
Keyword++: A Framework to Improve Keyword Search
Over Entity Databases

Venkatesh Ganti
∗

Google Inc

vganti@google.com

Yeye He
†

University of Wisconsin

heyeye@cs.wisc.edu

Dong Xin
Microsoft Research

dongxin@microsoft.com

ABSTRACT
Keyword search over entity databases (e.g., product, movie
databases) is an important problem. Current techniques for
keyword search on databases may often return incomplete
and imprecise results. On the one hand, they either require
that relevant entities contain all (or most) of the query key-
words, or that relevant entities and the query keywords oc-
cur together in several documents from a known collection.
Neither of these requirements may be satisfied for a number
of user queries. Hence results for such queries are likely to
be incomplete in that highly relevant entities may not be re-
turned. On the other hand, although some returned entities
contain all (or most) of the query keywords, the intention
of the keywords in the query could be different from that in
the entities. Therefore, the results could also be imprecise.
To remedy this problem, in this paper, we propose a gen-

eral framework that can improve an existing search inter-
face by translating a keyword query to a structured query.
Specifically, we leverage the keyword to attribute value as-
sociations discovered in the results returned by the original
search interface. We show empirically that the translated
structured queries alleviate the above problems.

1. INTRODUCTION
Keyword search over databases is an important problem.

Several prototype systems like DBXplorer [2], BANKS [4],
DISCOVER [12] have pioneered the problem of keyword
search over databases. These systems answer keyword queries
efficiently and return tuples which contain all or most of
the query keywords. Many vertical search engines, such as
Amazon.com, Bing Shopping, Google Products, are driven
by keyword search over databases. Typically, in those appli-
cations, the databases are entity databases where each tuple
corresponds to a real world entity (e.g., a product). The
goal is to find related entities given search keywords.
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Existing keyword search techniques over databases pri-
marily return tuples (denoted as filter set) whose attribute
values contain all (or most) query keywords. This approach
might work satisfactorily in some cases, but still suffers
from several limitations, especially in the context of key-
word search over entity databases. Specifically, this keyword
matching approach, (i) may not return all relevant results
and (ii) may also return irrelevant results. The primary rea-
son is that keywords in attribute values of many entities
(i) may not contain all keywords, with which users query
products, and (ii) may also contain matching keywords with
irrelevant intention.

Consider a typical keyword search engine which returns
products in the results only if all query keywords are present
in a product tuple. For the query [rugged laptops] issued
against the laptop database in Table 1, the filter set may be
incomplete, as some laptop, which is actually a rugged lap-
top but does not contain the keyword “rugged”, may not be
returned. For instance, the laptop product with ID = 004 is
relevant, since Panasonic ToughBook laptops are designed
for rugged reliability, but not returned. As another exam-
ple, consider the query [small IBM laptop] against the same
database. The filter set may be imprecise, as some result,
while containing all query keywords, may be irrelevant. For
instance, the laptop product with ID = 002 contains all
keywords, and thus is returned. However, the laptop is ac-
tually not small; and the keyword “small” in the product
description does not match with user’s intention.

Recently, several entity search engines, which return enti-
ties relevant to user queries even if query keywords do not
match entity tuples, have been proposed [1, 3, 5, 8, 15].
These entity search engines rely on the entities being men-
tioned in the vicinity of query keywords across various doc-
uments. Consider the above two queries again. Many of the
relevant products in the database may not be mentioned of-
ten in documents with the query keywords, and thus are not
returned; if at all, a few popular laptops (but not necessarily
relevant) might be mentioned across several documents. So,
these techniques are likely to suffer from incompleteness and
impreciseness in the query results.

In this paper, we address the above incompleteness and
impreciseness issues under the context of keyword search
over entity search. We map query keywords1 to matching
predicates or ordering clauses. The modified queries may
be cast as either SQL queries to be processed by a typi-
cal database system or as keyword queries with additional

1We adopt IR terminology and use the term keyword to denote
single words or phrases.
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predicates or ordering clauses to be processed by a typical
IR engine. In this paper, we primarily focus on translating
keyword queries to SQL queries. But our techniques can be
easily adopted by IR systems.
When a query keyword are very highly correlated with

a categorical attribute, we map the keyword to a predicate
of the form “Attribute value = <value>”. When the cor-
related attribute is numeric, we may map the keyword to
an ordering clause “order by <attribute> <ASC|DESC>”.
Most of the unmapped query keywords are still issued as
keyword queries against the textual columns. For exam-
ple, consider the query [rugged laptops] on laptop database.
By mapping the keyword “rugged” to a predicate “Product-
Line=ToughBook”, we are likely to enable the retrieval of
more relevant products. For the query [small IBM laptop],
we may map the keyword “small” to an ordering clause that
sorts the results by ScreenSize ascendingly.
In order to automatically translate a keyword to a SQL

predicate, we propose a framework which leverages an exist-
ing keyword search engine (or, the baseline search interface).
Basically, the baseline search interface takes the search key-
words as input, and produces a list of (possibly noisy) en-
tities as output, which is further used to mine the keyword
to predicate mapping. In our experiments, we apply our
framework on several baseline interface, and show that it
consistently improves the precision-recall of the retrieved re-
sults. Note that we do not assume that we have access to
the internal logic of the baseline interface, which is typically
not publicly available, especially for production systems.
In this paper, we consider the entity database as a single

relation, or a (materialized) view which involves joins over
multiple base relations. Essentially, we assume that each
tuple in the relation describes an entity and its attributes.
This is often the case in many entity search tasks.
We now summarize our main contributions.

(1) We propose a general framework, which builds upon a
given baseline keyword search interface over an entity database,
to map keywords in a query to predicates or ordering clauses.
(2) We develop techniques that measure the correlation be-
tween a keyword and a predicate (or an ordering clause) by
analyzing two result sets, from the baseline search engine,
of a differential query pair with respect to the keyword.
(3) We improve the quality of keyword to predicate mapping
by aggregating measured correlations over multiple differen-
tial query pairs discovered from the query log.
(4) We develop a system that efficiently and accurately trans-
lates an input keyword query to a SQL query. We material-
ize mappings for keywords observed in the query log. For a
given keyword query at run time, we derive a query trans-
lation based on the materialized mappings.
The remainder of the paper is organized as follows. In

Section 2, we formally define the problem. In Section 3,
we discuss the algorithm for mapping keywords to predi-
cates. In Section 4, we discuss the algorithm for translating
a keyword query to SQL query. In Section 5, we present
the experimental study. We conclude in Section 6. Related
work and extensions of the proposed method are presented
in Section 8.

2. PROBLEM DEFINITION
We use Table 1 as our running example to illustrate the

problem and our definitions. In this table, each tuple cor-
responds to a model of laptop, with various categorical at-

tributes (e.g., “BrandName”, “ProductLine”), and numeri-
cal attributes (e.g., “ScreenSize”, “Weight”).

2.1 Preliminaries

2.1.1 Keyword To Predicate Mapping
Our goal is to translate keyword queries to SQL queries.

When a user specifies a keyword query, each keyword may
imply a predicate that reflects user’s intention. Before we
discuss the scope of the SQL statement considered in this
paper, we first define the scope of the predicates, which in-
cludes categorical, textual, and numerical predicates.

Let E be the relation containing information about enti-
ties to be searched. Let Ec ∪ En ∪ Et be E’s attributes,
where Ec = {Ac

1, ...A
c
N} are categorical attributes, En =

{An
1 , ..., A

n
N} are numerical attributes, and Et = {At

1, ..., A
t
T }

are textual attribute. The classification of attributes are not
exclusive. For instance, a categorical attribute could also be
a textual attribute, and a numerical attribute could also
be a categorical attribute if we treat numerical values as
strings. Denote D(A) = {v1, v2, . . . , vn} the value domain
of A. Note although value domain of numerical attributes
could be continuous, the values appearing in database are
finite and enumerable. Let tok be a tokenization function
which returns the set tok(s) of tokens in a given string s.

We denote a keyword query by Q = [t1, t2, . . . , tq], where
ti are single tokens. Let k = ti, ti+1, ..., tj be a token, or
a multi-token phrase. Following standard conventions in
Information Retrieval literature, we use keyword to denote
both single token and multi-token phrase.

Definition 1. (Predicate) Let e ∈ E be an entity. De-
fine the categorical predicate σA=v(e), where A ∈ Ec, to be
true if e[A] = v. Define the textual predicate σContains(A,k)(e),
where A ∈ Et, to be true if tok(k) ⊆ tok(e[A]). Define the
null predicate σTRUE, which simply returns true.

We can apply the predicates on a set Se of entities to re-
turn a subset σ(Se) containing only entities for which the
predicate is true. Because Se is clear from the context, we
loosely use the notation σA=v and σContains(A,t) without re-
ferring to the entity set Se these are applied to.

Let σ(A,SO)(Se), where A ∈ En and SO ∈ {ASC,DESC},
denote the list of entities in Se sorted in the ascending order
if SO = ASC or in the descending order if SO = DESC of
the attribute values in A. For clarity and uniformity in ex-
position, we abuse the terminology numerical predicate and
notation σ(A,SO).

2

We map a selected set of keywords to categorical, textual,
numerical or null predicates. Let {σA=v}∪{σContains(A,t)}∪
{σ(A,SO)} ∪ {σTRUE} denote the set of all such predicates
over the entity relation E.

Definition 2. (Mapping) Let k be a keyword in the
keyword query Q over table E, define the keyword-predicate
mapping function Map(k, σ) : [0,+∞], where σ ∈ {σA=v} ∪
{σContains(A,k)} ∪ {σ(A,SO)} ∪ {σTRUE}, and Map(k, σ) re-
turns a confidence score for mapping k to σ. Define the best
predicate Mσ(k) = argmaxσMap(k, σ), and the correspond-
ing confidence score Ms(k) = maxσMap(k, σ).

2In Section 8.4, we describe a mechanism to optionally map key-
words to range predicates on numeric attributes instead of order-
ing clauses.
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Table 1: The laptop product table
ID ProductName BrandName ProductLine ScreenSize Weight ProductDescription ...

001 Panasonic Toughbook W8 - Core 2 Duo
SU9300 1.2 GHz - 12.1” TFT

Panasonic Toughbook 12.1 3.1 If you want a fully rugged, lightweight ... ...

002 Lenovo ThinkPad T60 2008 - Core Duo
T2500 2 GHz - 14.1” TFT, 80GB HD

Lenovo ThinkPad 14.1 5.5 The IBM laptop...small business support ...

003 ThinkPad X40 2372 - Pentium M 1.2 GHz
- 12.1” TFT, 40GB HD, 512MB RAM

Lenovo ThinkPad 12.1 3.1 The thin, light, ThinkPad X40 notebook ... ...

004 Panasonic Toughbook 30 - Core 2 Duo
SL9300 1.6 GHz - 13.3” TFT

Panasonic Toughbook 13.3 8.4 the durable Panasonic Toughbook 30 ... ...

In this paper, we map a keyword to the predicate with the
maximal confidence score (as defined by Mσ(k) and Ms(k)).
Our method can be extended to map a keyword to multiple
predicates, and we will discuss it in Section 8.4.1. We now
illustrate the four types of mappings using examples.
(1) Mapping from a keyword to a categorical predicate:
For instance, the keyword “IBM” in query [small IBM re-
furbished laptop] semantically refers to the attribute value
“Lenovo” in column BrandName (Table 1), due to the fact
that IBM laptop production was acquired by Lenovo. There-
fore, we have Mσ(“IBM”) = σ(BrandName =“Lenovo”).
(2) Mapping from a keyword to a numerical predicate: Using
the query [small IBM refurbished laptop] again, the keyword
“small” could be associated with the predicateMσ(“small”) =
σ(ScreenSize,ASC).
(3) Mapping from a keyword to a textual predicate: Some
keywords may only appear in textual attributes such as Pro-
ductName or Description. Although there is no correspond-
ing categorical attributes, they are also valuable to filter the
results. For instance, we can associate “refurbished” with a
textual predicate σ(Contains(ProductName,“refurbished”)).
(4) In some cases there is no meaning of the keyword. Many
stop words seen in queries (“the”, “and”, “a”, etc), all fall
in this category. We assign Mσ(“the”) = σTRUE .

2.1.2 Query Translation
Once the keyword to predicate mappings are established,

we propose to translate a keyword query to a SQL query.
The scope of SQL statements in this paper is confined to
the CNF SQL queries.

Definition 3. A CNF SQL has the format:
SELECT * FROM Table
WHERE cnf(σA=v) AND cnf(σContains(A,t))
ORDER BY {σ(A,SO)}
where cnf(σA=v) and cnf(σContains(A,t)) are conjunctive
forms of multiple categorical and textual predicates, and {σ(A,SO)}
is an ordered list of numerical predicates.

Using CNF, we can uniquely rewrite a set of predicates
(null predicates are ignored) to a SQL query. Therefore,we
use a set of predicates to represent a CNF SQL thereafter.
Given a keyword query, there are multiple ways to trans-

late it to a CNF query. We now define the “best” query
translation based on the notion of keyword segmentation
and translation scoring. Informally, we sequentially segment
Q into multiple keywords, where each keyword contains at
most n tokens (typically, n = 2 or 3). We map each seg-
mentation to a set of predicates, based on the keyword to
predicate mapping. Therefore, each segmentation maps to
a CNF query. We define the confidence score for the query
translation to be an aggregate of keyword to predicate map-
ping scores. Among all possible segmentations, the one with
the highest confidence score defines the best query transla-
tion.

Definition 4. (Query Translation) Given a keyword
query Q = [t1, . . . , tq], we define G = {k1, k2, . . . , kg} as a
n-segmentation of query Q, where ki = tdi+1, . . . , tdi+1 , 0 =
d1 ≤ d2 ≤ . . . ≤ dg+1 = q, and max(di+1−di) = n. For each
segmentation G, denote fσ(G) = {Mσ(k1), . . . ,Mσ(kg)} the
set of mapped predicates from each keyword. Denote fs(G) =∑g

i=1 Ms(ki) the translation score of the segmentation G.
Let Gn(Q) be the set of all possible n-segmentations. The
best SQL translation of Q is

Tσ(Q) = fσ(argmaxG∈Gn(Q)fs(G))

2.2 System Architecture
The architecture of our proposed system (Figure 1) has

an offline (the upper half) and an online (the lower half)
component.
Offline Component: We exploit a set of historical queries3

(without click information) in the domain of entity search.
Given an entity category, the vocabulary in user queries is of-
ten limited. Therefore, it is sufficient to materialize the map-
pings for all keywords that appear in the historical queries.
Note that even for a new query which does not appear in
the historical set, the chance that all its keyword mappings
have been pre-computed is still quite high. The mappings
for all keywords are materialized in the mapping database.
Online Component: Given a keyword query Q, we search the
mapping database for the mappings of keywords in Q. We
use these mapping predicates to rewrite Q into a CNF SQL
query. In the case that Q contains a keyword whose map-
ping is not pre-computed, we can optionally compute the
mapping online (represented by the dashed line in the fig-
ure, see Section 8.5.2 for the related discussion). In reality,
we observe that if a keyword does not appear in query log,
it is less likely that the keyword has semantic meaning (e.g.,
mapping to a categorical or a numerical predicate). There-
fore, a practical and efficient approach is to simply map it
to a textual or null predicate, without going to the mapping
analysis component at online query processing. We discuss
the details in the following sections.

Query Set

Mapping 

Analysis
Baseline Search 

Interface

Entity DBMapping DB

New Query SQL Query
Query 

Translation
Entities

Figure 1: System architecture

3In Section 3.2 and Section 8.4.2, we discuss how to handle
the case where a set of historical queries is not available.
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2.3 Problem Statement
We formalize the problem below.

Definition 5. (Problem Definition) Given a search
interface S over an entity relation E, a set of historical
queries Q, the query translation problem has two sub-problems:
(1) For each keyword k in Q, find its mapping Mσ(k) and
the confidence score Ms(k) for the mapping (Definition 2);
(2) Using the mapping M , compute the best CNF SQL query
Tσ(Q) for a keyword query Q (Definition 4).

3. MAPPING KEYWORDS TO PREDICATES
In this section, we discuss our techniques to find the map-

ping between keywords and predicates. In Section 8.4, we
discuss more related issues and extensions.
Ideally, in the set of entities returned by the baseline

interface, the mappings determined by the keyword query
should dominate the results and be obvious to tell. For in-
stance, in a perfect setting most of the entities returned for
query [small IBM laptop] should be indeed of BrandName
“Lenovo” and with ScreenSize as “small” as possible. This
however, is very hard to guarantee in practice (even for pro-
duction search engines) precisely due to the imperfect nature
of the search engine as discussed earlier.
Therefore, instead of hoping for a good baseline keyword

search engine, we propose to use a differential query pair (or,
DQP). Intuitively, the DQP approach uses statistical differ-
ence aggregated over several selectively chosen query pairs
to find the mappings from keywords to predicates. In the
remainder of this section, we first define differential query
pairs, and then show how aggregation over multiple differ-
ential query pairs allows us to derive accurate mappings.

3.1 Differential Query Pair
Definition 6. (Differential Query Pair) A pair of key-

word queries Qf = [tf1 , ..., t
f
m] and Qb = [tb1, ..., t

b
n], where

tfi , t
b
j are tokens, is said to be a differential query pair (Qf , Qb)

with respect to a keyword k, if Qf = Qb ∪ {k} 4.
We name Qf the foreground query, Qb the background

query, and k the differential keyword.

In other words, a differential query pair is a pair of queries
that differs only by the keyword under consideration. Some
example are shown in Table 2.
Intuitively, the results returned by a differential query pair

should differ most on the attribute mapping to the differen-
tial keyword. Let us illustrate this using the example below.

Example 1. Consider a keyword “IBM”, and Qf=[small
IBM laptop] and Qb=[small laptop]. For Qb, suppose a
search interface returns 20 laptop models, out of which, 3
are of brand “Lenovo”, 7 “Dell”, 6 “HP”, 2 “Sony” and 2
“Asus”. For Qf , suppose 10 laptops are returned, of which
5 are “Lenovo”, 2 “Dell”, 1 “HP”, 1 “Sony” and 1 “Asus”.
We then compare, attribute by attribute, the results of Qb

and Qf . In this example, on this attribute BrandName,
we can clear see that value “Lenovo” in the Qf (5 out of
10) has the biggest relative increase from the Qb (3 out of
20). Therefore, we conclude that keyword “IBM” might have

4Note Qf , Qb and k are all sequences. Qf = Qb∪{k} means
that Qf can be obtained by inserting k at any place of Qb.
For simplicity, we use the set operator ∪.

some association with BrandName “Lenovo”. The exact def-
inition of the relative increase will be clear in Definition 7
and Definition 8.

The insight here is that even though the desired results, in
this case laptops with BrandName “Lenovo” may not domi-
nate the result set for the foreground query [small IBM lap-
top], if one compares the results returned by the foreground
and background queries, there should be a noticeable statis-
tical difference for the attribute (value) that is truly mapped
by the differential keyword.

Our algorithm of course does not know that “IBM” corre-
sponds to the attribute BrandName; so all other attributes
in the table are also analyzed in the same manner. We dis-
cuss the algorithm later in this section.

3.2 Generating DQPs for Keywords
We now discuss the generation of DQPs for keywords.

Given a query Q and a keyword k ∈ Q, we can derive
differential query pairs from Q by assigning Qf = Q and
Qb = Q − {k}. For instance, if Q = [small IBM laptop],
and k =“small”, we will generate Qf = [small IBM laptop]
and Qb = [IBM laptop].

When a set of historical queries Q is available, we find
more differential query pairs for a keyword k as follows.
Given k, we generate the differential query pairs by retriev-
ing all query pairs Qf and Qb, such that Qf ∈ Q, Qb ∈ Q
and Qf = Qb ∪ {k}. We aggregate the scores of keyword to
predicate mappings across multiple differential query pairs.
We will show in Section 3.3.2 that aggregation significantly
improves the accuracy of keyword to predicate mappings.

When the query log is not present or is not rich enough,
one may exploit other sources. First, one can consider all
entity names in the database as queries. Secondly, one may
extract wikipedia page titles and category names in the re-
lated domain, as queries. Finally, one may identify a set
of related web documents (e.g., by sending entity names to
web search engine, and retrieving top ranked documents),
and extract titles and anchor text of those documents, as
queries.

3.3 Scoring Predicates Using DQPs
We now discuss the confidence score computation for a

predicate given a keyword, based on DQPs. We first discuss
how to score categorical and numerical predicates by mea-
suring the statistical difference w.r.t. some attribute/value
between the results from foreground and background queries.
Any statistical difference measure can be used, but we find
in practice that KL-divergence [13] and Earth Mover’s Dis-
tance [14, 18] works best for categorical and numerical at-
tributes, respectively. Both of these two are very common
metrics. We then discuss how to extend the scoring frame-
work to textual and null predicates.

3.3.1 Correlation Metrics
Let D(A) be the value domain of A. For any v ∈ D(A), let

p(v,A, Se) = |{e[A]=v,e∈Se}|
|Se| be the probability of attribute

value v appearing in objects in Se on attribute A. Let
P (A,Se) be the distribution of p(v,A, Se) for all v ∈ D(A).
Given a differential query pair (Qf , Qb), let Sf and Sb be
the set of results returned by the search interface.

We first discuss the KL-divergence for categorical attributes.
The KL-divergence in terms of the foreground and back-
ground queries is defined as follows.
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Table 2: Example differential query pairs
Differential keyword Foreground query Background query

IBM [small refurbished IBM laptop] [small refurbished laptop]
IBM [lightweight IBM laptop] [lightweight laptop]
small [small refurbished IBM laptop] [refurbished IBM laptop]
small [small HP laptop] [HP laptop]

Definition 7. (KL-divergence[13]) Given Sf and Sb,
the KL divergence between p(v,A, Sf ) and p(v,A, Sb), with
respect to an attribute A, is defined to be

KL(p(v,A, Sf )||p(v,A, Sb)) = p(v,A, Sf )log
p(v,A, Sf )

p(v,A, Sb)

We apply some standard smoothing techniques if p(v,A, Sb)
is zero for some v. Given (Qf , Qb), we define the score for
categorical predicates as follows:

Scorekl(σ(A = v)|Qf , Qb) = KL(p(v,A, Sf )||p(v,A, Sb))

Example 2. In Example 1, considering the results of Qf ,
we see that a tuple has 0.5 probability of bearing brand “Lenovo”
(5 out of 10), while the same probability is 0.3 for Qb (6
out of 20). By applying Definition 7, we have the statis-
tical difference of value “Lenovo” to be 0.5 × log2

0.5
0.3

=
0.368. Similarly the same measure can be computed for all
other values: −0.161 for “Dell”, −0.158 for “HP”, −0.1 for
“Sony”, and −0.1 for “Asus”. Only looking at this query
pair and attribute BrandName, “IBM” is more likely to map
to “Lenovo” than any other brands.

We now discuss the earth mover’s distance for scoring nu-
merical predicates.

Definition 8. (Earth Mover’s Distance[14, 18]) Let
Sf and Sb be two sets of objects, and let D(A) = {v1, v2, . . . , vn}
be the sorted values on a numerical attribute A. The Earth
Mover’s Distance (EMD) is defined w.r.t. an optimal flow
F = (fij), which optimizes
W (P (A,Sf ), P (A,Sb), F ) =

∑n
i=1

∑n
j=1 fijdij,

where dij = d(vi, vj) is some measure of dissimilarity be-
tween vi and vj , e.g., the Euclidean distance. The flow (fij)
must satisfy the following constraints:
fij ≥ 0, 1 ≤ i ≤ n, 1 ≤ j ≤ n∑n

j=1 fij ≤ p(vi, A, Sf ), 1 ≤ i ≤ n∑n
i=1 fij ≤ p(vj , A, Sb), 1 ≤ j ≤ n

Once the optimal flow f∗
ij is found, the Earth Mover’s Dis-

tance between P and Q is defined as

EMD(P (A,Sf ), P (A,Sb)) =

n∑
i=1

n∑
j=1

f∗
ijdij

Intuitively, given two distributions over a numerical do-
main, one distribution can be seen as a mass of earth prop-
erly spread in space according to its probability density func-
tion, while the other as a collection of holes in that same
space. Then, the EMD measures the least amount of work
needed to fill the holes with earth (where a unit of work cor-
responds to transporting a unit of earth by a unit of ground
distance) [14]. So the smaller the EMD, the closer two distri-
butions are. The definition of EMD naturally captures the
locality of data points in the numerical domain, is thus ideal
to measure difference of numerical distributions. Further-
more, positive EMD difference from P (A,Sf ) to P (A,Sb)
indicates the correlation with smaller values (or ascending

sorting preference). Therefore, we define the score for nu-
merical predicates as follows:

Scoreemd(σ(A,SO)|Qf , Qb) ={
EMD(P (A,Sf ), P (A,Sb)) if SO = ASC
−EMD(P (A,Sf ), P (A,Sb)) if SO = DESC

The EMD can be computed based on the solution of the
transportation problem [11], and in our one-dimensional case,
it can be efficiently computed by scanning sorted data points
and keeping track of how much earth should be moved be-
tween neighboring data points. We will skip the details here.

0

0.2

0.4

0.6

0.8

1

6 7 8 9 10 11 12 13 14 15 16 17 18 19

Screen Size CDF

[IBM laptop] [small IBM laptop]

Figure 2: Cumulative Distributions

Example 3. Consider the keyword “small”, and Qf=[small
IBM laptop] and Qb=[IBM laptop]. We plot the cumulative
distribution for results of both Qf and Qbin Figure 2, where
x-axis is the ScreenSize, and y-axis is the cumulative proba-
bility. We see that the CDF moves considerably upward from
query [IBM laptop] to [small IBM laptop] (positive EMD dif-
ference from Qf to Qb), indicating the differential keyword
“small” has correlation with smaller ScreenSize (or ascend-
ing sorting preference).

3.3.2 Score Aggregation
While the differential query pair approach alleviates the

problem of noisy output of the baseline interface, sometimes
there are random fluctuations in distributions w.r.t. one dif-
ferential query pair. We first illustrate the random fluctua-
tion in an example, and then discuss our solution.

Example 4. Using the same settings as Example 1, we
may notice another significant statistical difference on the
attribute ProcessorManufacturer. For instance, out of the
20 laptops returned for the background query [small laptop],
3 have the value “AMD” for this attribute, and remaining 17
have “Intel”; while in the 10 laptops returned for the fore-
ground query [small IBM laptop], 6 have “AMD” and 4 have
“Intel”. Now depending on how we measure statistical dif-
ference, we may find that the difference observed on attribute
ProcessorManufacturer is larger than that on the attribute
BrandName. Therefore, if we only look at this query, one
may reach the wrong conclusion that keyword “IBM” maps
to attribute ProcessorManufacturer with value “AMD”.

In order to overcome the random fluctuations in distri-
butions with respect to one differential query pair, we “ag-
gregate” the differences among distributions across multiple
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differential query pairs. The idea here is that for a par-
ticular differential query pair with respect to “IBM”, there
may be a significant statistical difference on attribute Pro-
cessorManufacturer (many more “AMD” in the foreground
query). However, we may observe that for many other differ-
ential query pairs with respect to “IBM”, there is not much
increase of “AMD” from foreground queries to background
queries, or we may even see less “AMD” from foreground
queries. Now if we aggregate the statistical difference over
many differential query pairs, we obtain a more robust mea-
sure of keyword to predicate mapping.

Definition 9. (Score Aggregation) Given a keyword
k, and a set of differential query pairs {(Q1

f , Q
1
b), . . . , (Q

n
f , Q

n
b )},

each of which with respect to k. Define the aggregate score
for keyword k with respect to a predicate σ as:

AggScore(σ|k) = 1

n

n∑
i=1

Score(σ|(Qi
f , Q

i
b))

where Score can be either Scorekl or Scoreemd.

3.3.3 Score Thresholding
Categorical and Numerical Predicates: The aggregated cor-
relation scores are compared with a threshold. A mapping
is kept if the aggregate score is above the threshold. As
we discussed above, the keyword to predicate mapping is
more robust with more differential query pairs. Intuitively,
for those keywords with a small number of differential query
pairs, we need to set a high threshold to ensure a high statis-
tical significance as they tend to have high variations in the
aggregated scores. The threshold value can be lower when
we have more the number of differential query pairs.
Setting up thresholds with multiple criteria has been stud-

ied in the literature. In this paper, we adopt a solution
which is similar to that in [6]. The main idea is to consider
each keyword to predicate mapping as a point in a two-
dimensional space, where the x-axis is the aggregate score
and y-axis is the number of differential query pairs. A set
of positive and negative samples are provided. The method
searches for an optimal set of thresholding points (e.g., 5
points) in the space, such that among the points which are
at the top-right of any of these thresholding points, as many
(or less) as positive (or negative) samples are included. With
that approach, we generate a set of thresholds, each of which
corresponds to a range with respect to the number of differ-
ential query pairs.
Note that we have two different metrics for categorical

and numerical predicates. Hence, the scores are not com-
parable to each other. Therefore, it is necessary to set up
a threshold for each of them separately. Furthermore, af-
ter score thresholding, we normalize scores as follows. For
each score s which is above the threshold θ (with respect
to the corresponding number of differential query pairs), we
update a relative score by s = s

θ
.

Textual and Null Predicates: For each keyword k, we will
compute the score for all possible categorical and numerical
predicates. If none of these predicate whose score passes
the threshold, then the keyword is not strongly correlated
with any categorical or numeric predicates. Therefore, we
assign textual or null predicate to k. Specifically, for any
keyword k that does not appear in the textual attributes in
the relation, or belongs to a stop word list, we assign a null
predicate σTRUE with score 0 to k. Otherwise, we assign a

textual predicate σContains(A,k) with score 0 if k appears in
a textual attribute A.

3.4 The Algorithm
We now describe our algorithm for generating mappings

from keywords to predicates. For all (or, a subset of fre-
quent) keywords that appear in query log, we generate the
mapping predicates using the baseline search interface. We
first generate the differential query pairs (by leveraging the
query log) for each keyword as discussed in Section 3.2. We
then generate the relevant mapping predicate for the key-
word, following the procedures in Section 3.3. Specifically,
for each candidate predicate, we compute correlation score
from each DQP, aggregate scores over all DQPs, and output
a predicate by score thresholding. The detailed algorithm
and its complexity analysis can be found in 8.2. The out-
put of the algorithm is the predicate mapping Mσ(k) and
corresponding confidence score Ms(k), for keyword k.

Note that we may invoke the baseline search interface for
many (differential query pair) queries with respect to a key-
word. Oftentimes, same query may be issued again for dif-
ferent keywords. We cache these results to avoid invoking
the search interface for the same query repeatedly.

4. QUERY TRANSLATION
As we discussed earlier in Section 2.1.2, the query transla-

tion consists of two steps: keyword segmentation and trans-
lation scoring. Conceptually, the query segmentation step
sequentially splits the query tokens into keywords, where
each keyword is up to n tokens. For each such segmenta-
tion, the translation scoring step finds the best predicate
mapping for each keyword, and computes the overall score
for a target SQL rewriting.

A naive implementation of the above two steps would ex-
plicitly enumerate all possible keyword segmentations, and
then score the SQL rewriting for each segmentation. Since
the segmentation is conducted sequentially, a dynamic pro-
gramming strategy can be applied here to reduce the com-
plexity. Specifically, given a query Q = [t1, t2, . . . , tq], let
Qi = [t1, . . . , ti] be the prefix of Q with i tokens. Recall
that Tσ(Qi) is the best SQL rewriting of Qi (see Definition
4). Let Ts(Qi) be the score of the best SQL rewriting of
Qi. Ms(k) (Definition 2) is materialized offline and stored
in a database. For new keywords whose predicate mapping
were not found in the database, we consider them as textual
predicates.

Suppose we consider up to n grams in segmentation (e.g.,
each keyword has at most n tokens), we have

Ts(Qi) =
n

max
j=1

(Ts(Qi−j) +Ms({ti+1−j , . . . , ti})

We demonstrate the recursive function as follows.

Example 5. Suppose Q = [small IBM laptop] and n =
2 (i.e., up to 2-grams in segmentation). We start with Q1 =
[small], and figure out Ts(Q1) = Ms(“small”). We then
move to Q2 = [small IBM ]. We have two options to rewrite
Q2 to a SQL: first, considering “IBM” as a new segment, we
can rewrite Q2 as Ts(Q2) = Ts(Q1)+Ms(“IBM”); secondly,
considering “small IBM” as a segment, we can rewrite Q2 as
Ts(Q2) = Ms(“small IBM”). We compare the two options,
and pick the one with higher score for Q2 rewriting. We
then move to Q3, and so on so forth.
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The pseudocode of the translation algorithm is outlined in
Section 8.3. Note that the recursive function considers all
possible keyword segmentations. Many such segments are
actually not semantically meaningful. We also discuss how
to incorporate semantical segmentation in Section 8.3.

5. PERFORMANCE STUDY
We now evaluate the techniques described in this paper.

The experiments are conducted with respect to three differ-
ent aspects: coverage on queries, computational overhead
and mapping quality. To begin with, Table 3 shows some
example predicate mappings discovered by our method.

Table 3: Example Keyword to Predicate Mapping
Keyword Predicate
Rugged ProductLine=ToughBook

lightweight Weight ASC
mini ScreenSize ASC

5.1 Experimental Setting
Data: We conduct experiments with real data sets. The
entity table is a collection of 8k laptops. The table has 28
categorical attributes and 7 numerical attributes. We use
ProductName and ProductDescription as textual attributes.
We use 100k web search queries which were classified as
laptop queries5, from which, 500 queries are sampled and
separated as a test set.
Comparison Methods: We experiment two baseline search
interface. The first search interface is the commonly used
keyword-and approach, which returns entities containing all
query tokens. The second search interface is the query-portal
approach [1], where queries are submitted to a production
web search engine, and entities appearing in relevant docu-
ments are extracted and returned. These two baseline inter-
face are two representative approaches of entity search over
database. We denote our approach as keyword++.
In addition to the baseline search interface, we compare

our method with two other approaches that could be possi-
bly built using the baseline interface. The first, bounding-box
approach, finds the minimum hyper-rectangular box that
bounds all entities returned by the baseline search interface,
and augments the results with other entities within the box.
The second, decision-tree approach, constructs a decision
tree by considering entities returned by the baseline inter-
face as positive samples, and those not as negative samples.
Each node in the decision tree corresponds to a predicate,
and one can translate a decision tree to a SQL statement.
Note that decision-tree based approach is a variation of the
method discussed in [21]. The detailed description of all
methods can be found in Appendix (Section 8.5).
Evaluation Metric: We evaluate the mapping quality at
both the query level and keyword level. At the query level,
we examine how close the set of results produced using
different techniques is, when comparing with the ground
truth, which are manually labeled for all queries in the test
set. Given a result set R and a true set T , the evalua-
tion metric includes Precision = R∩T

R
, Recall = R∩T

T
, and

Jaccard = R∩T
R∪T

. At the keyword level, we examine for a set
of popular keywords, how many mappings are correct.

5The query classification is beyond the scope of this paper.
Therefore, we omit the detailed description here

5.2 Query Coverage
We extract 2000 most frequent keywords (with one or two

tokens), and manually label the corresponding predicates.
Out of the top 2000 keywords, 218 categorical mappings
and 20 numerical mappings are identified by domain experts.
We refer the subset of keywords that map to categorical or
numerical predicates as semantical keywords. We examine
the coverage of those semantical keywords in the test queries.

We found 76.7% of test queries having at least one se-
mantical keyword. Note that although a semantical key-
word maps to a predicate, replacing the keyword by a pred-
icate may not necessarily change the search results. For
instance, we may identify “Dell” is a BrandName. If “Dell”
appears (and only appears) in the ProductName of all Dell
laptops, then the search results of a query [Dell laptop] by
keyword++ will be same as those of keyword-and. We are
really interested in the number of queries whose results are
improved by identifying the semantical keywords. We found
39.4% of the test queries whose results are improved. We
examine the quality of the results in Section 5.4.

5.3 Computational Performance
We conduct experiments on a PC with 2.4 GHZ intel Core

2 Duo and 4GB memory. The entity table is stored in SQL
server. For each of the extracted 2000 keywords, we identify
DQPs from the query log. The maximum number of DQP
for a keyword is 2535, and the minimum number of DQP for
a keyword is 9. On average, each keyword has 41 DQPs, and
it takes 1.61s to compute the mapping. The online query
translation and query execution is very efficient. For each
test query, it takes 6.6ms on average.

5.4 Retrieval Quality
Here we report the experimental results on mapping qual-

ities, in terms of both query and keyword level evaluation.
More detailed experiments that examine the effects of map-
ping predicates, multi-DQP aggregation, and multiple inter-
face combination, are reported in Appendix (Section 8.5).

Figure 3 and Figure 4 shows the Jaccard, precision and
recall scores, using query-portal and keyword-and as baseline
interface, respectively. We have the following observations.
First, keyword++ consistently improves both baseline inter-
face, despite the fact that query-portal and keyword-and use
different mechanisms to answer user queries.

Secondly, the precision-recall of the baseline query-portal
is worse than that of the baseline keyword-and, because
the results generated by query-portal are indirectly drawn
from related web documents. However, after applying key-
word++, query-portal outperforms keyword-and. This is be-
cause many test queries contain keywords that do not ap-
pear in the database. As a result, keyword-and is not able to
interpret those keywords. On the other hand, query-portal
leverages the knowledge from the web search engine. There-
fore, it captures the semantic meaning of keywords, which in
turn is effectively identified and aggregated by keyword++.

Finally, comparing with keyword++, both bounding-box
and decision-tree use the results by the submitted keyword
query itself (See Section 8.5.1). When the baseline search in-
terface returns noisy results, both bounding-box and decision-
tree may not be able to correctly interpret the meaning
of keywords. For instance, query-portal’s results contain
more noise. As a result, the precision of bounding-box and
decision-tree is even worse than that of the baseline query-
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portal. On the other hand, keyword++ achieves consistent
improvement over both baseline search interface.
For keyword level evaluation (Figure 5), we only report

precision-recall on semantical keywords. This is because the
non-semantical keywords, which map to textual or null pred-
icates, are easy to predict. Including the non-semantical
keywords may easily push precision-recall to > 95%. We
examine categorical and numerical predicates w.r.t. query-
portal, keyword-and, and a combined schema that merges
predicates from the two baseline interface (See detailed de-
scription in Section 8.5.2).
We observe that for categorical predicates, when we com-

bine results from the two baseline interfaces, the precisions
reaches more than 80%. For numerical predicates, interest-
ingly, with keyword-and, we are not able to discover numer-
ical predicates. This is because most keywords that map to
numerical predicate does not appear in our database. The
precision of the numerical predicates, with query-portal, is
also low. The main reason is that many numerical attributes
in the database are correlated. For instance, smaller screen
size often leads to smaller weight. As the result, a keyword
which correlates to smaller screen size may also correlate
to smaller weight. In our evaluation, we only compare the
mapping predicates with the manually labeled ones, without
considering the correlation between predicates.

6. CONCLUSIONS
In this paper we studied the problem of leveraging exist-

ing keyword search interface to derive keyword to predicate
mappings, which can then be used to construct SQL for ro-
bust keyword query answering. We validated our approach
using experiments conducted on multiple search interface
over the real data sets, and concluded that Keyword++ is
a viable alternative to answering keyword queries.
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8. APPENDIX
We first review the related work, and then discuss the

details of the algorithms, the possible extensions, and the
supplemental experimental results.

8.1 Related Work
There are a number of recent work [10, 20] that also pro-

pose to answer keyword query by some form of SQL query
translation. Specifically, authors in [20] develope the SQAK
system to allow users to pose keyword queries to ask aggre-
gate questions without constructing complex SQL. However,
their techniques focus on aggregate SQL queries, and hence
do not apply to our entity search scenarios. Authors in [10]
explore the problem of directing a keyword query to appro-
priate form-based interfaces. The users can then fill out the
form presented to them, which will in turn be translated to
a structured query over the database.
Our work also share some flavor with the “query by out-

put” paradigm recently proposed in [21], which produces
queries given the output of an unknown query. A major
difference is that in our problem the “output” is generated
by a keyword query, which is inherently much more noisy
than the “output” generated by a SQL query as considered
in [21]. While methods proposed in [21] can also be applied
to our problem, we show in Section 5 they are not most
appropriate for our query translation purposes, and the sta-
tistical analysis based approaches we use outperform those
proposed in [21].
The Helix system [16] proposes a rule based approach to

translate keyword queries to SQL queries over a database.
They automatically mine and manually enhance a set of pat-
terns from a query log, and associate each pattern with a
template SQL query. At query time, once a pattern is identi-
fied from a keyword query, the keyword query can be trans-
lated to a SQL using the associated query template. Re-
cently, [17, 19] considered the problem of mapping a query to
a table of structured data and attributes of the table, given
a collection of structured tables. These works are largely
complementary to the techniques we propose, in the sense
that the keyword to predicate mappings discovered by our
technique can be used to enhance the pattern recognition
and translation components in [16], and enhance keyword
to attribute matching in [17, 19].
Our technique differs from those for synonym discovery [9,

7] in that besides synonyms, it can also discover other types
of semantic associations. For instance, “small” leads to an
ascending sort on ScreenSize, “rugged” maps to ProductLine
“Panasonic toughbook” etc. These types of mappings are
generally not produced by synonym discovery.
Many commercial keyword search engines (e.g., amazon)

leverages query alteration mechanism, which takes into con-
sideration of synonyms in processing user queries. Typically,
the synonyms or the alternated queries are mined from user
query sessions or user query click-url data. Unfortunately,
such data is often not publicly available. Our approach,
however, makes no use of such information and can be ap-
plied to any black-box search interface.

8.2 The Mapping Algorithm

8.2.1 The Algorithm
The algorithm takes six parameters: the keyword k, the

set of all differential query pairs DQPk, the baseline search

interface SI, the entity relation E, thresholds for statistical
significance of categorical predicates θkl, thresholds for sta-
tistical significance of numerical predicates θemd. The out-
put of the algorithm is the predicate mapping Mσ(k) and
corresponding confidence score Ms(k).

We first try to map the keyword k to a categorical or
numeric predicate. Line 1-5 is a loop, where for each differ-
ential query pair in DQPk, and for each attribute (or value),
we aggregate the KL score and EMD score. Observe that
for categorical predicates, we need to examine the attribute
values. However, we only need to consider attribute val-
ues that appear in the foreground entities. Attribute values
which do not appear in foreground entities will have 0 KL
score. Therefore, the number of attribute values we need to
examine is not too large.

The algorithm requires that the normalized scores are
computed. We pick the categorical predicate and the nu-
merical predicate with the highest score (line 6-9), and then
compare it with the threshold. Recall that we have a set of
thresholds, each of which corresponds to a range of the num-
ber of differential query pairs. If the score is higher than the
corresponding threshold (determined by |DQPk|), we com-
pute a normalized score (line 10-11). If at least one of the
numerical predicate and categorical predicate whose score is
higher than the threshold, the algorithm outputs a numer-
ical predicate (line 12-14), or a categorical predicate (line
15-16). Otherwise, if k is not a stop word, and appears in
some textual attribute in the database, the algorithm maps
k to a textual predicate. If none of the above is true, k is
assigned to the null predicate.

Algorithm 1 Keyword to Predicate Mapping

Input: A keyword k,
A set of differential query pairs: DQPk,
Baseline search interface: SI,
Entity relation: E = Ec ∪ En ∪ Et

Threshold for categorical predicates: θkl
Threshold for numerical predicates: θemd

1: for (each An
i ∈ En )

2: Compute AggScoreemd(σ(A
n
i , SO)|k);

3: for (each Ac
i ∈ Ec )

4: for (each vj ∈ D(Ac
i ))

5: Computer AggScorekl(σ(Ai, vj)|k);
6: Let Aemd = argmaxAn

i
(|AggScoreemd(σ(A

n
i , SO)|k)|);

7: Let Semd = AggScoreemd(σ(Aemd, SO)|k)/|DQPk|;
8: Let (Akl, vkl) = argmax(Ac

i ,vj)
(AggScorekl(σ(Ai, vj)|k));

9: Let Skl = AggScorekl(σ(Ai, vj)|k)/|DQPk|;
10: Semd = (|Semd| > θemd)?

Semd
θemd

: 0;

11: Skl = (Skl > θkl)?
Skl
θkl

: 0;

12: if (|Semd| > max(0, Skl))
13: SO = (Semd > 0)?ASC : DESC;
14: Mσ(k) = σ(Aemd,SO), Ms(k) = |Semd|;
15: else if (Skl > max(0, |Semd|))
16: Mσ(k) = σAkl=vkl , Ms(k) = Skl;
17: else if (∃v ∈ At ∈ Et, s.t. Contains(v, k) = true)

AND (k is not a stop word)
18: Mσ(k) = σContains(At,k), Ms(k) = 0;
19: else
20: Mσ(k) = σTRUE , Ms(k) = 0;
21: return
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8.2.2 Complexity Analysis
We give the complexity analysis of Algorithm 1. For each

differential query pair (Qf , Qb) ∈ DQPk, the baseline search
interface returns Sf , Sb, respectively. We refer Sf as fore-
ground data, and Sb as background data. To compute KL
scores for all categorical predicates, we need to scan the val-
ues of entities in Sf and Sb, on each categorical attribute in
Ec. We count the foreground and background occurrences
of each value, and maintain it in a hash-table. The fore-
ground and background occurrences are sufficient to com-
pute Scorekl. Therefore, the complexity to compute scores
for all categorical predicates is Costkl = O(|Sf |+ |Sb|)|Ec|).
To compute the EMD score for each numerical predicate,
we first sort the foreground (background) data, and then
scan both sorted arrays once. Therefore, the complexity is
Costemd = O((|Sf |log(|Sf |) + |Sb|log(|Sb|))|En|). Putting
these two together, the complexity of Algorithm 1 is the
accumulated cost of Costkl + Costemd over all differential
query pairs in DQPk.
We now discuss how effective the proposed method is, in

terms of finding the right predicate for a keyword k. Assume
the search interface is completely random with no bias for
any value v that is not related to k, then v should share the
same distribution in the foreground results and background
results. Suppose the search interface process the foreground
query and background query independently. The expec-
tation of the statistical difference between foreground and
background results on v is 0. On the other hand, we know
that as long as the search interface is reasonably precise,
then for value v which is related to keyword k, its distribu-
tion over the foreground results should be different from that
over the background results. Therefore, the expectation of
statistical difference on v should be nonzero. Although this
only states the property of the expectation of the random
variable, according to the law of large numbers, the more
differential query pairs we get, the better chance the correct
predicate will be recognized for a keyword k.

8.3 The Translation Algorithm

8.3.1 The Algorithm
The pseudo code of the translation algorithm is shown in

Algorithm 2. The algorithm basically follows the recursive
function described in Section 4. The key procedure is how
we compute Mσ, the keyword to predicate mapping, in line 2
and line 5-7. As we discussed in Section 3.4, these mapping
are pre-computed by Algorithm 1, and materialized in the
mapping database. In this algorithm, we just lookup the
mapping database.

8.3.2 Segmentation Schema
Note that the recursive function considers all possible key-

word segmentation. Many segments are actually not seman-
tically meaningful. One may rely on natural language pro-
cessing techniques to parse the query, and mark the mean-
ingful segments. In our implementation, we leverage the
patterns in the query log. Intuitively, if a segment appears
frequently in the query log, it suggests that tokens in the
segment are correlated. However, frequent segments do not
necessarily lead to “semantically meaningful” segments. On
the other hand, if there are two queries which exactly dif-
fers on the segment, then the segment is often a semantic
unit. Putting these two together, we measure the frequency

Algorithm 2 Query Translation

Input: A keyword query: Q = [t1, t2, . . . , tq],
Mapping Database: Mσ and Ms,
Max number of tokens in keyword: n

1: Let TσQ0 = ϕ, Ts(Q0) = 0;
2: Let TσQ1 = {Mσ(t1)}, Ts(Q1) = Ms(t1);
3: for (i = 2 to q)
4: Let n′ = min(n, i); //ensure i ≥ j

5: Ts(Qi) = maxn′
j=1(Ts(Qi−j) +Ms({ti+1−j , . . . , ti}));

6: Let j∗ = argmaxn′
j=1(Ts(Qi−j) +Ms({ti+1−j , . . . , ti}));

7: Tσ(Qi) = Tσ(Qi−j∗) ∪ {Mσ({ti+1−j∗ , . . . , ti})};
8: return Tσ(Qq).

of a segment by the number of differential query pairs in
the query log, and keep a set of frequent segments as valid
segments.

In query translation, a valid segment will not be split in
keyword segmentation. As an example, in query [laptops for
small business], “small business” is a valid segment. There-
fore, we will always put “small” and “business” in the same
segment. Thus, we will not consider the predicate mapped
by “small” only. Since valid segments often carry the con-
text information, enforcing valid segments in keyword seg-
mentation helps to solve the keyword ambiguity issue. To
integrate the valid segment constraint into Algorithm 2, one
just need to check whether or not {ti+1−j , . . . , ti} (in line 5)
splits a valid segment. If it does, we will skip this segment.

8.4 Extensions of Keyword++
Here we discuss some possible extensions of our proposed

approach.

8.4.1 Extensions of Predicates
We write the numerical predicates as an “order by” clause

in the SQL statement. This is a relatively “soft” predicate
in that it only changes the order in which the results are
presented. One may also transform it to a “hard” range
predicate by only returning top (or bottom) p% results ac-
cording to the sorting criteria.

In this paper, we assume each keyword maps to one pred-
icate. This is true in most cases. In some scenario where a
keyword could map to multiple predicates, we can relax our
problem definition, and keep all (or some top) predicates
whose confidence scores are above the threshold.

8.4.2 Dictionary Integration
Many keyword query systems use dictionaries as addi-

tional information. For instance, in the laptop domain, all
brand names (e.g., dell, hp, lenovo) may form a brand dic-
tionary. The techniques developed in this paper is compli-
mentary to the dictionary-based approach. On one hand,
we can easily integrate the dictionary into our keyword to
predicate mapping phase. If a keyword belongs to some re-
liable dictionary, one can derive a predicate directly. As
an example, a keyword “dell” may be directly mapped to
the predicate (BrandName = “dell′′) since “dell” is in the
brand name dictionary. On the other hand, our proposed
method is able to correlate keywords to an attribute. Thus,
it may be used to create and expand dictionaries.

The existence of dictionaries may also help to generate
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more differential query pairs without looking at the set of
historical queries. For instance, given a query Q=[small HP
laptop] and the keyword k =“small”, we may already de-
rive Qf=[small HP laptop] and Qb=[HP laptop]. Observing
that “HP” is a member of the brand name dictionary, we can
replace “HP” by other members in the dictionary, and gen-
erate more differential query pairs for “small”. As the result,
we will have Qf=[small Dell laptop] and Qb=[Dell laptop],
Qf=[small Lenovo laptop] and Qb=[Lenovo laptop], etc.

8.4.3 Integration to Production Search Engine
We discuss the integration in two scenarios. First, how to

use a production search engine as a baseline interface in our
framework. Secondly, how to integrate our techniques into
a production search engine.
Consider the first integration scenario. Although the search

interface of those production search engines are publicly
available, the back-end databases of those search engines
are not visible outside. They are often different from the
entity database we have. Fortunately, our framework does
not require the baseline interface returning the complete set
of results. Therefore, we can match entities returned by the
production search engine to those in our entity database.
Our framework can take the partial results as input, and
analyze the keyword and predicate mappings.
For the second integration scenario, many production search

engines often consist of two components: entity retrieval and
entity ranking. In the entity retrieval component, the search
engine extracts meta data from the keyword query, and then
uses both meta data and keyword to generate a filter set. In
the entity ranking component, the search engine generates a
ranked list of entities in the filter set. Our proposed method
can be integrated into the production search engine in two
ways. First, the categorical predicates identified from key-
words can enrich the meta data. Therefore, it will improve
the accuracy of the filter set. Secondly, the numerical pred-
icates, as well as correlation scores computed between cate-
gorical values and the query keywords, can be considered as
additional features for ranking entities in the filter set.

8.4.4 Multiple Search Interface
Since our method is a framework, which can be applied to

multiple baseline search interface, the natural extension is
to combine the high confident mappings derived from differ-
ent search interfaces. Therefore, the overall accuracy of the
translated query can be further improved. Intuitively, each
search interface has different characteristics such that some
mappings can be easily identified from certain search inter-
face while others easily identifiable from a different search
interface. For instance, a pure keyword matching search in-
terface may identify “15” is related to ScreenSize. While a
search interface which is built upon web search engine may
recognize other correlations which are not based on keyword
match (e.g., “rugged” to ToughBook). Our approach of an-
swering keyword query by first extracting keyword to pred-
icate mappings allows easy composition of logics embedded
in multiple search interface.

8.5 Supplemental Experimental Results
We first describe all comparison algorithms, and then

present some additional experimental results.

8.5.1 Description of Comparison Algorithms

keyword-and: The first baseline search interface is the
commonly used keyword-and approach. Given a keyword
query, we first remove tokens which either do not appear in
the database or are stop words. We can submit the remain-
ing tokens in the query to a full text search engine, using
the “AND” logic. Only entities containing all tokens are
returned. We use standard stemming techniques in match-
ing keywords. Despite its simple nature, the keyword-and
based approach is still one of the main components in many
production entity search systems.
query-portal: The second baseline search interface is the
query-portal approach [1]. Different from the keyword-and
approach, query-portal does not query the entity database
directly. It establishes the relationships between web docu-
ments and the entities by identifying mentions of entities in
the documents. Furthermore, it leverages the intelligence of
existing production web search engine (e.g., Bing). Specif-
ically, for each keyword query, it submits the query to a
web search engine and retrieves a set of top ranked docu-
ments. It then extract the entities in those documents using
the materialized document-entity relationships. Intuitively,
entities mentioned frequently among those top ranked doc-
uments are relevant to the keyword query. The query-portal
approach exploits the knowledge of production search en-
gines. Therefore, it is able to interpret a larger collection
of keywords (e.g., keywords that do not appear in database,
but appear in web search queries).
keyword++: The keyword++ framework is applied to both
baseline search interface mentioned above. For each of the
baseline search interface, our system is implemented based
on the architecture shown in Figure 1. We scan the set of his-
torical queries, and pre-compute keyword to predicate map-
ping for all single tokens and two-token phrases. We then
keep all these mapping information in a mapping database.
At online phase, we use Algorithm 2 to translate a key-
word query to a SQL statement, which is further processed
by a standard relational database engine, over the laptop
database.

The baseline search interface is only used in the offline
mapping phase. As we discussed in Section 3.4, it is possi-
ble that a query is submitted to a baseline search interface
multiple times since it appears in multiple differential query
pairs (for different keywords). In our implementation, we
cache the results retrieved from the baseline search inter-
face, and avoid probing same queries multiple times.

We compare keyword++ with the baseline search inter-
face. In addition to that, we also compare our method with
two other approaches that could be possibly built on top of
the baseline search interface.
bounding-box: The bounding-box based approach views
the results returned by the existing search interface as points
in the multi-dimensional data space, and then finds the min-
imum hyper-rectangular box that bounds all the sampled
data points in it. Entities that lie in the minimum hyper-
rectangular box are returned. The bounding-box approach
considers the returning results as positive samples, and tries
to find more entities that are close enough to the returning
ones. Therefore, it only augments the results. As we have
seen in the experimental results, it often improves the recall.
But at the same time, it degrades the precision.
decision-tree: The decision-tree based approach constructs
a decision tree based on the results returned by the baseline
search interface. Specifically, one could label those returned
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data as positive samples, and label all not-returned data
as negative samples. Each node in the decision tree cor-
responds to a predicate, and one can translate a decision
tree to a SQL statement. Since we do not know how deep
the tree needs to be constructed, we build decision tree up
to level q, where q is the number of tokens in the keyword
query. We then compute q different SQL queries, where the
ith (i = 1, . . . , q) query corresponds to decision nodes from
root to level i. We report the best results generated by these
queries. This is the optimal results that may be achieved by
the decision-tree based approach. Note that decision-tree
approach is a variation of the method discussed in [21].

8.5.2 Additional Experimental Results
Here we present more experimental results with respect

to the retrieval quality.
Effect of Mapped Predicates: In Section 5.4, we have
shown that keyword++ significantly improves the precision-
recall scores of the results over that obtained by the baseline
search interface. Here we drill down to different category of
predicates, and examine their impact to the performance.
As we discussed in Section 2.1.2, the translated SQL state-
ment contains categorical, numerical and textual predicates.
Since we do not consider numerical predicates at query level
evaluation, we mainly compare the categorical and textual
predicates, by varying the schema for textual predicates.
In Algorithm 1, if a keyword is not mapped to a categori-

cal or numerical predicate (because its confidence score is be-
low the threshold), it may be mapped to textual predicates
(if it appears in some textual attribute). For all keywords
appearing in textual predicates, we can apply the “and”
logic such that all keywords have to be matched. This is the
default configuration of keyword++. We can also apply the
“or” logic such that it only requires one of the keywords to
be matched (denoted as textual-or). Finally, we can simply
drop all textual predicates (denoted by textual-null). We
compare the Jaccard similarity for all three options in Fig-
ure 6, on both baseline search interface.
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Figure 6: Jaccard w.r.t. Different Textual Predicate

Schema

The results show that the textual predicates do not have
dominating impact of the results, especially for the query-
portal search interface, where all three options performs sim-
ilarly. The performance boost achieved by keyword++ is
mainly contributed by the categorical predicates that were
discovered by Algorithm 1. This shows the effectiveness of
our proposed approach because it is the identified categor-
ical predicates that distinguishe keyword++ from common
keyword match based systems.

Effect of Multiple Differential Query Pairs: We now
examine the effect of score aggregation over multiple differ-
ential query pairs. In Section 3.2, we discussed two meth-
ods to generate differential query pairs, given a query Q
and a keyword k ∈ Q. The first approach computes one
differential query pair solely based on Q, and the second
approach, which is used in our experiments, generates more
differential query pairs from query log. We denote the first
approach by single-dqp. Again, we conduct experiments on
both keyword-and and query-portal search interface, and the
results are shown in Figure 7. As expected, with only one
differential query pair, the performance degrades.
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Figure 7: Effect on Number of Differential Query Pairs

Note that the single-dqp approach maybe be useful when
a keyword did not appear in query log, and thus there is no
differential query pair for the keyword from query log. In
this case, single-dqp may be used if one wants to perform
the keyword mapping analysis at online query translation.
Effect of Multiple Search Interface Combination: The
last experiments in the query level evaluation is to examine
the improvement by combining query-portal and keyword-
and interface. As we discussed in Section 8.4.4, our frame-
work enables us to integrate keyword to predicate mapping
from multiple search interface.
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Figure 8: Combining Two Search Interface

We have already shown in Figure 5 that combining mul-
tiple baseline interface can boost the accuracy of predicate
mapping. Here we complete the experiment by showing the
results at query level evaluation. We put predicates from
both search interface together, and run query translation
algorithm. The results, which are shown in Figure 8, con-
firm that combining multiple search interface does improve
jaccard similarity, precision and recall scores consistently.
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