
An Architecture for Parallel Topic Models

Alexander Smola
Yahoo! Research, Santa Clara, CA, USA
Australian National University, Canberra

alex@smola.org

Shravan Narayanamurthy
Yahoo! Labs, Bangalore

Torrey Pines Road, Bangalore, India

shravanm@yahoo-inc.com

ABSTRACT
This paper describes a high performance sampling archi-
tecture for inference of latent topic models on a cluster of
workstations. Our system is faster than previous work by
over an order of magnitude and it is capable of dealing with
hundreds of millions of documents and thousands of topics.

The algorithm relies on a novel communication structure,
namely the use of a distributed (key, value) storage for syn-
chronizing the sampler state between computers. Our archi-
tecture entirely obviates the need for separate computation
and synchronization phases. Instead, disk, CPU, and net-
work are used simultaneously to achieve high performance.
We show that this architecture is entirely general and that it
can be extended easily to more sophisticated latent variable
models such as n-grams and hierarchies.

1. INTRODUCTION
Latent variable models are a popular tool for encoding

long-range dependencies between collections of observations.
For instance, when dealing with documents it is highly de-
sirable to go beyond a simple weighted bag-of-words rep-
resentation and to take co-occurrence information between
words in a document into account. Similarly for the purpose
of inferring similarity in social networks and recommender
systems it is desirable to obtain compact representations.

Clustering and topic models are particularly useful since
they allow one to infer structure from large collections of
objects without the need of (much) human intervention. La-
tent Dirichlet Allocation (LDA) [3] and related topic mod-
els are particularly useful when it comes to infer overall
groups of information (e.g. the information that a particular
text contains information about an ’athlete’ and a ’scandal’,
whereas clustering is better suited inferring that a given set
of documents refers to the ’Tiger Woods scandal’. In other
words, clustering attempts to model objects as one out of n
possible classes, whereas topic models represent objects as
a mixture of k out of n possible classes (with k being vari-
able but small). It is easy to see from a coding theory point

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

of view that the latter leads to a much more parsimonious
representation of an object generation model.

While such models have found widespread use in academia
their deployment in industry is largely hampered by lim-
its on scalability. More specifically, the largest published
work on LDA by the UC Irvine team [7] is to use 1000 com-
puters for 10 hours to process 8 Million documents taken
from PubMed abstracts, which is equivalent to a processing
speed of 6,400 documents per computer and hour. By com-
parison, our implementation is able to generate a model at
a rate in excess of 75,000 documents per hour on a single
8-core computer and of 42,000 documents per hour when
used in a multi-machine configuration. Google’s LDA im-
plementation [9, Table 6b] has a throughput of less than 150
documents per hour and machine (assuming 1000 collapsed
sampler iterations) in the most favorable case.

Outline: We begin with an overview over the mathemat-
ical model underlying Latent Dirichlet Allocation and a dis-
cussion of efficient sampling algorithms in Section 2. We pro-
ceed with a description of the multicore/cluster pipeline ar-
chitecture in Section 3 and its implementation in Section 4.
We demonstrate the efficiency in multi-machine and mul-
ticore experiments in Section 5. Related work and further
implementation details are given in the appendix.

2. LATENT DIRICHLET ALLOCATION
We give a brief overview of topic models in the context

of text modeling (note, though, that the algorithm and our
implementation are in no way limited to documents). For a
much more detailed discussion see [3, 6].

The basic idea is that each document contains a mix of
topics from which words are drawn. The generative process
works as follows: for a document d a multinomial distribu-
tion Θi is drawn from a Dirichlet prior with parameters α.
Subsequently, for each word in the document a topic zij is
drawn from the multinomial distribution Θi. Finally, the
word wij is drawn from the multinomial distribution Ψzij .
To complete the mode specification we assume that Ψ itself
is drawn from a Dirichlet with coefficients β.1

Given the model of Figure 1 we may express the full joint

1 In our implementation we omit using a Pitman-Yor or
Dirichlet Process. The rationale is that memory allocation
becomes a crucial issue and we prefer being able to have di-
rect control over it rather than relying on a suitably chosen
set of parameters of the DP to address memory allocation.
That said, there is no mathematical reason for this limita-
tion.

703

zij

wij

Θi

j=1..mi

α

βψl

l=1..ki=1..m

Figure 1: Latent Dirichlet Allocation: words wij in a
document i are drawn according to the topic-specific
distributions ψzij . The topic distribution per docu-
ment Θi is drawn from a conjugate Dirichlet. The
same applies to ψ.

probability of the data under the LDA model as follows:

p(w, z,Θ, ψ|α, β) = (1)[
m∏
i=1

mi∏
j=1

p(wij |zij , ψ)p(zij |Θi)

][
m∏
i=1

p(Θi|α)

][
k∏
j=1

p(ψj |β)

]

Here p(wij |zij , ψ) and p(zij |Θi) are multinomial distribu-
tions and the remaining two distributions are Dirichlet. We
could impose a hyperprior on α and β as needed. That said,
empirical evidence shows that simply performing a maxi-
mum likelihood fit is sufficient.

2.1 Collapsed Representation
A direct Gibbs sampler using (1) does not mix sufficiently

quickly and an improved strategy is to integrate out Θ and
ψ. Moreover, collapsed sampling [10, 9, 7] tends to lead to
somewhat better models than a variational approach. Most
importantly, it allows for a much more compact represen-
tation of the model whenever the number of parameters is
large — it is only necessary to store the sparse vector of
statistics for topics actually assigned to words — in the vari-
ational or non-collapsed case case dense vectors are required.

To introduce the collapsed representation we need to de-
fine a number of statistics of the topic assignments zij :

n(t, w) :=
∑
i,j

{zij = t and wij = w} ;n(t, d) :=
∑
j

{zdj = t}

and n(t) :=
∑
w n(t, w). Here n(t, w) keeps a list of the

topic assignments on a per-word basis. n(t) stores the total
of number of times a word is assigned topic t. n(t, d) stores
topic assignments in a given document. n(t, w) and n(t, d)
are sparse. We have

p(w, z|α, β) (2)

=

[
m∏
i=1

∏k
j=1 Γ(αj + n(t = j, d = i))

Γ (ᾱ+ n(d = i))

Γ(ᾱ)∏k
j=1 Γ(αj)

]
︸ ︷︷ ︸

topic likelihood

×

[
k∏
i=1

∏W
j=1 Γ(βj + n(t = i, w = j))

Γ
(
β̄ + n(t = i)

) Γ(β̄)∏W
j=1 Γ(βj)

]
︸ ︷︷ ︸

word likelihood

Here ᾱ :=
∑
i αi and β̄ :=

∑
w βw are aggregates of the

Dirichlet smoothing coefficients. Quite often one sets β̄ =

β0 · N where N denotes the number of words. This cor-
responds to a flat probability model for words. While this
design choice is quite unrealistic it turns out not to matter
significantly in practice [8]. Nonetheless it is easy to adjust
the sampler we discuss to a more adaptive prior. Note that
the factors in the products

∏k
j=1 and

∏W
j=1 only need to be

evaluated whenever n(t, d) > 0 and n(t, w) > 0 respectively.

2.2 Inference for z via Collapsed Sampling
Following [6] we can rewrite (2) to obtain the following

unnormalized probabilities to resample the topic zdj for the
word wdj in document d:

p(t|wdj , rest) ∝ [n(t, wdj) + βw] [n(t, d) + αt]

n(t) + β̄
(3)

Eq. (3) can be used in a Gibbs sampler which traverses the
set of observations and resamples the values of zdj . In terms
of locality, the following observations are useful, since they
allow us to design parallel samplers by prioritising updates:

Topic assignments zdj: The values of the variables zij are
entirely local to each document and need not be shared.
They can be written to disk after resampling.

Topic counts for document n(t, d): These variables are
local to document d. Again, they need not be shared.

Topic-word count table n(t, w): These variables change
slowly — for 1 million documents it is unlikely that
changing the topic assignments in a single document
will have a significant effect on n(t, w) for almost all
words. Hence, a modest delay in incorporating changes
occurring in a document into n(t, w) is acceptable.

Topic counts n(t): This variable is even more slowly vary-
ing. A delay in obtaining an up-to-date representation
of n(t) will not affect the sampler significantly.

The key idea in designing our sampler is that when re-
sampling on a per document basis, we may defer updates
to n(t, w) and n(t) until after a document has been re-
sampled. This means that only the topic-document counts
n(t, d) change. Such a strategy has been discussed by [10]
in the context of generating samples for a test distribution.
Instead, we use it here to design a sampler for inference of
the full model. We decompose (3) into

p(t|wdj) ∝ βw
αt

n(t) + β̄
+ βw

n(t, d)

n(t) + β̄
+
n(t, wdj) [n(t, d) + αt]

n(t) + β̄

The first term in the sum only depends on wdj in a multi-
plicative fashion via βwdj and it is constant throughout the
document otherwise. The second term is typically sparse as
it counts the distribution of topics in a document. More-
over, only two terms need updating whenever we reassign a
word to a new topic. Finally, the third term is as sparse as
the topic distribution per word.

This shows that in order to compute a proper normaliza-
tion of p(t|wdj) one only needs to compute a normalization
for each of the three terms separately. This is cheap since,
besides an initial cost for computing A :=

∑
t

αt
n(t)+β̄

and

B :=
∑
t
n(t,d)

n(t)+β̄
, the incremental cost per word is given by

the nonzero terms in n(t, w) via C :=
∑
t

n(t,wdj)[n(t,d)+αt]

n(t)+β̄
.

Here the following comes to our aid: only the frequently
occurring words (which are likely to occur several times per
document, hence we only need to compute the normalization
once) are likely dense.

704

2.3 Inference for α and β

Computing p(w, z|α, β) requires one pass through the data
(or at least access to n(t, d) for all documents) and one pass
through the word-topic table for computation of the likeli-
hood. In particular, the data-dependent term decomposes
into a sum over terms which depend on one document at a
time. The word dependent contribution decomposes into a
product over terms depend on a single topic each.

Optimizing α: While in principle we could use a sam-
pler to obtain α and β, it is much easier to employ sim-
ple (stochastic) convex optimization techniques for hyper-
parameter adjustment. In order for this to work we need to
assume that data is provided in random order.2 For conve-
nience we denote by

γ(x) := ∂x log Γ(x) = Γ−1(x)∂xΓ(x) (4)

the derivative of the log-gamma function, sometimes also
referred to as the Digamma function. Using (2) we obtain

∂αj − log p(w, z|α, β) (5)

=

m∑
i=1

γ(αj)− γ(αj + n(t=j, d= i)) + γ(ᾱ+ n(d= i))− γ(ᾱ)

Here the difference between the first two terms is nonvanish-
ing only if n(t, d) 6= 0 — otherwise they are identical. This
suggests a stochastic gradient descent procedure of the form

αi ← αi−η
[
γ(αj)−γ(αi + n(t= i, d))︸ ︷︷ ︸
evaluate only if n(t = i, d) 6= 0

+ γ(ᾱ+ n(d))−γ(ᾱ)︸ ︷︷ ︸
same value for all i

]

This is obtained simply by canceling out terms in denom-
inator and numerator where n(t, d) = 0 and n(t, w) = 0
respectively. It allows us to evaluate the normalization for
sparse count tables with cost linear in the number of nonzero
coefficients. Moreover, it ensures that for sufficiently large
collections of documents even a single pass suffices to obtain
a good value of α ([10] use gradient descent which may be
slow for large collections of data). Here ηi = 1√

const.+i
is a

decreasing step length.
Carrying out updates after each document is inefficient

since the only meaningful signal in (5) occurs whenever a
topic actually occurs in a document. To address this we
aggregate gradients over a range τ of topics before carrying
out updates (with a suitably rescaled step length).

Optimizing β: Unfortunately stochastic gradient descent
is not applicable for optimizing β. In the simplest case we
may assume a multiplicative form

βw = β0 · β̃w and hence β̄ = β0 ·B where B =
∑
w

β̃w (6)

where we can optimize over the overall smoothing weight
β0 by gradient descent or a suitable second-order method.
Since the objective is convex this is guaranteed to converge.

The computation of the gradient, though, is rather costly
— we need to sum over all topics and words with nonzero
n(w, t) in the topic-word table. This is best achieved at
the same time as when performing likelihood computations

2For instance, if we were to see all documents related to
politics in sequence our instantaneous parameter choice for
the topic prior α would become significantly biased towards
related topics, thus slowing down convergence.

since they, too, require a pass over β. We have

∂β0 [− log p(w, z|α, β)] =
∑

n(t,w)6=0

β̃w [γ(βw)− γ(βw + n(t, w))]

+B
∑
n(t)6=0

[
γ(β̄ + n(t))− γ(β̄)

]
Updates of β0 occur via β0 ← β0 − η∂β0 [− log p(w, z|α, β)]
for a decreasing update rate η.

2.4 Variational Optimization
At test time (once the model has been obtained) it is

often desirable to have a fast mechanism for estimating the
topic probabilities for a given document. We can express
the likelihood of a given document via

p(w, θ|ᾱ, Ψ̄) ∝
n∏
j=1

[
k∑
i=1

θiΨ̄iwj

]
·
k∏
i=1

θαi
i (7)

where Ψ̄ encodes smoothed probability estimates via Ψ̄tw =
βw+n(t,w)

β̄+n(t)
. Using an exponential families θl = exp(γl−g(γ))

where g(γ) = log
∑
j exp γj and ∂γj log θl = δl,j − θj yields

the following gradients of p(w, θ|ᾱ, Ψ̄) with respect to γ:

∂γl [. . .] =

n∑
j=1

θlΨ̄lwj∑k
i=1 θiΨiwj

+ αl − [n+ ᾱ] θl (8)

which leads to the following update equations

θl ← [n+ ᾱ]−1
[∑
w

n(d,w) θlΨ̄lw∑k
i=1 θiΨiw

+ αl
]
.

Here we rearranged the summation such as to perform only
one update per distinctly occurring word wj , thereby accel-
erating summation by a factor of 2-3. Note that the same
trick can be applied to the collapsed Gibbs sampler, that is,
sampling all topics for a given word in a row.

3. PARALLELIZATION

3.1 Design Considerations
In its uncollapsed form LDA is quite trivial to parallelize

— simply sample from the topic assignments for all doc-
uments and subsequently (in a central pass) resample the
topic priors and the word model. The problem is that this
representation is slow mixing, hence the collapsed sampler.

Implementations such as Mallet [10] and the UCI LDA
code [7] make a key approximation: given k processors it is
acceptable to partition a collection of n documents into k
blocks which are processed independently. After each pass
the document statistics are synchronized in a separate step.
This approach has some disadvantages:

• The network remains unused while sampling proceeds.
Subsequently peak demands on bandwidth are exerted.
• Due to a number of reasons (system, disk access, gen-

eral job load, sampler burn-in) the time to process k
documents may differ widely. Waiting for the last pro-
cessor to finish before synchronization can occur, in-
troduces potentially long idle times.
• On multiprocessor systems this automatically leads to

an O(k) increase in allocated memory and thereby out-
of-memory situations when many cores are involved.
• Partitioning creates delay between synchronizations.

705

tokens

topics

file
combiner

count
updater

diagnostics
&

optimization
output to

file topics
sampler

sampler
sampler

sampler
sampler

Figure 2: LDA Pipeline. Each module in the pipeline is implemented as a filter and executes in parallel.

We address this problem in two steps: firstly we introduce
an approximation which allows us to decouple instant up-
dates between different processor cores by a joint deferred
update mechanism. Secondly, we introduce a blackboard-
style architecture to facilitate simultaneous communication
and sampling between different computers in a cluster en-
vironment. Both approximations allow us to perform sam-
pling, updating, disk access, and network access simultane-
ously without the need for synchronization delay. In partic-
ular we will see that the memory requirement for k processor
cores is O(1) and that, moreover, the communications load
in the cluster setting is O(1) for each workstation involved
with an O(1/k) overhead in memory allocation per machine.

3.2 Pipeline Architecture for Multicore
The key idea for parallelizing the sampler in the multicore

setting is that the global topic distribution and the topic-
word table (which we will refer to as state of the system)
change only little given the changes in a single document
(we may have millions of documents). Hence, we can assume
that n(t) and n(t, w) are essentially constant while sampling
topics for a document. This means that there is no need to
update n(t) and n(t, w) during the sampling process and we
can defer this action to a separate synchronization thread
which takes action once a document has been entirely re-
sampled. Consequently we can execute a large number of
sampling threads simultaneously.

Figure 2 describes the data flow in the sampler. Words
and topic assignments are stored in two separate files which
are merged by the first filter. The combined documents are
processed by a number of sampling threads executed in par-
allel. Each of these threads accesses the joint state variables
n(t) and n(t, w) by acquiring a read lock before requesting
their values. After processing an entire document, the list
of changes in n(t, w) and n(t) is sent to the count updater
filter. Since updates are considerably cheaper we found it
sufficient to implement the latter in a single thread (there is
no in-principle reason not to parallelize the updater thread
as well, if required). While documents are being processed
we can perform further diagnostics (e.g. we may compute
the perplexity), and finally, a separate filter writes the new
topic assignments to file. This has several advantages:

• We only need a single set of state variables n(t, w) and
n(t) per computer rather than per core. This dramat-
ically reduces the memory requirements per machine
(relative to Mallet which keeps a copy per core — in
our experiments Mallet reached its scalability limit at
300,000 documents and 1000 topics).

• The state is by definition always synchronized besides
a minimal delay given by the documents that are being
processed and whose new topic assignments are not yet
integrated into the state table.
• It entirely avoids a second synchronization stage.
• The samplers never need to acquire write lock — they

only read n(t) and n(t, w). Since our counters are 32
bit integers updates are atomic and consequently the
updater usually can avoid acquiring write locks, thus
dramatically reducing the number of samplers stalled
due to lock contention. More on this in Section 4.

3.3 Blackboard Architecture for Clusters
When deploying LDA on multiple machines in a clus-

ter we face the problem that it is impossible to keep the
state table entirely synchronized between different comput-
ers. However, the strategy to synchronize only after each
pass through data has a number of drawbacks, most impor-
tantly that all samplers need to wait for the slowest.

An alternative is to use a blackboard architecture similar
in spirit to decomposition methods from optimization [4].
The key idea is to have a global consensus of the state vari-
ables and to reconcile their values one word at a time asyn-
chronously for all samplers. The advantage is that no syn-
chronization (short of locking the very word whose statistics
are being updated) is required between samplers. Moreover,
we can parallelize communication and storage by means of
a distributed (key,value) storage using memcached. For n
servers and n clients the network load is O(1) per server
and the memory requirements for storing a given amount of
information over n servers is O(n−1).

We now specify the communications protocol in more de-
tail: first, there is no need to synchronize n(t) and n(t, w)
separately or even to store n(t) globally at all. After all
n(t) =

∑
w n(t, w) and therefore any update on n(t, w) can

immediately be used to update n(t). For the purpose of the
algorithm we assume that at some point all samplers have
the same identical state as the global state keeper.

Denote by n(t, w) the current global state as stored in
memcached, by ni(t, w) the current local state, and by niold(t, w)
a copy of the old local state at the time of synchronization
with the global state keeper. Then the following algorithm
keeps the topic word counts synchronized.

Algorithm 1 incorporates any local changes in ni(t, w)
that occurred since the last update into its global counter-
part. Subsequently it sets ni to match the new consensus
state and it updates niold = ni to take a snapshot of the state
variables at the time of synchronization. Since this process

706

Algorithm 1 State Synchronization

Initialize n(t, w) = ni(t, w) = niold(t, w) for all i.
while sampling do

Lock n(t, w) globally for some w.
Lock ni(t, w) locally.
Update n(t, w) = n(t, w) +

[
ni(t, w)− niold(t, w)

]
Update ni(t, w) = niold(t, w) = n(t, w)
Update local ni(t).
Release ni(t, w) locally.
Release n(t, w) globally.

end while

is happening one word at a time the algorithm does not in-
duce deadlocks in the sampler. Moreover, the probability of
lock contention between different computers is minimal (we
have > 106 distinct words and typically 102 computers with
less than 10 synchronization threads per computer). Note
that the high number of synchronization threads (up to 10)
in practice is due to the high latency of memcached.

sampler sampler sampler sampler

memcached memcached memcached memcached

Figure 3: Each sampler keeps on processing the sub-
set of data associated with it. Simultaneously a syn-
chronization thread keeps on reconciling the local
and global state tables.

Note that this communications template could be used
in a considerably more general context: the blackboard ar-
chitecture supports any system where a common state is
shared between a large number of systems whose changes
affect the global value of the state. For instance, we may
use it to synchronize parameters in a stochastic gradient de-
scent scenario by asynchronously averaging local and global
parameter values as is needed in dual decomposition meth-
ods. Likewise, the same architecture could be used to per-
form message passing [1] whenever the junction tree of a
graphical model has star topology. By keeping copies of the
old messages local (represented by niold) on the nodes it is
possible to scale such methods to large numbers of clients
without exhausting memory on memcached.

4. IMPLEMENTATION

4.1 Basic Tools
We use Google’s protobuf3 with optimization set to favor

speed, since it provides disk-speed data serialization with
little overhead. Since protobuf cannot deal well with ar-
bitrary length messages (it tries loading them into memory
entirely before parsing) we treat each document separately
as a message to be parsed. To minimize write requirements
we store documents and their topic assignments separately.

3http://code.google.com/p/protobuf/

Data flow in terms of documents is entirely local. On
each machine it is handled by Intel’s Threading-Building-
Blocks4 library since it provides a convenient pipeline struc-
ture which automatically handles parallelization and schedul-
ing for multicore processors. Locking between samplers, up-
daters, and synchronizers is handled by a read-write lock
(spinlock) — the samplers impose a non-exclusive read lock
while the update thread imposes an exclusive write lock.

The asynchronous communication between a cluster of
computers is handled by memcached5 servers which run stan-
dalone on each of the computers and the libmemcached

client access library which is integrated into the LDA code-
base. The advantage of this design is that no dedicated
server code needs to be written. A downside is the high
latency of memcached, in particular, when client and server
are located on different racks in the server center. Given the
modularity of our design it would be easy to replace it by a
service with lower latency, such as RAMCloud once the latter
becomes available. In particular, a versioned write would be
highly preferable to the current pessimistic locking mecha-
nism that is implemented in Algorithm 1 — collisions are
far less likely than successful independent updates. Failed
writes due to versioned data, as they will be provided in
RAMCloud would address this problem.

4.2 Data Layout
To store the n(t, w) we use the same memory layout as

Mallet. That is, we maintain a list of (topic, count) pairs for
each word w sorting in order of decreasing counts. This al-
lows us to implement a sampler efficiently (with high proba-
bility we do not reach the end of the list) since the most likely
topics occur first. Random access (which occurs rarely),
however, isO(k) where k is the number of topics with nonzero
count. Our code requires twice the memory footprint as that
of Mallet (64bit rather than 32bit per (topic, count) pair)
since for millions of documents the counters would overflow.

The updater thread receives a list of messages of the form
(word, old topic id, new topic id) from the sampler for every
document (see Figure 1). Whenever the changes in counts
do not result in a reordering of the list of (topic, count) pairs
and update is carried out without locking. This is possible
since on modern x86 architectures updates of 32bit integers
are atomic provided that the data is aligned with the bus
boundaries. Whenever changes necessitate a reordering we
acquire a write lock (any sampler using this word at the very
moment stalls at this point) before effecting changes. Since
counts change only by 1 it is unlikely that (topic, count)
pairs move far within the list. This reduces lock time.

4.3 Initialization and Recovery for Multicore
At initialization time no useful topic assignment exists and

we want to assign topics at random to words of the docu-
ments. This can be accommodated by a random assignment
sampler as described in the diagram below:

tokens file
combiner

build word-
topic table

output to
file topics

sampler
sampler

sampler
samplersampler:

randomly
assigned

In particular, the file combiner and the output routine
are identical. Obviously this could be replaced with a more

4http://www.threadingbuildingblocks.org/
5http://www.danga.com/memcached/

707

http://code.google.com/p/protobuf/
http://www.threadingbuildingblocks.org/
http://www.danga.com/memcached/

sophisticated initialization, e.g. by a system trained on a
smaller dataset. When recovering from failure the multicore
system simply loads the topic assignments from file and it
rebuilds n(t, w) and n(t) with code identical to that used for
initialization. The key difference is that obviously for this
purpose no sampler is required.

4.4 Initialization for Cluster Parallelism
Our discussion in Section 3.3 assumed that at some point

the state tables were synchronized. This requires synchro-
nization between all clients. We use the following protocol:

Local Initialization (stage 0): We assume that ini-
tially all clients have a list of the IP numbers of all other
clients involved.6 At startup the clients set (IP, ’stage 0’) as
a (key, value) pair in memcached. Subsequently they inde-
pendently build a local topic assignment table as described
in Section 4.3.

State Aggregation (stage 1): Once the local statistics
have been aggregated each machine proceeds by aggregating
its local counts n(t, w) with memcached on a per-word basis.

Algorithm 2 Global State Aggregation

Set (IP, ‘stage 1’) on memcached

for all words w on computer do
Lock word w on memcached globally
Retrieve n(t, w) from memcached

Add local counts via n(t, w) = n(t, w) + nlocal(t, w)
Write n(t, w) to memcached

Release lock on w
end for

Note that while each machine locally generates a dictio-
nary to store a tokenized version of its documents for the
purpose of a compressed representation, synchronization be-
tween machines occurs by using the words directly. That is,
rather than synchronizing the topic counts for token 42 we
synchronize the topic counts for the word ’hitchhiker’. The
reason is that the dictionaries of local machines may differ
widely and we want to avoid the need to synchronize them.
Moreover, this way we can control the size of each local
(token, word) dictionary simply by not allocating too many
documents to each computer (the size of a unified dictionary
would grow with the number of documents). This is partic-
ularly useful if different computers process different corpora:
the local dictionaries can be much smaller than their union.

Local State Synchronization (stage 2): After stage
1 each computer sets (IP, ‘stage 2’) in memcached and starts
polling memcached until all other computers on the cluster
also have reached stage 2. This is important since only then
we have the guarantee that all counts of all computers have
been merged. After that we retrieve all n(t, w) pairs that
occur in the local collection and we set

niold(t, w) = ni(t, w) = n(t, w)

Sampling (stage 3): After stage 2 each computer sets
(IP, ‘stage 3’) in memcached and starts sampling. Note that
there is no need to wait for all other computers to finish their
local state synchronization. After all, if any global updates
occurred they did not affect any state assignments of the

6This is easily achieved by a suitable startup script or alter-
natively by registering its IP number with memcached with
a known server.

client and therefore the state variables remain consistent.
The code concludes by setting (IP, ‘stage 4’) to indicate
completion of the algorithm.

5. EXPERIMENTS
In our experiments we investigate a number of aspects of

our pipelined and memcached-based algorithm. There are
three main questions that require answering: a) how well
does the algorithm perform compared to existing implemen-
tations, b) does the model degrade with an increase in the
number of computers, c) how scalable is the code. We begin
with a competitive overview. Note that it is impossible for
us to evaluate performance directly on many of the datasets
used by competing algorithms since they are proprietary
(e.g. Google’s Orkut network). However, we compared our
algorithm on Pubmed.

5.1 Performance Overview
In order to obtain a fair performance comparison we need

to normalize throughput between different implementations.
When in doubt, we upconverted the approximation in favour
of the competing algorithms (e.g. document size, number
of documents, number of topics). We normalize data to
1000 collapsed Gibbs sampling iterations on a documents
per machine hour basis.

PLDA: The results reported in [9] were carried out on two
datasets — a Wikipedia subset of 2.12 million documents,
using 500 topics and 20 iterations, and the Orkut dataset of
2.45 million ‘documents’ using 500 topics and 10 iterations.
The most favourable results were the throughput rates of
[9, Table 6a] in the case of 16 machines — 11940s for 20
iterations on 2.12 million documents. This is equivalent to
a per-machine throughput of 800 documents per hour and
machine (at an average document size of 210 tokens, hence
smaller than the news dataset we used in our experiments).
The least favourable results are 65 documents per hour and
machine (for 10 iterations on the forum dataset on 1024
machines). We (reasonably) assumed that an increase in
the number of topics would only slow down the code.

UC Irvine: The results reported in [7] cover a num-
ber of datasets. Unfortunately, the authors focus mainly
on speedup via parallelization rather than raw speed. The
fixed number available was that for 2000 topics and 1024
processors it took 10 hours on 8.2 million documents. Note
that the documents were quite short (less than 100 words
per document and with a very limited vocabulary). Assum-
ing comparable speed (IBM Power4+ 8 core) this amounts
to a throughput of 6,400 documents per computer hour. [7,
Sec. 5] also argue that their code would require 300 days on a
single computer (incorporating the parallelization penalty).

Our Codebase: Since some of the datasets from [9]
were unavailable and others (such as the NIPS collection)
were too small for our purpose we used the following data
for comparison purposes: a collection of 20 million news
documents, each of them containing on average over 300
words and secondly the Pubmed collection, containing 8.2
million documents with an average length of 90 words each.
Minimal processing was applied to the documents (we re-
moved all non-ASCII characters and all words of two char-
acters or less). For our experiments we used both worksta-
tions with server grade 8 core Intel CPUs of approximately
2GHz speed and a Hadoop cluster with similar configuration
which was being used for production work during our exper-

708

dataset 10k 20k 50k 100k 200k 500k 1m
pubmed runtime (hours) .28 .43 1.03 1.33 4.42 7.48 15.12

initial # topics/word 12.2 17.0 26.8 38.9 58.2 99.1 154.6
throughput (documents/hour) 35.3K 46.2K 48.4K 75.0K 45.3K 66.8K 66.3K

news runtime (hours) .40 .72 1.75 2.87 4.70 11.45 24.40
initial # topics/word 10.4 12.9 16.5 19.4 22.1 24.8 25.7
throughput (documents/hour) 25.0K 27.9K 28.6K 34.9K 42.5K 43.7K 41.0K

Table 1: Runtime for single machine execution (1000 topics for news, 2000 topics for pubmed, 1000 Gibbs
sampler iterations each). The experiments were carried out on a dedicated 8-core workstation.

pubmed news
computers 10 20 50 100 100

runtime (hours) 17.2 9.0 4.1 2.8 12.5
throughput (documents/hour) 47.6K 45.9K 40.3K 28.9K 16.3K

Table 2: Runtime for multi machine execution (1000 topics for news, 2000 topics for pubmed, 1000 Gibbs
sampler iterations each). The experiments were carried out on a production Hadoop cluster which was
executing other jobs at the same time. The timing results for news are only reported on 100 nodes since the
amount of memory required to store the (topic,word) table for a larger number of documents would have
exceeded the amount of memory available per machine.

computers 1 2 5 10 20 41
pubmed runtime (hours) 3.2 4.2 4.1 4.2 4.4 4.8

initial # topics/word 58.2 107.1 209.1 318.6 472.6 679.6
throughput (documents/hour) 62.8K 47.4K 49.3K 47.4K 45.2K 41.7K

computers 1 2 5 10 20 50 100
news runtime (hours) 4.6 7.5 7.9 8.1 9.0 10.9 12.5

initial # topics/word 22.1 39.3 74.7 108.9 159.4 244.2 322.4
throughput (documents/hour) 43.8K 26.8K 25.2K 24.6K 22.3K 18.3K 16.3K

Table 3: Runtime for multi machine execution (1000 topics for news, 2000 topics for pubmed, 1000 Gibbs
sampler iterations each) when keeping the number of documents per processor fixed at 200,000.

iments (hence we had no guarantee of exclusive ownership
of the system). This is reflected in the slight fluctuations
in throughput as seen in Table 3. Overall, on PubMed we
achieved a throughput between 29k and 70k documents per
hour and machine. In particular, for a comparable runtime
of 9 hours our codebase is approximately 8x faster than the
UCI implementation. This despite the fact that the system
was being used for production work simultaneously with-
out the guarantee of being able to use any of the nodes
exclusively. On longer documents the performance results
are similar. Note that document length is not as significant
as expected. This is due to the decomposition of sampling
effort into a document and word independent part and ad-
ditional sparse parts which are cheap to compute.

5.2 Scalability
To test scalability we performed three types of experi-

ments: a) we need to establish scalability in terms of the
number of documents. b) we need to establish scalability in
terms of a speedup in runtime as we increase the number
of computers available. c) we need to show that as we have
more computers we are able to process more data in a given
time frame. The latter is the most relevant aspect in prac-
tice — as the amount of data in the server center grows we
want to be able to increase our processing ability.

For the first experiment we ran LDA for 1000 Gibbs sam-
pler iterations on Pubmed and the news dataset on a single 8
core workstation. A slight increase in per-document runtime
is to be expected: as we obtain more documents the number

of topics with nonzero n(t, w) per word increases and with
it the time spent in sampling. In fact, we see initial gains in
scalability in Table 1 as we move to larger datasets.

A second experiment tested scalability by carrying out
runtime experiments on a production Hadoop cluster. Since
there was other regular activity ongoing while we ran our ex-
periments (i.e. disk access, some background processing from
other threads) we usually were not able to make full use of
all 8 cores on the computers. Moreover, network connectiv-
ity between racks is less than 1Gb/s (our code was sharing
the network with production jobs) and latency is increased
due to the need to pass more than one switch. The latter
adversely affects the synchronization time via memcached.

Finally, for the most realistic test (see Table 3) we fixed
the number of documents per machine and measured through-
put as a function of increasing sample size. The processing
time per document increases considerably (by a factor of 2.5)
as we increase the amount of data hundredfold and accord-
ingly as we move from 1 computer to 100 computers. This is
due to a number of reasons — the model becomes more com-
plex (as can be seen by the increase in the initial number of
topics assigned to each word). Secondly, we encounter more
off-rack network traffic. To ensure sufficiently fast synchro-
nization more threads need to be dedicated to communica-
tion with memcached rather than sampling. These additional
threads increase the amount of cache misses for the samplers
thus slowing them down. Thirdly, we switched from a single-
machine scheme which did not require any network I/O to
one which required network I/O.

709

0 200 400 600 800 1000
1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2
1e9

language model
document model
total

0 200 400 600 800 1000
3.0

2.5

2.0

1.5

1.0

0.5
1e9

language model
document model
total

0 200 400 600 800 1000
1.2

1.0

0.8

0.6

0.4

0.2
1e10

language model
document model
total

0 200 400 600 800 1000
6

5

4

3

2

1
1e10

language model
document model
total

Figure 4: Convergence properties for single and multi-machine LDA. The single machine results were carried
out on 1 million documents whereas the multi-machine results were obtained on 100 machines on the full
datasets. From left to right: (single machine, pubmed), (single machine, news), (multi machine, pubmed),
(multi machine, news).

5.3 Model Quality
Obviously there is no point in parallelizing inference if

the model quality should suffer. Hence we computed the
log-likelihood scores for increasing sample size. Using 2M
documents (see Table 4) we see that the log-likelihood scores
remain constant or possibly increase ever so slightly. This
increase is likely due to the fact that (for reasons of con-
venience) we optimize over α separately for each computer,
hence small changes in the distribution of topics between
different chunks of data are likely exploited by slightly dif-
ferent optimal values of α.

computers model documents total
1 -2.1136e+09 -1.1946e+09 -3.3082e+09
5 -2.0812e+09 -1.2143e+09 -3.2954e+09
10 -2.0681e+09 -1.2110e+09 -3.2880e+09
20 -2.0631e+09 -1.2238e+09 -3.2869e+09

Table 4: Log-likelihood for 2m news documents after
1000 sampling iterations.

We see the latter as a feature of our system (rather than
a defect): in practice it is not uncommon to receive data ob-
tained from different sources (e.g. Wikipedia vs. high quality
webpages vs. general web). While we may wish to analyze all
data based on the same language model, it is quite likely that
the distribution of topics differs between these sources. In
this case, a different prior over topic distributions per group
is a natural statistical modelling choice. Figure 4 shows
convergence in log-likelihood for single machine and multi-
machine runs. Note that initial convergence of the overall
model is slightly slower since it takes some time to syn-
chronize the language model between the computers — the
document likelihood peaks around 25-50 documents. This
is partly also due to the fact that we optimize the document
model (i.e. the α parameters) only every 25 iterations.

6. SUMMARY AND DISCUSSION
In this work we proposed two novel parallelization paradigms

for Latent Dirichlet Allocation: a decoupling between sam-
pling and state updates for multicore and a blackboard ar-
chitecture to deal with state synchronization for large clus-
ters of workstations. We believe that of those two innova-
tions the blackboard architecture is the more significant one
as it is entirely general and can be used to address general
large scale systems which share a common state. This work
is complementary to recent progress on efficient inference in
graphical models [5]. The latter focus on message passing

algorithms where the entire model is small enough to fit into
(distributed) main memory whereas our approach is specif-
ically geared towards models where only an intersection of
shared state variables needs to be exchanged and where the
data considerably exceeds the amount of memory available
for estimation.

In this sense a combination of [5] and the blackboard style
approach presented in this paper are a good fit, allowing
one to solve inference problems efficiently in memory when-
ever they are small enough to fit into main memory and to
decompose the remainder via a set of tightly coupled (via
asynchronous communication) cluster nodes.

Acknowledgments
The authors thank Wray Buntine and James Petterson for
valuable suggestions. This work is supported by a grant of
the Australian Research Council. We plan on making our
codebase available for public use.

7. REFERENCES
[1] S. Aji and R. McEliece. The generalized distributive

law. IEEE IT, 46:325–343, 2000.

[2] A. Asuncion, P. Smyth, and M. Welling.
Asynchronous distributed learning of topic models. In
NIPS, pages 81–88. MIT Press, 2008.

[3] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet
allocation. JMLR, 3:993–1022, 2003.

[4] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, UK, 2004.

[5] J. Gonzalez, Y. Low, and C. Guestrin. Residual splash
for optimally parallelizing belief propagation. In
AISTATS, Clearwater Beach, FL, 2009.

[6] T. Griffiths and M. Steyvers. Finding scientific topics.
PNAS, 101:5228–5235, 2004.

[7] D. Newman, A. Asuncion, P. Smyth, and M. Welling.
Distributed algorithms for topic models, NIPS 2009.

[8] H. Wallach, D. Mimno, and A. McCallum. Rethinking
LDA: Why priors matter. NIPS, p. 1973–1981. 2009.

[9] Y. Wang, H. Bai, M. Stanton, W. Chen, and
E. Chang. PLDA: Parallel latent dirichlet allocation
for large-scale applications. In Proc. of 5th
International Conference on Algorithmic Aspects in
Information and Management, 2009.

[10] L. Yao, D. Mimno, and A. McCallum. Efficient
methods for topic model inference on streaming
document collections. In KDD’09, 2009.

710

