems struggle most with processing network data with
high packet rates. Therefore, the more interesting results
are the ones with small packets. The smallest packets in
our experiments contained exactly one tuple. We measured
that the FPGA processed 1,451,373 such packets per second,
thus resulting in a bandwidth utilization of:

Butil = 1, 451, 373× (528 + 1× 128) = 952 Mbit/s .

666

This result demonstrates the true value of our work. It
shows that in by-passing the network-memory-CPU bottle-
neck our system is able to detect complex event patterns
even on network traffic with very high packet rates, some-
thing that is not feasible with CPU-based solutions.

8. RELATED WORK
While traditional database engines are increasingly hitting

the limitations of commodity computing architectures, sev-
eral commercial solutions already demonstrate the advan-
tages of FPGA acceleration for database processing. Most
notably in this respect are Netezza’s TwinFin system [13] or
the appliances offered by Kickfire [8] and XtremeData [19].
An architectural difference of our system is that we connect
the FPGA directly to the network interface, rather than us-
ing it as a co-processor next to the CPU.

On the research side, the use of FPGAs has been pro-
posed, e.g., for XML filtering [11], stream processing [12,
18], or financial trading [14]. Our pipelined implementa-
tion of stream partitioning was inspired by our earlier work
in [16], where we used as similar design to parallelize the
computation of frequent items.

The importance of complex event detection[1, 6] is mani-
fested in an ongoing effort to standardize an SQL extension
with pattern matching support [21]. While this SQL ex-
tension has already been implemented in software systems,
e.g., ESPER [4] or DejaVu [3], we are the first to look at
hardware-based complex event detection.

Since Floyd and Ullman [5], in 1982, first studied imple-
menting regular expressions in hardware as NFAs, there have
been a number of publications on regular expression match-
ing with FPGAs, for example [2, 10, 15, 20]. Whereas ear-
lier work used FPGAs for pattern matching on strings, in
our work, we detect complex event patterns in sequences of
events, which are based on arbitrary attributes. This adds
significant complexity to the problem, e.g., amplified state
explosion due to overlapping predicates and the necessity
for stream partitioning functionality.

9. SUMMARY
Complex event detection using CPU-based systems suf-

fer from severe limitations on the amount of data that can
be brought to the CPU due to bottlenecks between the net-
work, memory, and the CPU itself. In this paper, we propose
to use FPGAs to circumvent this problem. By inserting the
FPGA in the data path, e.g., between network interface and
CPU, we can detect complex events at gigabit wire speed.
Our solution uses regular expressions implemented as finite
automata to detect complex events. Given that FPGAs im-
pose very different design constraints than software-based
solutions, the paper describes in detail the trade-offs of im-
plementing non-deterministic finite automata in an FPGA.
The experiments show that the resulting system is both ef-
ficient in terms of chip space requirements and can process
event streams at very close to wire speed.

Acknowledgments. This work was supported by an Am-
bizione grant of the Swiss National Science Foundation un-
der the grant number 126405 and by the Enterprise Com-
puting Center (ECC) of ETH Zurich
(http://www.ecc.ethz.ch/).

10. REFERENCES
[1] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman.

Efficient Pattern Matching over Event Streams. In
SIGMOD ’08, New York, NY, USA, 2008.

[2] C. Clark and D. Schimmel. Scalable Pattern Matching
for High Speed Networks. In FCCM ’04, Washington,
DC, USA, 2004.

[3] N. Dindar, B. Güç, P. Lau, A. Özaland M. Soner, and
N. Tatbul. DejaVu: Declarative Pattern Matching
over Live and Archived Streams of Events. In
SIGMOD’09, Providence, RI, USA, 2009.

[4] EsperTech Inc. http://esper.codehaus.org/.

[5] R. W. Floyd and J. Ullman. The Compilation of
Regular Expressions into Integrated Circuits. J. ACM,
29(3), 1982.

[6] D. Gyllstrom, E. Wu, H. Chae, Y. Diao, P. Stahlberg,
and G. Anderson. SASE: Complex Event Processing
over Streams. In CIDR’07, Asilomar, CA, USA, 2007.

[7] J. Hopcroft, R. Motwani, and J. Ullman. Introduction
to Automata Theory, Languages, and Computation
(2nd Edition). Addison Wesley, 2000.

[8] Kickfire. http://www.kickfire.com/.

[9] R. McNaughton and H. Yamada. Regular Expressions
and State Graphs for Automata. IEEE Transactions
on Electronic Computers, 9, 1960.

[10] A. Mitra, W. Najjar, and L. Bhuyan. Compiling
PCRE to FPGA for accelerating SNORT IDS. In
ANCS’07, New York, NY, USA, 2007.

[11] A. Mitra, M. R. Vieira, P. Bakalov, V. J. Tsotras, and
W. A. Najjar. Boosting XML Filtering Through a
Scalable FPGA-Based Architecture. In CIDR’09,
Asilomar, CA, USA, 2009.

[12] R. Müller, J. Teubner, and G. Alonso. Streams on
Wires - A Query Compiler for FPGAs. In VLDB’09,
Lyon, France, 2009.

[13] Netezza Corp. http://www.netezza.com/.

[14] M. Sadoghi, M. Labrecque, H. Singh, W. Shum, and
H. Jacobsen. Efficient Event Processing through
Reconfigurable Hardware for Algorithmic Trading. In
VLDB’10, Singapore, 2010.

[15] R. Sidhu and V. Prasanna. Fast Regular Expression
Matching Using FPGAs. In FCCM’01, Los Alamitos,
CA, USA, 2001.

[16] J. Teubner, R. Müller, and G. Alonso. FPGA
Acceleration for the Frequent Item Problem. In
ICDE’10, Long Beach, CA, USA, 2010.

[17] K. Thompson. Programming Techniques: Regular
Expression Search Algorithm. Commun. ACM, 11(6),
1968.

[18] P. Vaidya, J. Lee, F. Bowen, Y. Du, C. Nadungodage,
and Y. Xia. Symbiote: A Reconfigurable Logic
Assisted data Stream Management System
(RLADSMS). In SIGMOD’10, 2010.

[19] XtremeData, Inc. http://www.xtremedata.com/.

[20] Y. Yang, W. Jiang, and V. Prasanna. Compact
Architecture for High-Throughput Regular Expression
Matching on FPGA. In ANCS’08, San Jose, CA,
USA, 2008.

[21] F. Zemke, A. Witkowski, M. Cherniack, and L. Colby.
Pattern Matching in Sequences of Rows. In Technical
Report ANSI Standard Proposal, 2007.

667

APPENDIX
A. FPGA ARCHITECTURE

In a nutshell, field-programmable gate arrays (FPGAs) are
chip devices that host a pool of resources, which can be con-
figured to implement user-specified logic circuits directly in
hardware. Essentially, an FPGA consists of many so-called
configurable logic blocks (CLBs) arranged in a 2-dimensional
array. The CLBs are connected to each other by an intercon-
nect network as illustrated by the parallel wires between the
CLBs in Figure 11. At every intersection of two wire chan-
nels, a configurable switchbox determines how the CLBs are
interconnected.

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

Configurable switchbox
at intersection of

wire channels

CLB : Configurable
Logic Block

IOB : Input/Output

Block

Figure 11: Basic FPGA Architecture

Internally, each CLB is divided into two slices which, in
turn, are composed of lookup tables (LUTs) and flip-flop
registers. In Virtex-5 chips, each slice embodies four LUT-
flip-flop pairs, i.e., there are eight lookup tables and eight
flip-flops per CLB.

Lookup tables and flip-flops are combined into pairs as
shown in Figure 12. Lookup tables provide a configurable
type of Boolean logic and can be used, e.g., to implement
AND or OR gates. More precisely, a 6-to-1 lookup table in a
Virtex-5 chip can implement any function {0, 1}6 → {0, 1}
that has six binary inputs and one binary output.

in0
in1
in2
in3
in4
in5

SRAM

cell

6-to-1 LUT

D Q

Flip-flop
clock

SRAM

cell

Multiplexer

out

Figure 12: Virtex-5 LUT-flip-flop pair

As shown in Figure 12, each lookup table drives the input
of a flip-flop register, which provides storage for a single bit
of information. As such, the internals of an FPGA slice are

an excellent fit for the NFA implementation strategy that
we outlined in Section 4.3.

Typically, FPGAs are not programmed at the lookup ta-
ble and flip-flop level. Rather, the specification of a user
logic is described using a higher level hardware description
language (HDL), e.g., VHDL or Verilog. The HDL code is
then transformed (synthesized) into logic circuits which are
mapped to the specific FPGA architecture.

Nevertheless, understanding this underlying architecture
is crucial, in particular when designing large circuits. The
larger a circuit, the more difficult it gets to map the circuit
to the somewhat rigid FPGA structure. A common pitfall
is that a design induces long signal paths across vast parts
of the FPGA chip, which usually leads to a decreased clock
rate, i.e., a loss in performance.

A good design principle therefore is to build a large circuit
from smaller self-contained sub-circuits, which each fit into a
compact building block on the FPGA. In Section 4.3, we did
so for the implementation of NFAs, where we mapped each
state and its respective incoming transition to a LUT-flip-
flop pair. Furthermore, the FPGA architecture presented
above suggests that interacting sub-circuits should be placed
close to each other on the FPGA chip so that communication
can remain local and long signal paths are avoided. This is
why the pipeline design that we propose in Section 6 for the
Stream Partitioner scales well with an increasing number of
partitions.

B. FPGA CHARACTERISTICS
Commonly available resource types hosted by FPGAs in-

clude lookup tables (LUTs) to realize combinatorial logic,
on-chip storage in terms of Block RAM (BRAM) and flip-
flops, and a configurable interconnect network. All of our
experiments were conducted on a Virtex-5 FPGA from Xil-
inx. Some selected characteristics are displayed in Table 2.

LUTs (6-to-1 lookup tables) 69,120
flip-flops (1-bit registers) 69,120
block RAM (total kbit) 5,328
block RAM (number of 36 kbit blocks) 148

Table 2: Resources available in a
Virtex-5 FPGA (XC5VLX110T) from Xilinx.

It is worth noting that next generation Virtex-6 FPGAs
offer significantly more resources. In Table 3 we list some
characteristics of the large Virtex-6 LX760 chip.

LUTs (6-to-1 lookup tables) 474,240
flip-flops (1-bit registers) 948,480
block RAM (total kbit) 25,920
block RAM (number of 36 kbit blocks) 720

Table 3: Resources available in a
Virtex-6 FPGA (XC6VLX760) from Xilinx.

C. PREDICATE DECODER
Decoding predicates in a separate component makes sense

from an architectural point of view and it may also lead to a
substantial reduction in chip space consumption, as we will
show in this section.

668

Consider the regular expression A B A B and assume the
predicates A and B define the ASCII characters ‘A’ and ‘B’,
i.e., A is satisfied when the seven wires encode the ASCII
code ‘65’. Figure 13 illustrates the NFA that matches this
regular expression without the support of a separate Predi-
cate Decoder.

A B A B

Figure 13: NFA for A B A B

The boxes in the figure represent states of the NFA. Notice
that all seven wires are routed to every state and how it is
redundantly checked whether an ‘A’ or a ‘B’ is matched. In
Figure 14 the same NFA is depicted, however, with predicate
decoding offloaded to a separate component.

0

65
66

127

..
.

..
.

A BAB

Figure 14: NFA for A B A B with Predicate Decoder

Now it suffices to inspect a single signal at each NFA state
to check whether a given predicate was satisfied. This means
less wires need to be routed, i.e., the interconnect is used
more efficiently. Also the logic for evaluating the predicates
is no longer redundantly present on the chip leading to a
reduced consumption of lookup table.

The Predicate Decoder, in this case, is a simple demulti-
plexer converting 7-bit ASCII encoding into 128-bit one-hot
encoding. However, in a typical streaming application the
predicates are more complex, e.g., may contain Boolean op-
erators and comparison operators. This makes the use of a
separate Predicate Decoder even more compelling.

Our measurements show that it is wrong to assume that
the synthesizer detects and optimizes all redundant struc-
tures on its own. In Figure 15 we have compared a design
with a separate Predicate Decoder against a design without.
These measurements are based on the regular expression
(A B)i. The number of flip-flops used is negligible. We need
one flip-flop per state in the NFA, e.g., (A B)250 requires
500 flip-flops. Nevertheless, the lookup-table (LUT) con-
sumption reaches critical levels with increasing i when no
predicate decoder is used.

D. STATE EXPLOSION
In this section, we present additional measurement results

of our experiments concerning the state explosion in DFAs,
which we discussed in Section 4.3. Figure 16 depicts the
number of flip-flops (in percent) required by the respective
finite automata types corresponding to the regular expres-
sion (0|1)* 1 (0|1)i.

0 50 100 150 200 250

i in (A B)i

0

5

10

15

20

25

30

R
es

o
u
rc

e
co

n
su

m
p
ti

o
n

%

No decoder:

LUTs

Slices

With decoder:

LUTs

Slices

Figure 15: Effects of using a Predicate Decoder

0 1 2 3 4 5 6 7 8 9 10

i in (0|1)* 1 (0|1)i

0

1

2

3

4

5

F
li
p
-fl

o
p

co
n
su

m
p
ti

o
n

in
%

NFA

DFA

DFA (compressed)

Figure 16: Flip-flop Consumption → NFA vs. DFA

The figure illustrates that by using a binary representa-
tion (DFA compressed) to store the active state of the DFA,
state explosion does not affect flip-flop consumption. Thus,
NFAs and DFAs with compressed states require a similar
amount of flip-flops, whereas DFAs with one-hot encoded
states exhibit exponential flip-flop consumption.

0 1 2 3 4 5 6 7 8 9 10

i in (0|1)* 1 (0|1)i

0

1

2

3

4

5

6

L
U

T
co

n
su

m
p
ti

o
n

in
%

NFA

DFA

DFA (compressed)

Figure 17: LUT Consumption → NFA vs. DFA

In Figure 17 lookup table (LUT) consumption is illus-
trated. In the NFA case, the number of lookup tables con-
sumed increases linearly with respect to i. While a DFA
with compressed state representation requires less lookup
tables than a DFA with one-hot encoded states, the number
of lookup tables still grows exponentially with respect to i.

669

