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ABSTRACT bonel

1

The shift to multi-core hardware brings new challenges to database @ WAL! Commit g j

systems, as the software parallelism determines performance. Evel Xct 1 V\D\/m\’\’\’\%“““//\/\[}\/\

though database systems traditionally accommodate simultaneou b T 221G -! '

requests, a multitude of synchronization barriers serialize execu- ! @@ !

tion. Write-ahead logging is a fundamental, omnipresent compo- ! o :@

nent in ARIES-style concurrency and recovery, and one of the _a1WAL Y

most important yet-to-be addressed potential bottlenecks, espe Xct 2 VAN VZN _/ ______ Ty

cially in OLTP workloads making frequent small changes to data. | :

In this paper, we identify four logging-related impediments to @

database system scalability. Each issue challenges different level it Time

the software architecture: (a) the high volume of small-sized 1/10

requests may saturate the disk, (b) transactions hold locks while [ | ock mgr. Log Mgr. N\ Working 1 _ 1 Waiting

waiting for the log flush, (c) extensive context switching over- ] -

whelms the OS scheduler with threads executing log I/Os, and (d)rigure 1. A timeline of two transactions illustrating four kinds of

contention appears as transactions serialize accesses to |n'mem0[Mg_imposed delay: (A) I/O-related delays, (B) increased lock con-

log data structures. We demonstrate these problems and addresggntion, (C) scheduler overload, and (D) log buffer contention.

them with techniques that, when combined, comprise a holistic,

scalable approach to logging. Our solution achieves a 20%-69%

speedup over a modern database system when running log-inteninternal bottlenecks [11] often mean that database engines cannot

sive workloads, such as the TPC-B and TATP benchmarks. More-extract enough parallelism to meet multicore hardware demands.

over, it achieves log insert throughput over 1.8GB/s for small log The log manager is a key service of modern DBMSs, espe-

records on a single socket server, an order of magnitude highekially prone to bottlenecks due to its centralized design and depen-

than the traditional way of accessing the log using a single mutex. dence on I/O. Long flush times, log-induced lock contention, and
contention for log buffers in main memory all impact scalability,

1. INTRODUCTION and no single bottleneck is solely responsible for suboptimal per-

Recent changes in computer microarchitecture have led to multi-formance. Modern systems can achieve transaction rates of

core systems, which in turn have several implications in database100ktps or higher, exacerbating the log bottleneflesearch to

management systems (DBMS) software design [6]. DBMS soft- date offers piecewise or partial solutions to the various bottlenecks,

ware was designed in an era during which most computers wereyhich do not lead to a fully scalable log manager for today’s multi-

uniprocessors with high latency 1/0 subsystems. Database enginegore hardware.

therefore excel at exploitingpncurrency —support for multiple in- . .

progress operations— to interleave the execution of a large numbel.1 Write-ahead Logging and Log Bottlenecks

of transactions, most of which are idle at any given moment. How- Nearly all database systems use centralized write-ahead logging

ever, as the number of cores per chip increases in step with(WAL) [14] to protect against data corruption and lost committed

Moore’s law, software must explgierallelism —support for con- work after crashes. WAL allows transactions to execute and com-

current operations to proceed simultaneously— to benefit from newMit without requiring that all data pages they update be written to

hardware. Although database workloads exhibit high concurrency,disk first. However, as Figure 1 illustrates, there are four main
types of delays which logging can impose on transactions:

Permission to make digital or hard copies of all or part of this work 1/O-related delays (A).The system must ensure that a transac-
for personal or classroom use is granted without fee provided that tion’s log records reach non-volatile storage before committing.
copies ar not made or distributed for profit or commercial advantage With access times in the order of milliseconds, a log flush to mag-
and that copies bear this notice and the full citation on the first page. hetic media can easily become the longest part of a transaction.
To copy otherwise, to republish, to post on servers or to redistribute Further, log flush delays become serial if the log device is over-
to lists, requires prior specific permission and/or a fee. Articles from loaded by multiple small requests. Fortunately, log flush 1/0 times
this volume were presented at The 36th International Conference on
Very Large Data Bases, September 13-17, 2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1

Copyright 2010 VLDB Endowment 21508097/10/09... $ 10.00.

1. See, e.g. top published TPC-C results or performance figures reported
by main-memory databases like H-Store [22].
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become less important as fast solid-state drives gain popular- machine utilization
ity[1][12], and when using techniques such as group commit [8].  100%

Log-induced lock contention (B).Under traditional WAL, each
transaction which requests a commit must first flush its log records 80%
to disk, retaining all write locks until the operation completes.
Holding locks during this final (and often only) I/O significantly ~ 60%
increases lock contention in the system and creates an artificial
bottleneck in many workloads. For example, the left-most bar in
Figure 2 shows CPU utilization as 60 clients run for 95 seconds the

i'idle

[ Log mgr. contention
[JLog mgr. work

40% ] Other contention

TPC-B [24] benchmark in a modern storage manager [11] on a Sur 20% Other work

Niagara Il chip with 64 hardware contexts (see Section 6.1 for the

detailed experimental setup). Due to the increased lock contentior 0%

the system is idle 75% of the time. Section 3 shows that even Log I/0 0s Log buffer

though reduced 1/O times help, the problem remains even when latency  scheduler contention

logging to a ramdisk with minimal latency. Figure 2. Breakdown of CPU time showing work and contention

Excessive context switching (CLLog flushes incur additional due to the log vs other parts of the system, when 60 clients run the
costs beyond I/O latency because the transaction cannot continué PC-B benchmark, as we remove log-related bottlenecks.

and must be descheduled until the 1/O completes. Unlike 1/O
latency, context switching and scheduling decisions consume CPU__ . . .
time and thus cannot overlap with other work. In addition, the mainstream database engine. We show that, particularly for

abundance of hardware contexts in multicore hardware can mak rl:eweﬂ atcgesls;; fgg /mon to r:eall wor klo?dfs, tIE]c:_RhigprlSases
scheduling a bottleneck in its own right as runnable threads begin''"OUgNPUL by 15%-1647 even when Jogging 1o rast fiash disks.

to accumulate faster than the OS can dispatch them. The second. Secqnd, we propose and eyaluﬁtesh Pipglin[ng, a tgch- .
bar in Figure 2 shows for the same workload the processing time'due Wh'c.h allows most transqctlons tp CO"?m't without triggering
of a system which suffers from the problem of OS scheduler over-context switches. In synergy with ELR it achieves the same perfor-

load. The system remains 20% idle even with transactions ready gnance with asynchronous commit without sacrificing durability.

run. We analyze excessive context switching problem in Section 4. Flnally., We propose and evalliate thrge improvements to Ic’)’g
buffer design, including a new “consolidation-based backoff

Log buffer contention (D). Another log bottleneck arises as the scheme which allows threads to aggregate their requests to the log
multicore trend continues to demand exponential increases in parwhen they encounter contention. As a result, maximum log conten-
allelism; where current hardware trends generally reduce the othekjon is decoupled from thread counts and log record sizes. Our
bottlenecks (e.g. solid state drives reduce I/O latencies), each sucevaluation shows that contention is minimized and identifies mem-

cessive processor generation aggravates contention with arpry bandwidth as the most likely bottleneck to arise next.
increase in hardware contexts. The third bar in Figure 2 shows that

if we remove the problems of logical lock contention and exces- 2. RELATED WORK

sive context switching, the system utilizes fully the available hard- As a core database service, logging has been the focus of extensive
ware. But, as a large number of threads attempt simultaneous logesearch. Virtually all database engines employ some variant of
inserts, the contention for the centralized log buffer contributes aARIES [14], a sophisticated write-ahead logging system which
significant (and growing) fraction of total transaction time. We integrates concurrency control with transaction rollback and disas-
therefore consider this bottleneck as the most dangerous to futurger recovery, and allows the system to recover fully even if recov-
scalability, in spite of its modest performance impact on today’s ery is interrupted repeatedly by new crashes. To achieve its high
hardware. Section 5 focuses on this problem. robustness with good performance, ARIES couples tightly with the
In summary, log bottlenecks arise for several reasons, and norest of the system, particularly the lock and buffer pool managers,
single approach addresses them all. A technique known as “asynand has a strong influence on the design of access methods such as
chronous commit” is perhaps the clearest symptom of the continu-B+Tree indexes [13]. The log is typically implemented as a single
ing log bottleneck. Available in most DBMSs (including Oracle global structure shared by every transaction, making it a potential
[16] and PostgreSQL [17]) asynchronous commit allows transac- pottleneck in highly parallel systems. Even in a single-threaded
tions to Complete and return results without Waiting for their |Og database engine the overhead of |ogg|ng accounts for rough|y 12%
entries to become durable. Skipping the log flush step sidestepsf the total time in a typical OLTP workload [7].
problems A-C listed above, but at the cost of unsafe operation: the  Several recent studies [12][3] evaluate solid state flash drives
system can lose committed work after a crash. To date no existingn the context of logging, and demonstrate significant speedups
proposal addresses all the bottlenecks associated with log flushdue to both better response times and also better handling of the
and the looming problem of log buffer contention. small 1/0 sizes common to logging. However, even the fastest

flash drives do not eliminate all overhead because synchronous log

1-.2 A Holistic Approach to Scalable Loggmg flush requests still block and therefore cause OS scheduling.
Th|§ paper presents Aether, a complete approach Fowards log scal- Log group commit strategies [8][18] reduce pressure on mag-
ability, and demonstrates how the proposed solutions address alhetic log disks by aggregating multiple requests for log flush into a

Legrﬁf;tgggeikesthoer} Tc())r(rjgrr: Qsaﬁjg”\,f r:ﬁ(je\/eiri]sft?r: thseomgizgi??ﬁmgsingle I/O operation; fewer and larger disk accesses translate into

; S tng . significantly better disk performance by avoiding unnecessary
mize or eliminate the log bottleneck. We highlight new contribu- head seeks. Unfortunately, group commit does not eliminate
tions below. unwanted context switches because transactions merely block

First, we evaluatéearly Lock Release (ELR), a promising : L '
technique for eliminating log-induced lock contention. ELR has feeqnl?ér;?s gﬁten;'ﬁst'on from the log rather than blocking on /O

been proposed several times in the past but, to our knowledge, has
never been evaluated in the literature and is not used today by any
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Asynchronous commit [16][17] extends group commit by not

only aggregating 1/0 requests together, but also allowing transac- 100 g A 10000 us (slow disk) —=— 100 us (flash)
tions to complete without waiting for those requests to complete. ] —-#-— 1000 us (fast disk) ~ —-9—-- O us (memory)
This optimization moves log flush times completely off the critical : A B A, A
path but at the expense of durability. That is, committed work can £ 1
be lost if a crash prevents the corresponding log records to becom:t 3 4 a7
durable. Despite being unsafe, asynchronous commit is used E e
widely in commercial and open source database systems because ] SR e
provides a significant performance boost. In contrast, Aether 1 AR T —*
achieves this performance boost without sacrificing durability. ) ”(/0"\\\‘

DeWitt et al. [4] observe that a transaction can safely release 1 %‘é r === X —— o= — g
locks before flushing its log records to disk provided certain condi- 0.0 1.0 20 3.0 4.0 5.0

tions are met. IVS [5] implemented this optimization but its cor- Lo

rectness was proven more recently [21]. We refer to this technique Data access skew (zipfian s parameter)

as early lock release (ELR) and evaluate it further in Section 3. Figure 3. Speedup due to ELR when running the TPC-B bench-
Main-memory database engines impose a special challengemark and varying I/O latency and skew in data accesses.

for log implementations because the log is the only I/O operation

of a given transaction. Not only is the I/O time responsible for a

large fraction of total response time, but short transactions alsocontinue executing. In spite of its potential benefits modern data-

lead to high concurrency and contention for the log buffer. Some base engines do not implement ELR and to our knowledge this is

proposals go so far as to eliminate the log (and its overheads}he first paper to analyze empirically ELR's performance. We

altogether [22], replicating each transaction to multiple databasehypothesize that this is largely due to the effectiveness of asyn-

instances and relying on hot fail-over to maintain durability. chronous commit [16][17], which obviates ELR and which nearly

Aether is especially well-suited to in-memory databases because itll major systems do provide. However, systems which do not sac-

addresses both log flush delays and contention at the log buffer. rifice durability can benefit strongly from ELR under workloads

3. MOVING LOG I/O LATENCY OFF THE which exhibit lock contention and/or long log flush times.
' 3.2 Evaluation of ELR
CRITICAL PATH We use the TPC-B benchmark [24] to evaluate ELR. TPC-B was
consistency and logs all actions before performing them. At com %esigned as a database stress test and also exhibits significant lock
; . b . . " contention. The benchmark executes on a 64-context Niagara Il
pletion time —after writing a commit record to non-volatile stor- - geryer rynning the Shore-MT storage manager [11] (further details

age- the transaction finally releases the locks it has accumulated, gt the platform and experimental methodology can be found in

Releasing the locks only after the commit record has reached diskggctign 6.1). Figure 3 shows the benefit of ELR over a baseline
(or beentlushed) ensures that other transactions do not encounter g qiem a5 we vary the two major factors which impact its effec-
uncommitted data, but also increases lock hold time significantly, jyeness: lock contention and I/O latency. The y-axis shows
especially for in-memory wor_kloads where the log commit is the speedup due to ELR as the skew of zipfian-distributed data
longest part of many transactions. accesses increases along the x-axis. Lower skew leads to more uni-
3.1 Ea”y Lock Release form accesses and lower lock contention. Different log device
DeWitt et al. [4] observe that a transaction’s locks can be released@t€ncies are given as data series ranging from 0 to 10ms. The first
before its commit record is written to disk, as long as it does not S€Mes (Oms) is measured using a ramdisk which imposes almost no
return results to the client before becoming durable. Other transacdditional delay beyond a round trip through the OS kernel (40-
tions which read data updated bypee-committed transaction 80us). The remaining series are crgateq by using a comblna}t}on of
becomedependant on it and must not be allowed to return results asynchronc_)us I/O and high resolution timers to impose add|t|one_1l
to the user until both their own and their predecessor’s log records€SPonse times of 100us (fast flash drive), 1ms (fast magnetic
have reached the disk. Serial log implementations preserve thiglfive), and 10ms (slow magnetic quve). , o
property naturally, because the dependant transaction’s log records ~ AS shown in the graph, ELR's speedup is maximized (35x)
must always reach the log later than those of the pre-committedfof sloyver dewqes, .but remains §ubstantlal (2x) even with flash
transaction and will therefore become durable later also. Formally,drives if contention is present. This effect occurs because transac-
as shown in [21], the system must meet two conditions for early tions are short even compared to 100us I/O times, and ELR eases
lock release to preserve recoverability: contention by removing that Qelay from. the crltlca] path. As write
) ) ) ) performance of most flash drives remains unpredictable (and usu-

1. Every dependant transaction’s commit log record is written 0 )y slower than desired) ELR remains an important optimization

the dISk. after the corresponding log record of pre-committed gyen as systems move away from magnetic media.

transaction. Varying lock contention impacts performance in three phases.
2. When a pre-committed transaction is aborted all dependantFor very low contention, the probability of a transaction to request

transactions must also be aborted. Most systems meet this conan already-held lock is low. Thus, holding that lock through the log

dition trivially; they do no work after inserting the commit flush does not stall other transactions and ELR has no opportunity

record, except to release locks, and therefore can only aborf0 improve performance. At the other extreme, very high skew

during recovery when all uncommitted transactions roll back. leads to such high contention that transactions encounter held
locks even with no log flush time. In the middle range, however,
ical path by ensuring that only the committing transaction must ELR significantly improves perfor_mance because hold_lng locks

. . X : . ) through log flush causes stalls which would not have arisen other-
wait for its commit operation to Comp'e‘e’ having re_leased_ all held wise. The sweet spot becomes wider as longer I/O times stretch out
database locks, others can acquire these locks immediately an%e total transaction length in the baseline case. Finally, by way of

Early Lock Release (ELR) removes log flush latency from the crit-
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Figure 4. Total and system CPU utilization and number of context switches without (I€fjure 5. Performance of flush pipelining and
and with (right) flush pipelining. asynchronous commit vs. baseline.

comparison, the intuitive rule that 80% of accesses are to 20% of Excessive context switching explains why group commit
the data corresponds roughly to a skew of 0.85. In other words,alone is not fully scalable and why asynchronous commit is popu-
workloads are likely to exhibit exactly the contention levels which lar despite being unsafe. The latter eliminates context switching
ELR is well-equipped to reduce. associated with transaction commit while the former does not.

In conclusion, we find that ELR is a straightforward optimi-

zation which can benefit even modern database engines. Furthefd-1 Flush Pipelining )
as the next section demonstrates, it will become an important com-10 eliminate the scheduling bottleneck (and thereby increase CPU

ponent in a safe replacement for asynchronous commit. utilization and throughput), the database engine must decouple the
transaction commit from thread scheduling. We prop®lssh

4. DECOUPLING OS SCHEDULING Pipelining, a technique which allows agent threads to detach from

FROM LOG FLUSH OPERATIONS transactions during log flush in order to execute other work,

. resuming the transaction once the flush is completed.
Thg Igtency of a log flush arises from tvyo sources: the actual I/O Flush pipelining operates as follows. First, agent threads com-
wait time and the context switches required to block and unblock mjt transactions asynchronously (without waiting for the log flush
the thread at either end of the wait. Existing log flush optimiza- 1 complete). However, unlike asynchronous commit they do not
tions, such as group commit, focus on improving I/O wait time retrn immediately to the client but instead detach from the trans-
without addressing thread scheduling. Similarly, while ELR action, enqueue its state at the log and continue executing other
removes log flush from the critical path of other transactions transactions. A daemon thread triggers log flushes using policies
(shown as (B) in Figure 1) the requesting transaction must still gimjjar to those used in group commit (e.g. “flush every X transac-
block for its log flush I/O and be rescheduled as the I/O completesijons | bytes logged, or T time elapsed, whichever comes first’).
(shown as (A) in Figure 1). Unlike 1/O wait time, which the OS  after each 1/0 completion, the daemon notifies the agent threads
can overlap with other work, each scheduling decision consumesyf newly-hardened transactions, which eventually reattach to each
several microseconds of CPU time which cannot be overlapped. yransaction, finish the commit process and return results to the cli-
. The cost of scheduling and context switching is increasingly ent, Transactions which abort after generating log records must
important for several reasons. First, high-performance solid statey|so pe hardened before rolling back. The agent threads handle this
storage provides access times measured in tens of microsecondggse as relatively rare under traditional (non-optimistic) concur-
leaving the accompanying scheduling decisions as a slgnlflcantrency control and do not pass the transaction to the daemon.
fraction of the total delay. Second, _expone_ntlally growing core When combined with ELR (see previous section), flush pipe-
counts make scheduler overload an increasing concern as the oﬁning provides the same throughf)uls asynchronous commit
must dispatch threads for every transaction completion. The schedyithout sacrificing any safety. Only the log’s daemon thread suf-
uler must coordinate these scheduling decisions (at least loosely}ers wait time and scheduling due to log flush requests, with agent

across all cores. Th_e excessjve context switching triggers a schedqyeads pipelining multiple requests to hide even long delays.
uling bottleneck which manifests as a combination of high load

(e.g. many runnable threads) but low CPU utilization and signifi- 4.2 Evaluation of Flush Pipelining
cant system time. To evaluate flush pipelining we run the same experiment as in
Figure 4 (left) shows an example of the scheduler overload Figure 4 (left), but this time with flush pipelining active.
induced when the Shore-MT storage manager [11] runs the TPC-BFigure 4 (right) shows the result. As before we vary the number of
benchmark [24] on a 64-context Sun Niagara Il machine. As the client threads and measure the number of context switches (in mil-
number of client threads increases along the x-axis, we plot thelions), utilization achieved, and the OS system time contribution.
rate of context switches (in thousands/s), as well as the CPU utili-
zation achieved and the number of CPUs running inside the OS
kernel (system time). The number of context switches increases2. Daemon threads contribute a secondary effect. As load increases these
steadily with the number of client thredd§he CPU utilization threads wake more and more frequently at first, then sleep less and
curve illustrates that the OS is unable to handle this load, as 12 of less, and finally revert to polling as the system becomes saturated.
the 64 hardware contexts are idle. Further, as load increases af. Asynchronous commit does deliver superior response times for indi-
increasing fraction of total load is due to system time rather than  vidual transactions (they do not wait for the log flush to complete), but
the application, further reducing the effective utilization. the delays overlap perfectly and overall throughput is not impacted.
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(B) Baseline

(D) Decoupled buffer insert

t Start/finish

-- Waiting

Consolidation array (C)

Hybrid design (CD)

[] Mutex held
Copy into buffer

3. Log buffer release The transaction releases the buffer space,

1 1 t t ottt which allows the log manager to write the record to disk.
W77/ W7722222/a R A straightforward log insert implementation acquires a central
FoTTTTTT A . i R/ mutex before performing all three phases and the mutex is released
; """""""" —k at the same time as the buffer (pseudocode in Algorithm 1, Appen-
dix). This approach is attractive for its simplicity: log inserts are
111 1 11t relatively inexpensive, and in the monolithic case buffer release is
T A | simplified to a mutex release.
CA------- O - ----- 1 The weakness of a monolithic log insert is that it serializes
- ------ B buffer fill operations —even though buffer regions never overlap—
t which adds their cost directly to the critical path. In addition, log

record sizes vary significantly, making copying costs unpredict-
able. Figure 6(B) illustrates how a single large log record can
impose long delays on later threads; this situation arises frequently

in our system because the distribution of log records has two
strong peaks at 40B and 264B (a 6x difference) and the largest log
records can occupy several kB each.

To permanently eliminate contention for the log buffer, we
seek to make the cost of accessing the log independent of both the
e;izes of the log records being inserted and the number of threads
d|nserting them. The following subsections explore both approaches
and propose a hybrid solution which combines them.

Figure 6. lllustrations of several log buffer designs. The baseline
system can be optimized for shorter critical path (D), fewer threads
attempting log inserts (C), or both (CD)

In contrast to the baseline case, the number of context switch
after an initial increase, remains almost steady for the entire loa
spectrum. The utilization reaches the maximum possible (64) indi-

cating that the scheduling bottleneck has been resolved. Furtheg 1 Consolidating Buffer Allocation
confirmation comes from the system time contribution, which A |og record consists of a standard header followed by an arbitrary
remains nearly constant regardless of how many threads enter thgayioad. Log buffer allocation is composable in the sense that two
system. This behavior is expected because only one thread issues §{,ccessive requests also begin with a log header and end with an
O requests regardless of thread counts, and the group commit po'arbitrary payload. We exploit this composability by allowing
icy ensures that requests become larger rather than more frequentihreads to combine their requests into groups, carve up and fill the
Figure 5 compares the performance of baseline Shore-MT togroup's buffer space off the critical path, and finally release it back
asynchronous commit and flush pipelining when running the TPC- {5 the |og as a unit. To this end we extend the idea of elimination-
B. The x-axis varies the number of clients as we plot throughput onpased backoff [9][15], a hybrid approach combining elimination
the y-axis. Even with a fast log disk, the baseline system begins toyees [19] with backoff. Threads which encounter contention back
lag almost immediately as scheduling overheads increase reducings hyt instead of sleeping or counting cycles they congregate at
its scalability. In contrast, the other two scale better achieving up togn dimination array, a set of auxiliary locations where they
22% higher performance. As Section 6.4 will show, for even more attempt to combine their requests with those of others.
log-intensive workloads the benefits of flush pipelining are larger. When elimination is successful threads satisfy their requests
In summary, flush pipelining successfully and safely removes yithout returning to the shared resource at all, making the backoff
the log from the system’s critical path of execution by breaking the yery effective. For example, stacks are amenable to elimination
correlation between transaction commits and scheduling. because push and pop requests which encounter each other while

5. SCALABLE LOG BUFFER DESIGN backing off can cancel each other directly via the elimination array

- i . . and leave. Similarly, threads which encounter contention for log
Most database engines use some variant of ARIES, which assignserts back off to aconsolidation array and combine their

each log record a unique log sequence number (LSN). The LSNyequests before reattempting the log buffer. We use the term “con-
encodes a record’s disk address, acts as a timestamp for data paggsjidation” instead of “elimination” because, unlike with a stack or
written to disk, and serves as a pointer to log records both in mem-qynter, threads must still cooperate after combining their requests
ory and on disk. Itis also convenient for LSN to serve as addressegg that the last to finish can release the group’s buffer space. Like
in the log buffer, so that generating an LSN also reserves buffergn glimination array, any number of threads can consolidate into a
space. In order to keep the database consistent in spite of repeateghgle request, effectively bounding contention at the log buffer to
failures, ARIES imposes strict ordering constraints on LSN gener- the number of array entries protecting the log buffer, rather than
ation. Whilg a tota! ordering is not technically required for correct- the number of threads in the system. Algorithm 2 (Appendix) pro-
ness, valid partial orders tend to be too complex and yjges a sketch of the consolidation array-based buffer allocation.
interdependent to be worth pursuing as a performance optimization  The net effect of consolidation is that only the first thread
(see Segtion A.5 of the Appendi?( for further d.isclzussion). Inserting from each group competes to acquire buffer space from the log,
a record into the log buffer consists of three distinct phases: and only the last thread to leave must wait to release it. Figure 6(C)
1. LSN generation and log buffer acquire The thread must first ~ depicts the effect of consolidation; the first thread to arrive is
claim the space it will eventually fill with the intended log joined by two others while it waits on the log mutex and all three
record. Though serial, LSN generation is short and predictableproceed in parallel once the mutex acquire succeeds. However, as
barring exceptional situations such as buffer wraparound or full the figure also shows, consolidation leaves significant wait times
log buffer because only buffer fill operations within a group proceed in paral-
. . . . lel; operations between groups are still serialized. Given enough
2. tg?ferfgogiér}tsig?ga-:}gzéhread copies the log record in the threads in the system, at least one thread of each group is likely to
p ) insert a large log record, delaying later groups.
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100% contention for threads in the buffer acquire stage and maximum
€ aox O Log mar. pipelining of all operations.
g contention 6, PERFORMANCE EVALUATION
% 60% O Other . We implement the techniques described in sections 3, 4, and 5 into
) contention a logging subsystem called Aether. To enhance readability, most of
2 40% @ Log mgr. the performance evaluation of ELR and flush pipelining is shown
g work in sections 3 and 4, respectively. Unless otherwise stated in this
iz 20% M Other work section we assume those optimizations are already in place. This
section details the sensitivity of the consolidation array based tech-
0% nigues to various parameters, and finally evaluates performance of
,§\° '\',’g\o $\° %Cg\‘, o,0°\° (85,\0 /\(;\0 %qg\Q q’\°\° Aether in a prototype database system.
System load 6.1 Experimental Setup
. __ . All experiments were performed on a Sun T5220 (Niagara lIl)
Figure 7. Breakdown of the execution time of Shore-MT with server with 64GB of main memory running Solaris 10. The Niag-

ELR and flush pipelining, running TATP-UpdateLocation transac- ara || chip contains sixteen processing pipelines, each capable of
tions, as load increases. The log buffer becomes the bottleneck. supporting four hardware contexts, for a total of 64 OS-visible
“CPUs.” The high degree of hardware parallelism makes it a good
. . indicator of the challenges all platforms will face as on-chip core
5.2 Decoupling Buffer Fill _ ] counts continue to double. We use Shore-MT [11], an open-source
Because buffer fill operations are not inherently serlal (records multi-threaded storage manager. We developed Shore-MT using as
never overlap) and have varlable costs, they are h|gh|y attractivepasis the SHORE storage manager [2], to achieve scalability on
targets to move off the critical path. All threads which have myticore platforms. To eliminate contention in the lock manager
acquired buffer regions can sgifely.flll those regions in any order asgnd focus on logging, we use a version of Shore-MT with Specula-
long as they release their regions in LSN order. We therefore mod+jye | ock Inheritance [10]. We run the following benchmarks:

ify the original algorithm so that threads release the mutex imme- i
diately after acquiring buffer space. Buffer fill operations thus TATP- TATP (aka TM1) [23] models a cell phone provider data-

become pipelined, with a new buffer fill starting as soon as the base. It consists of_sev_en very ;ma_ll trans_actions, bot_h update and
next thread can acquire its own buffer region. read-only. Thg app!lcatlon exhibits little Ioglca}l contention, but the.
Decoupling log inserts from holding locks results in a non- small transaction sizes stress database services, especially logging
trivial buffer release operation which becomes a second critical @"d locking. We use a database of 100K Subscribers.
section. Like LSN generation, buffer release must be serialized toTPC-B. This benchmark [24] models a banking workload and it is
avoid creating gaps in the log. Log records must be written to diskintended as a database stress test. It consists of a single small
in LSN order because recovery must stop at the first gap it encounupdate transaction and exhibits moderate lock contention. Our
ters; in the event of a crash any committed transactions beyond @&xperiments utilize a 100-teller dataset.

gap would be .lOSt' No mutex is requireq, buf[ before rgleasing its Log insert microbenchmark. We extract a subset of Shore-MT’s
ﬁ\g: b%u;fﬂ Jﬁggga ?ZIC rl)mﬁg% rc:cutitev;alt g;‘g:xth?vggevézt%ggggé log manager as an executable which supports only log insertions
9 PP 9 p )Without flushes to disk or performing other work, thereby isolating

buﬁe\ﬁvglrlls ?,Cﬁﬁ"ﬂ:g?&:aﬁﬁcz |§m;/£gr(tjhr@ﬁﬂzuﬂaﬁﬁ”?‘oﬁ ittht‘f)lr the log buffer performance. We then vary the number of threads,
L ; _arge log . 9 the log record size and distribution, and the timing of inserts.
finish first. Figure 6(D) illustrates the improved concurrency that

results, with significantly reduced wait times at the buffer acquire For each component of Aether, we first quantify existing bottle-
phase. Though skew in the record size distribution could limit scal- necks, then implement our solution in Shore-MT and evaluate the
ability because of the requirement to release buffers in order, weresulting impact on performance. Because our focus is on the log-
find that this is not a problem in practice because realistic log ging subsystem, and because modern transaction processing work-
record sizes do not vary enough to justify the additional complex- loads are largely memory resident [22], we use memory-resident
ity. We consider this matter further in Section A.3 of the appendix datasets, while disk still provides durability.

and propose a solution which provides robustness in the face of  All results report the average of 10 30-second runs unless

skewed log record sizes with a 10% performance penalty. stated otherwise; we do not report variance because all measure-
. . . ments were within 2% of the mean. Measurements come from tim-
5.3 Putting it all Together: Hybrid Log Buffer ers in the benchmark driver as well as Sun’s profiling tools.

In the previous two sections we outlined (a) a consolidation array profiling is highly effective at identifying software bottlenecks
based approach to reduce the number of threads entering the critieven in the early stages before they begin to impact performance.
cal section, and (b) a decoupled buffer fill which allows threads to The hardware limits scalability artificially by multiplexing many
pipeline buffer fills outside the critical section. Neither approach hardware contexts over each processor pipeline; we verify that this
eliminates all contention by itself. The two are orthogonal, how- js the case by running independent copies of Shore-MT in parallel
ever, and can be combined easily. Consolidating groups of threadgwhere the effect remains in spite of a total lack of software con-
limits log contention to a constant that does not depend on thetention), and on multi-socket machines (where the effect is shifted
number threads in the system, while providing a degree of bufferto the right by a factor proportional to the number of sockets).
insert pipelining (within groups but not between them). Decou- .

pling buffer fill operations allows pipelining between groups and 6.2 Log Buffer Contention

reduces the log critical section length by moving buffer outside, First, to set the stage, we measure the contention on the log buffer
thus making performance relatively insensitive to log record sizes.once the Early Lock Release and the flush pipelining have been
The resulting design, shown in Figure 6(CD), achieves boundedapplied. Figure 7 shows the time breakdown for Shore-MT with
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Figure 8. Log buffer scalability with respect to thread counts (left, 120B log records) arfigure 9. Overall performance improve-
log record size (right, 64 threads) ment provided by each component of Aether

ELR and flush pipelining active using its baseline log buffer better, but eventually the growing contention degrades perfor-
implementation as an increasing number of clients submit the mance and perform worst than the consolidation array.
UpdateLocation transaction from TATP. As the load in the system Finally, the hybrid approach combines the best properties of
increases, the time each transaction spends contenting for the logoth optimizations, eliminating most of the startup cost from (C)
buffer increases, at a point which the log buffer contention while limiting the contention which (D) suffers. The drop in scal-
becomes the bottleneck taking more than 35% of the executionability near the end is a hardware limitation, as described in
time. This problem will only grow as processor vendors release Section 6.1. Overall, we see that while both consolidation and

more parallel multi-core hardware. decoupling are effective at reducing contention, both have limita-
.. . . tions which we overcome by combining the two, achieving near-

6.3 Impact of log buffer optimizations (micro- linear scalability.

benchmarks)

A database log manager should be able to sustain any number d6.3.2 Scalability With Respect to Log Record Sze

threads regardless of the size of the log records they insert, limitedn addition to thread counts, log record sizes also have a strong
only by memory and compute bandwidth. Next, through a series ofinfluence on the performance of the log buffer. In the case of the
microbenchmarks we determine how well the log buffer designs baseline and consolidated variants, larger record sizes increase the
proposed in Section 5 meet these goals. In each experiment weritical section length; in all cases, however, larger record sizes
compare the baseline implementation with the consolidation arraydecrease the number of log inserts one thread can perform because
(C), decoupled buffer insert (D), and the hybrid solution combin- it must copy an increasing amount of data per insertion.

ing the two optimizations (CD). We examine scalability with Figure 8(right) shows the impact of these two factors, plotting
respect to both thread counts and log record sizes and we analyzsustained bandwidth achieved by 64 threads as they insert log
how the consolidation array’s size impacts its performance. Furtherrecords ranging between 48B and 12kB (the largest record size in
experiments in Sections A.3 and A.4 (appendix) explore the Shore-MT). As log records grow the baseline performs better, but
impact of skew in the record size distribution and of changing the there is always enough contention that makes all other approaches

number of slots in the slot array. more attractive. The consolidated variant (C) performs better at
- small records sizes as it can handle contention much better than the
6.3.1 Scalability With Respect to Thread Count decoupled record insert (D). But once the records size is over 1kB

The most important metric of a log buffer is how many insertions it contention becomes low and the decoupled insert variant fares bet-
can sustain per unit time, or the bandwidth which the log can sus-ter as more log inserts can be pipelined at the same time. The
tain at a given average log insert size. It is important because corgyybrid variant again significantly outperforms its base components
counts grow exponentially while log record sizes are application- across the whole range, but in the end all three become bandwidth-
and DBMS-dependent and are fixed. The average record size inimited as they saturate the machine’s memory system.
our workloads is about 120 bytes and a high-performance applica-  Finally, we modify the microbenchmark so that threads insert
tion generates between 100 and 200MBps of log, or between 800kheir log records repeatedly into the same thread-local storage,
and 1.6M log insertions per second. ~ whichis L1 cache resident. With the memory bandwidth limitation

_ Figure 8(left) shows the performance of the log insertion removed, the hybrid variant continues to scale linearly with record
microbenchmark for records of an average size of 120B as thesjzes until it becomes CPU-limited at roughly 21GBps (nearly 20x
number of threads varies along the x-axis. Each data series showsigher throughput than today’s systems can reach).
one of the log variants. We can see that the baseline implementa-
tion quickly becomes saturated, peaking at roughly 140MB/s and6.4 Overall Impact of Aether
falling slowly as contention increases further. Due to its complex- To complete the experimental analysis, we successively add each
ity, the consolidation array starts out with lower throughput than of the components of Aether to the baseline log system and mea-
the baseline. But once contention increases, the threads combineure the impact. With all components active we avoid the bottle-
their requests and performance scales linearly. In contrast, decounecks summarized in Figure 1 and can identify optimizations
pled insertions avoid the initial performance penalty and perform which are likely to have highest impact now and in the future.
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Figure 9 captures the scalability of Shore-MT running the [5] D. Gawlick and D. Kinkade. “Varieties of Concurrency Con-
UpdateLocation transaction from TATP. We plot throughput as the trol in IMS/VS Fast Path.lEEE Database Eng. Bull. 1985.
number of client threads varies along the x-axis. For systems[6]
today, flush pipelining provides the largest single performance
boost, 68% higher than the baseline. The scalable log buffer adds a ) )
modest 7% further speedup by eliminating log contention. [7] S.Harizopoulos, D. J. Abadi,. S. Madden, and M. Stone-

Based on these results we conclude that the most pressing  braker. “OLTP through the looking glass, and what we found
bottleneck is scheduler overload induced by high transaction  there.” InProc. SGMOD, 2008.
throughput and the associated context switching. However, flush[g] P. Helland, H. Sammer, J. Lyon, R. Carr, and P. Garrett.

pipelining depends on ELR to prevent log-induced lock contention “Group Commit Timers and High-Volume Transaction Sys-
which would otherwise limit scalability. tems.” InProc. HPTS, 1987.

As core counts continue to increase, we also predict that in : -

the future log buffer contention will become a serious bottleneck [ ]P Hendler, N. S_haV|t’,, and L. Yerushalmi. “A Scalable Lock-
: o - . ree Stack Algorithm.” IrProc. SPAA, 2004.

unless techniques such as the hybrid implementation presented in
Section 5 are used. Even today, contention at the log buffer[10] R. Johnson, I. Pandis, and A. Ailamaki. “Improving OLTP
impacts scalability to a small degree. In addition, the profiling Scalability using Speculative Lock Inheritance."Rroc.
results from Figure 7 indicate that this bottleneck is growing rap- VLDB, 2009.
idly with core counts and will soon dominate. This indication is [11] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B.
further strengthened by the fact that Shore-MT running on today's " Falsafi. “Shore-MT: a scalable storage manager for the multi-
hardware achieves almost exactly the peak log throughput we mea-  ¢ore era.”\n Proc. EDBT, 2009.
sure in the microbenchmark for the baseline log. In other words, . o
even a slight increase in throughput (with corresponding log inser- [12] S-W. Lee, B. Moon,.J.-M. K'm.’ and S.-W. Kim. A Case f?r
tions) will likely push the log bottleneck to the forefront. Fortu- Flash Memory SSD in Enterprise Database Applications.” In
nately, the hybrid log buffer displays no such lurking bottleneck Proc. SGMOD, 2008.
and our microbenchmarks suggest that it has significant headroonj13] C. Mohan. “ARIES/KVL: A key-value locking method for
to accept additional log traffic as systems scale in the future. concurrency control of multiaction transactions operating on

B-tree indexes.” IiProc. VLDB, 1990.
7. CONCLUSIONS [14] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P.

Log manager performance becomes increasingly important as = gopyarz, “ARIES: A transaction recovery method supporting
database engines continue to increase performance by exploiting fine-granularity locking and partial rollbacks using write-
hardware parallelism. However, the serial nature of the log, as well ahead logging. ACM TODS, 17(1), 1992

as long 1/0O times, threatens to turn the log into a growing bottle- ) ' ' ) .

neck. As available hardware parallelism grows exponentially, con- [15] M. Moir, D. Nussbaum, O. Shalev, and N. Shavit. “Using
tention for the central log buffer threatens to halt scalability. A new Elimination to Implement Scalable FIFO Queues.Phoc.
algorithm, consolidation array-based backoff, incorporates con- SPAA, 2005.

cepts from distributed systems to convert the previously serial log[16] Oracle.Oracle Asynchronous Commit. Oracle Database

insert operation into a parallel one which scales well even under Advanced Application Developer's Guide. Available at: http:/
much higher contention than current systems can generate. We  /download.oracle.com/docs/cd/B19306_01/appdev.102/
address more immediate concerns of excessive log-induced con-  b14251/adfns_sqglproc.htm.

text switching using a combination of early lock release and log [17] PostgreSQL Asynchronous Commit. PostgreSQL 8.4.2 Docu-

flush pipelining which allow transactions to commit without trig- mentation, Available at: http:/www.postgresgl.org/files/doc-
gering scheduler activity, and without sacrificing safety or durabil- umentation/pdf/8.4/postgresql-8.4.2-Ad. pdf.

ity. Taken together, these techniques allow the database log i .
manager to stay off the critical path of the system for maximum [18] A. Rafii, and D. DuBois. “Performance Tradeoffs of Group
performance even as available parallelism continues to increase. Commit Logging.” InProc. CMG Conference, 1989.
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A APPENDIX Algorithm 1 — Baseline log insertion algorithm
This appendix consists of four subsections. First, we present in
detail the log buffer designs, presented in Section 5, using code%

| og_i nsert(size, data):
| ock_acquire(L)

sketches for the various algorithms (Section A.1). Second, We‘31 Ls?f: b?frlegl_acqui ye(siée) )
i i i i i i urrer I sn, size, ata
describe in detail the consolidation array used by Algorithm 2 ¢ buf fer rel ease(l sn. s ze)

(Section A.2). Third, we discuss a further modification of the log 6 end

- i - 8
buffer design to address a potential source of delays coming from buf fer_acqui r e(si ze):

the requirement that all threads need to release their buffer in-ordep /* énsure buffer space available */
(Section A.3). Fourth, we discuss about distributing the log and 10 I'sn = /*update Isn and buffer state */
why it is very difficult to have an efficient and scalable distributed 13 opg "StU" 'S"
log implementation (Section A.5). 13 )
14 buf fﬁr_f il (Id’sni_SSl\iI i/e data):
A.1 Details of the Log Buffer Algorithms ® I+ copy G2ta o buffer (may wrap) */
In this subsection we explain the implementation of the algo- %g end
rithms, presented in Section 5, with pseudocode sketches. 19 buffer_rel ease(lsn, size):

. . . . . 20 /* release buffer up to Isn+size */
Baseline. In a straightforward implementation, a single mutex 21 | ock_rel ease(L)
d

protects the log's buffer, LSN generator, and other structures.22 €n

Algorithm 1 presents such an approach, which the later designsyqqithm 2 — Log insertion with consolidated buffer acquire

build on. In the baseline case a log insert always begins with

acquiring the global mutex (L2) and finishes with its release (L21). 1 log_i fnsert (size, data):
|

i iti i H - (i 2 (1 ock_attenpt(L)== SUCCESS)
Inside the critical section there are three operations: (i) A threads I'sn = buffeér acquire(size)

first allocates log buffer space (L8-12); (ii) It then performs the a4 buffer fill(Tsn, size, data)
record insert (L14-17); (iii) Finally, it releases the buffer space 3 buffer_rel ease(lsn, size)
. . . . 6 return /* no contention */
making the record insert visible to the flush daemon by increment-7 end
ing a dedicated pointer (L20). As discussed, the baseline algorithng {?, of fset }f f= slot_j oi/g(?itze) o
suffers two weaknesses. First, contention is proportional to the3, T ek artart) | Stotowner
number of threads in the system; second, the critical section lengthL1 ar quB_si zle =( sl) ot _cl ose(s)
H 1 12 repl ace_slot (s
is proportional to the amount of work performed by each thread. ;% | Sﬁ 2°bTrfer acqui re(group._si ze)
i i i PR i 14 slot_notify(s, Isn, group_size)
Consolidation array. Consollda_\tlon based back_of'_f ams to ¢ el se 7 wait for owner */
reduce contention and, more importantly, make it independent of1e {I'sn, group_size} = slot_wait(s)
the number of threads accessing the log. A sketch of the code ig? end ) )
. X . . buffer_fill (lsn+offset, size, data)
presented in Algorithm 2. The primary data structure consists of anig if (slot_release(s) == SLOT_DONE)
array with a fixed number of slots where threads can aggregate20 buffer_rel ease(lsn, group_size)

their requests. Rather than acquiring the lock unconditionally, g% end end

threads begin with a non-blocking lock attempt. If the attempt suc- . . . . .
ceeds, they perform the log insert directly, as before (L2-6). Algorithm 3 — Log insertion with decoupled buffer fill
Threads which encounter contention back off to the consolidation

buf f er _acquire(size, data):

array and attempt to join one of its slots at random (L8). The first 5 /*\izait for buffer space */
thread to claim a slot becomes the slot's owner and is responsible : Snk= /*l update Isn and buffer state */
to acquire buffer space on behalf of the group which forms while it g‘ AT ,esﬁe( L)

waits for the mutex. Once inside the critical section, the group 6 end

leader reads the current group size and marks the group as close@ buf fer rel ease(lsn, size):

using an atomic swap instruction (L11); once a slot closes threads while (Isn = next_rel ease_l sn)
can no longer join the group. The group leader then acquires buffer0 end [* wait my turn */

space and notifies the other group members before beginning its> /* release buffer up to Isn+size */
own buffer fill (L13-14). Meanwhile, threads which join the group 13 next_rel ease_Isn = |sn+size

infer their relative position in the meta-request from the group size; end

once the group leader reports the LSN and buffer location each

thread can compute the exact LSN and buffer location which per of consolidation structures at startup, which we treat as a circu-
belongs to it (L16 and L18). As each thread leaves (leader|ar puffer when allocating new slots. At any given moment of time
included), it decrements the slot's reference count and the lastarriving threads access only the combination structures present in
thread to leave releases the buffer (L19-20). o _the slots of the consolidation array, and those slots are returned to
Once a consolidation array slot closes, it remains inaccessiblethe free pool after the buffer release stage. In the common case the
while the threads in the group perform the consolidated log insert,next slot to be allocated was freed long ago and each “allocation”

with time proportional to the log record insert size plus the over- requires only an index increment. Section A.3 describes the imple-
head of releasing the buffer space. To prevent newly-arrived mentation details of the consolidation array.

threads from finding all slots closed and being forced to wait, each
slot owner removes the consolidation structure from the consolida-
tion array when it closes, replacing it with a fresh slot that can
accommodate new threads (L12). The effect is that the array slo
reopens even though the threads that consolidated their request a
still working on the previous (how-private) version of that slot. We

avoid memory management overheads by allocating a large num

Decoupled buffer fill. Decoupling the log insert from holding the
mutex reduces the critical section length and in addition contention
cannot increase with the size of the log record size. Algorithm 3
@ows the changes over the baseline implementation (Algorithm 1)
needed to decouple buffer fills from the serial LSN generation
phase. First, a thread acquires the log mutex, generates the LSN,
and allocates buffer space. Then, it releases the central mutex
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Algorithm 4 — Log insertion with delegated buffer release owner:

pos = join_slot(s) SET(DONE-total)

1 buf fer _acqui re(size, data):

2 /* wait for buffer space */

3 I'sn = /*update Isn and buffer state */ owner & mutex holder:

4 gnode = queue_join(Q Isn, size) OPEN total = SWAP(PENDING) COPYING

5 lock_rel ease(L) READY+n (DONE-n)

6 return gnode

g end mutex holder: ADD(size) 1= DONE
9 buf f_efr _(r el eas(?(lqnode)(: a0 ) SET(READY) size) :

10 [ queue_del egate(Q qgnode) == DELEGATED] N

11 return /* someone else will release*/ ADD(size) == DONE

12 end

13

14 do_rel ease: )

15 T* release gnode’s buffer region */

16 next = queue_handof f (Q gnode)

17 if (next && is_del egated(next))

18 gnode = next r———————l r———————l
19 got o do_rel ease —

20 end | DOi\lE | FRI'_EE PEN=DING| REéDY + |
21 end | cOPYING I OPEN

Figure 10. Life cycle and state space of a c-array slot, to accom-

immediately (L4) and performs its buffer fill concurrently with ~ hany Algorithm 5.The OPEN (COPYING) state covers all values
other threads. Once the buffer fill is completed, the thread waits for gt |east as large (small) as READY (DONE).

all other threads before it to finish their inserts (L9) and the last to

finish releases the log buffer space (L13). The release stage USCvely rare because slots are swapped out of the array immediatel
the implicit queuing of the release_Isn to avoid expensive atomic Y pp y y

operations or mutex acquisitions. whenever they become PENDING. Threads attempt to claim
OPEN slots using atomic compare-and-swap to increment the state

A.2 Consolidation-based Backoff by the insert size. In the common case the CAS fails only if

Th lidated log buff ire d ibed in Algorithm 2 another thread also incremented the slot’s size. However, the slot

e cor}so I'tk? e thog u erllgctqwre esctrl g'. ”r][ g?rl t'm uses may also close, forcing the thread to start probing again. Eventu-
anew aigorithm, the consolidation array to divert contention away ally the thread succeeds in joining a slot and returns a (slot, offset)
from the log buffer. We base our design on the elimination-based

. L ; pair. The offset serves two purposes: the thread at position zero
backoff algorithm [9], extending it to allow the extra cooperation becomes the “group leader” and must acquire space in the log buf-

needed to free the buffer after threads consolidate their requests. fer on behalf of the group, and follower threads use their offset to

Elimination backoff turns “opposing” operations (e.g. stack . . - . e
push and pop) into a particularly ngfectivge fofm of back(offgthreads partition the resulting allocation with no further communication.

which encounter contention at the main data structure probe ran-Slot close operation (lines 21-33pfter the group leader acquires
domly an array of N “slots” while they wait. Threads which arrive the log buffer mutex, it closes the group in order to determine the
at a slot together serve each others’ requests and thereby canc@mount of log space to request (and to prevent new threads from
each other out. When such eliminations occur, the participatingarriving after allocation has occurred). It does so using an atomic
threads return to their caller without ever entering the main dataswap, which returns the current state and assigns a state of PEND-
structure, slashing contention. With an appropriately-sized elimi- ING. The state change forces all further slot_join operations to fail
nation array, an unbounded number of threads can use the sharedine 7), but most threads will never see this because the calling
data structure without causing undue contention. thread first swaps a fresh slot into the array. To do so, it probes

Consolidation backoff operates on a similar principle to elim- through the pool of available slots, searching for a FREE one. The
ination, but with the complication that log inserts do not cancel pool is sized large enough to ensure the first probe nearly always
each other out entirely: At least one thread from each group (thesucceeds. The pool allocation need not be atomic because the
“leader”) must still acquire space from the log buffer on behalf of caller already holds the log mutex. Once the slot is closed the func-
the group. In this sense consolidation is more similar to a sharedion returns the group size to the caller so it can request the appro-
counter than a stack, but with the further requirement that the lastoriate quantity of log buffer space.

thread of each group to complete its buffer fill operation must gjot notify and wait operations (lines 35-46). After the slot

release the group’s buffer back to the log. These additional com-gwner acquires buffer space, it stores the base LSN and buffer
munication points require two major differences between the con-5qdress into the slot, then sets the slot’s state to DONE-group_size
solidation array and an elimination array. First, the slot protocol 55 3 signal to the rest of the group. Meanwhile, waiting threads
which threads use to combine requests is significantly more com-gpin until the state changes, then retrieve the starting LSN and size

plex. Second, slots spend a significant fraction of their lifecycle of the group (the latter is necessary because any thread could be
unavailable for consolidation and it becomes important to replacethe one to release the group’s buffer space).

busy slots with fresh ones for consolidation to remain effective
under load. Algorithm 5 gives pseudocode for the consolidation
array implementation, which the following paragraphs describe in
further detail, while Figure 10 supplements the pseudocode with a
summary of a slot’s life cycle and state space.

Slot release and free operations (lines 48-5%s each thread
completes its buffer insert, it decrements the slot's count by its
contribution. The last thread to release will detect that the slot
became DONE must free the slot; all others may leave immedi-
o ) ) o ) ately. The slot does not immediately become free, however,
Slot join operation (lines 1-19)The consolidation array consists  pecause the calling thread may still use it. This is particularly
of ARRAY_SIZE pointers to active slots. Threads which enter the jmportant for the delegated buffer release optimization described
slot array start probing for slots in the OPEN state, starting at ajn Section A.3, because the to-be-freed slot becomes part of a
random location. Probing repeats as necessary, but should be relgueue to be processed by some other thread. Once the slot is truly
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Algorithm 5 — Consolidation array implementation

fer acquire, each thread joins a release queue (L4), storing in the
gueue node all information needed to release its buffer region. The

% sl F?rto gi S”I(Sit ze): decoupled buffer fill proceeds as before. At buffer release time, the
3 i dx = randn( ARRAY_SI ZE) thread first attempts to abandon its queue node, delegating the cor-
4 s = slot_array[idx]; responding buffer release to a (presumably slow) predecessor
S jolnglas T sstate which has not yet completed its own buffer fill. The delegation

7 i f(_ol*d_st ate < SLOT_READY) protocol is lock-free and non-blocking, and is based on the abort-
8 goqec‘,"’gr‘g%%dzn&t.welcome / able MCS queue lock by Scott [20] and the critical section-com-
10 end - ’ bining approach suggested by Oyama et al. [A5]

11 new state = ol d_state + size To summarize the protocol, a thread with at least one prede-
i% ic?r(zsutratsf at ec?s;soﬁ ?jt es(tsat e())l dstate, newstate) cessor attempts to change its queue node status atomically from
ig olcg_ost_a;_en =S|coutr:state waiting to delegated (L10, corresponding to thaborted state in

16 end 2 orn- Scott’s work). On success, a predecessor will be responsible for the
17 /* return my position within the group */ buffer release and the thread returns immediately (L11). Other-
18 g "eturn (s, old_state-SLOT_READY) wise, or if no predecessor exists, the thread releases its own buffer
20 region and attempts to leave before its successor can delegate more
g% s f’érf)l,.ose(s): work (L16). A successful CAS fromwaiting to released prevents

23 s2 = sl ot_pool [ pool _i dx % POOL_Si ZE] ; the successor from abandoning its node; on failure, the thread con-
24 pool _idx = pool _i dx+1 tinues to release delegated nodes until it reaches the end of the
22 'f(sé'oisé ey, OO queue or successfully hands off (L17-20). Threads randomly
27 end _ _ choose not to abandon their nodes with probability 1/32 to prevent
%g /S*Z?S‘é"t g{révazlssle_/ng%ID%ﬁger sees*/ a “treadmill” effect where one thread becomes stuck performing
30 sl ot _array[s->idx] = s2 endless delegated buffer releases. This breaks long delegation
g% ?'e(g_usrt gt &3 g;"gf;?tsfé-?(é’EAS\L(OT—PEND' NG) chains (which are relatively rare) without impeding pipelining in
33 end - - the common case. As with Oyama’s proposal [A5], the grouping
34 . o actually improves performance because a single thread does all the
35 slot_notify(s, Isn. group_size): work without incurring coherence misses.

37 s->group_si ze = group_si ze ) In Figure 11 we test the stability of the new algorithm (named
38 g Set-state(s. SLOT_DONE-group_size) CDME) and compare it with the hybrid variant from Section 5.3
40 ) (CD). We use the same microbenchmark setup from Section 6 but
jé sl Otmq"‘ﬁ' é((isr)ﬁio_ sstate > SLOT_DONE) modify it to present the worst-case scenario for the CD algorithm:
43 /* wait for notify */ - a strongly bi-modal distribution of log record sizes. We fix one
Z‘rg fgtdurn (s->lsn, s> _ peak at 48 bytes (the smallest log record in Shore-MT) and we
26 end ->lsn,s->group_size} vary the second peak (called the outlier). For every 60 small
47 ) records a large record is inserted in the log. CD performs poorly
48 slot_rel ease(s, size): add(s, size) with such a workload because the rare, large, record can block
50 return new state” - ' many smaller ones and disrupt the pipelining effect. We present
g% end along the y-axis the throughput as we increase the outlier record
53 slot_free(s): size along the x-axis. CD and CDME perform similarly until an
gg end set_state(s, SLOT_FREE) outlier size of around 8kiB, when CD stops scaling and its perfor-

mance levels off. CDME, which is immune to record size variabil-
ity, achieves up to double the performance of the CD for outlier

finished, the owning thread sets its state to FREE; the operationrecords larger than 65kiB.

need not be atomic because other threads ignore closed slots.

The CDME algorithm is more robust than the CD variant but,

In conclusion, the consolidation array provides a way for for the database workloads we examined, it is unnecessary in prac-

threads to communicate in a much more distributed fashion thantice because nearly all records are small and the frequency of
the original (serial) log buffer operation which it protects. The larger outliers is orders magnitude smaller than examined here. For
overhead is small, in the common case two or three atomic operaexample, in Shore-MT the largest log record is 12kiB with a fre-
tions per participating thread, and occurs entirely off the critical quency of 0.01% of the total log inserts. In addition, CDME
path (other threads continue to access the log unimpeded). achieves around 10% lower throughput than the CD variant under
normal circumstance, making it unattractive. Nevertheless, for
A.3 Delegated Log Buffer Release and Skew other configurations which encounter significant skew, the CDME
The requirement that all threads release their buffers in orderalgorithm might be attractive given its stability guarantee.
remains a potential source of delays. Many smaller insertions . . . .
might execute entirely in the shadow of a large one but must still A.4 Sensitivity to consolidation array size
wait for the large insert to complete before releasing their buffer Our last microbenchmark analyzes whether (and by how much) the
space. Buffer and log file wraparounds complicate matters further,consolidation array’s performance is affected by the number of
because they prevent threads from consolidating buffer releasesavailable slots. Ideally the performance should depend only on the
Such wrapping buffer releases must be identified and processedardware and be stable as thread counts vary. Figure 12 shows a
separately from normal ones because they impose extra work atontour map of the space of slot sizes and thread counts, where the
log flush time, such as closing and opening log files. height of each data point is its sustained bandwidth. Lighter colors
We remove this extra dependency between transactions byindicate higher bandwidth, with contour lines marking specific
turning the implied LSN queue into a physical data structure, asthroughput levels. We achieve peak performance with 3-4 slots,
shown in Algorithm 4. Before releasing the mutex, during the buf- with lower thread counts peaking with fewer and high thread
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Figure 11. Performance impact of log Figure 12. Sensitivity to the number of slotd=igure 13. Inter-log dependencies for 1ms
record size skew. in the consolidation array of TPC-C (8 logs, ~100kB, ~30 commits).

counts requiring a somewhat larger array. The optimal slot numberrecently inserted records for its log at the time. The entire graph
corresponds closely with the number of threads required to saturateovers roughly 100kB of log records, which corresponds to less
the baseline log which the consolidation array protects. Based orthan 1ms wall time and dozens of transaction commits.

these results we fix the consolidation array size at four slots to Because dependencies are so widespread and frequent, it is
favor high thread counts; at low thread counts the log is not on thealmost infeasible to track them, and even if tracked efficiently the
critical path of the system and its peak performance therefore mat-dependencies would still require most transactions to flush multi-

ters much less than at high thread counts. ple logs at commit time. In Figure 13 there is no obvious way of
. L. ) assigning log records to different partitions so that the dependency
A.5 A Case Against Distributed Logging lines between partitions would be significantly reduced. The

This subsection presents qualitative and quantitative analysisauthors are unaware of any DBMS which distributes the log within
showing that our improved log buffer design is likely to outper- a single node, and even distributed DBMS often opt for a shared
form distributed logging as a contention-reducing approach, bothlog (including Rdb/VMS [A4]). Distributed DBMS which utilize
from a performance and implementation perspective. distributed logging either force transactions to span multiple nodes
A distributed log has the potential to ease bottlenecks by (with  well-known consequences for performance and
spreading load over N logs instead of just one. ARIES-style recov-scalability [A1]) or else migrate dirty pages between nodes
ery only requires a partial order between the transactions accessingrough a shared storage or network interconnect rather than
the same data. Intuitively, it should be possible to parallelize the accepting the high overhead of having a distributed transaction that
log, given that most transactions execute in parallel without con- needs to flush multiple logs in a specific sequence [AZ2].
flicts. However, a distributed log must track transaction dependen- Using physical-only logging and having an almost-perfectly
cies and make sure that logs become durable in a coherent order, grtitionable workload makes the implementation of a distributed
discussed by DeWitt et al. [4]. log feasible [A3]. However, if physiological logging is used and as
Write-ahead logging allows transactions to release pageFigure 13 shows, distributed logs are both highly complex and
latches immediately after use, minimizing data contention and potentially very slow under many workloads. We conclude that
allowing database pages to accumulate many changes in the bufferdding a distributed log manager within a database instance is nei-
pool before being written back to disk. Further, serial logging ther attractive nor feasible for reducing log buffer contention.
allows transactions to not track physical dependencies, especiall

Y,
those that arise with physiological loggihgs a transaction's APPENDIX REFERENCES

commit never reaches disk before its dependencies. A distrioutedA1]P. Helland. “Life Beyond Distributed Transactions: an Apos-

implementation must instead track or eliminate these physical tate's Opinion.” In ProcCIDR, 2007.

dependencies without requiring multiple log flushes per transac- [A2]T. Lahiri, V. Srihari, W. Chan, and N. MacNaughton. “Cache

tion. Otherwise, the serial implementation will actually be faster. Fusion: Extending shared-disk clusters with shared caches.”
Unfortunately, this challenge is difficult to address efficiently In Proc.VLDB, 2001.

because physical dependencies can be very tight, especially due to . . . .
hot database pages. For example, Figure 13 shows the dependef3]D- Lomet. “Recovery for Shared Disk Systems Using Multi-
cies which would arise in an 8-way distributed log for a system ple Redo Logs.CRL 90/4, 1990.

running the TPC-C benchmark [A6]. Each node in the graph repre-[A4]D. Lomet, R. Anderson, T. K. Rengarajan, and P. Spiro.
sents a log record, with horizontal edges connecting records from “How the Rdb/VMS Data Sharing System Became Fast.”
the same log. Diagonal edges mark physical dependencies which  CRL 92/4, 1992.

arise when a page moves between logs. Dark edges mark tigh

dependencies where the older record is one of the five mostEAS]Y' Oyama, K. Taura, and A. Yonezawa. “Executing Parallel

Programs with Synchronization Bottlenecks Efficiently.” In
Proc.PDSA, 1999, pp. 182--204.

[A6] Transaction Processing Performance Council. “TPC - C v5.5:
On-Line Transaction Processing (OLTP) Benchmark.”

4. For example, if transaction A inserts a record in slot 13 of a page, and
then B inserts a record in slot 14, As log record must become durable
first or recovery could encounter an inconsistent page and fail.
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