
Shortest Path Computation on Air Indexes

Georgios Kellaris Kyriakos Mouratidis

Singapore Management University
80 Stamford Road
Singapore 178902

{gkellaris, kyriakos}@smu.edu.sg

ABSTRACT
Shortest path computation is one of the most common queries
in location-based services that involve transportation net-
works. Motivated by scalability challenges faced in the mo-
bile network industry, we propose adopting the wireless broad-
cast model for such location-dependent applications. In this
model the data are continuously transmitted on the air,
while clients listen to the broadcast and process their queries
locally. Although spatial problems have been considered in
this environment, there exists no study on shortest path
queries in road networks. We develop the first framework
to compute shortest paths on the air, and demonstrate the
practicality and efficiency of our techniques through exper-
iments with real road networks and actual device specifica-
tions.

1. INTRODUCTION
Greater productivity, more convenient communication and

everyday need for data-on-demand are just some of the rea-
sons that mobile devices are becoming increasingly popular.
The vast majority of these devices is equipped with posi-
tioning systems, which gave rise to an expanding industry
of location-based services. Users of these devices can easily
request for the nearest business or service to their location,
navigate to a target address, locate personal contacts on a
map or receive alerts such as warnings of traffic jams.

To answer a location-based query, such as navigation to a
specific address, the device typically either (i) pre-loads the
map data and runs the query locally, or (ii) it connects to a
location server through a GSM/3G/Wi-Fi service provider.
The option of storing the map information locally imposes
heavy requirements on the already limited storage of the
mobile device and it is viable only for few pre-selected maps.
In case the user travels to a new city/country, this option
would fail. Moreover, storing maps locally may result in
routing decisions based on outdated network information.

On the other hand, given the growing number of users
and services, the option of querying online location servers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

is already facing scalability limitations, a situation expected
to worsen in the near future. While coping with increasing
query loads necessitates continuous infrastructure upgrades
at the side of service providers, a greater challenge is net-
work congestion. According to [13] the number of mobile
subscribers has risen by 250% in the last 3.5 years, while
data traffic volume from handheld devices is growing by
more than 10 times per year. The main concern of mobile
service providers in the Mobile World Congress 2010 [1] was
that the number of data-capable phones is growing faster
than network capacity, so network overload is considered an
immediate risk, and data traffic management is becoming a
major priority for the telecommunications industry.

A promising solution to the above problem is the wireless
broadcast model [6]. In this model the location server re-
peatedly broadcasts the data on the air (using GSM, 3G, Wi-
Fi, HD radio, or even a Bluetooth network), while the clients
tune in the broadcast channel and process their queries lo-
cally. Since the server’s hardware requirements are low, mul-
tiple servers could be installed at different locations to pro-
vide coverage in large areas. The main advantage of the
broadcast model is that it can support an arbitrary num-
ber of users/queries, since no processing takes place at the
server and the network overhead is irrelevant to the number
of clients. A side benefit is that user privacy is guaran-
teed, as the location server is unaware of user positions and
queries; this has been a serious concern recently [2].

Wireless broadcasting has been considered for spatial pro-
cessing in Euclidean space (e.g., [12, 16, 17]). However, there
is currently no work on road networks. Motivated by the
fact that in most location-based applications movement is
constrained by a transportation network, in this paper we
develop broadcasting schemes for network data. In particu-
lar, we study shortest path computation, the most common
query in road networks. Our contributions can be summa-
rized as follows:

1. We adapt traditional shortest path algorithms to the
broadcast model, and identify their weaknesses in this
setting.

2. We present two novel methods, namely Elliptic Bound-
ary (EB) and Next Region (NR), which exploit the
broadcast environment’s characteristics and take into
account the technical limitations of mobile devices.

3. We demonstrate the efficiency of our schemes through
extensive experiments with various road networks and
with real-world device specifications.

747

2. RELATED WORK

2.1 Road Networks and Shortest Path Query
A road network is a directed weighted graph G = (V , E).

V is the set of nodes vi, each of the form < idi, xi, yi >,
denoting the identifier and the coordinates of the node. E is
the set of edges (vi, vj), each modeled as a triplet < idi, idj ,
wij > that contains the identifiers of the connected nodes vi
and vj and the weight wij of the edge; wij may correspond
to the edge’s length, travel time, toll fee, etc.

The shortest path between a source node vs and a tar-
get node vt is the edge sequence connecting vs and vt with
the minimum sum of edge weights. Algorithms for short-
est path queries are categorized as follows: (a) those with
no pre-computation, where only the road network infor-
mation is available, and (b) those with pre-computation,
where shortest paths between some or all node pairs are
pre-calculated and appropriate information is materialized
in order to speed up the search.

Without pre-computation: A common algorithm is Di-
jkstra’s [3]. Initially, nodes adjacent to vs are pushed into a
min-heap with their graph weights from vs as sorting keys.
The top node v in the heap is popped in every iteration and
expanded, i.e., its adjacent nodes v′ are en-heaped with key
equal to that of v plus the weight of edge (v, v′). The pro-
cess stops when vt is popped. The shortest path is returned
by tracing backwards the expansions that lead to vt.

A* search [5] improves on Dijkstra’s algorithm but re-
quires a lower bound LB(v, vt) to be known for the graph
distance between an encountered node v and the target node
vt. The difference from Dijkstra is that the key of each en-
heaped node v is increased by LB(v, vt). We ignore A* in
the following since we assume general road networks (where
no a priori lower bounds exist).

With pre-computation: ArcFlag [10] first partitions the
network nodes. A bit vector (flag) is assigned to every edge,
where each bit corresponds to a partition; in the flag of
edge (vi, vj) the bit for a partition is 1 if there is at least
one node v in the partition where the shortest path from vi
to v traverses (vi, vj). Search (e.g., Dijkstra) only considers
edges whose bit for vt’s partition is 1.
Landmark [4] chooses some anchor nodes (called land-

marks) and pre-computes for each node v its graph distances
to all anchor nodes. A distance vector is then created from
the distances to the anchor nodes. From the distance vec-
tors of two nodes, a lower bound can be derived for their
graph distance. This bound is then used by A* algorithm
to guide the search.

In HiTi [9] the graph is partitioned by a grid of cells.
The resulting sub-graphs are recursively grouped into higher
level sub-graphs forming a tree. Every node that has at least
one adjacent node that lies in a different partition is defined
as border node. For each level, the shortest paths among
all border nodes are pre-computed and stored in the HiTi
index. A shortest path query is answered by first selecting
the necessary sub-graphs in the HiTi hierarchy, and then
performing a search (e.g., Dijkstra) inside them only. HEPV
[7] works similarly to HiTi.

The shortest path quad-tree scheme (SPQ) [14] stores for
each node v a colored quad-tree, built on the Euclidean co-
ordinates of the other graph nodes. The nodes v′ for which
the shortest path (from v) passes through the same incident

Segment 1 Segment 2 Segment m

...

Index Data

Broadcast Cycle i -1 Broadcast Cycle i +1Broadcast Cycle i

Figure 1: (1,m) scheme

edge of v are assigned the same color. Search first traverses
the edge (vs, v) that corresponds to the color of vt in the
quad-tree of vs. The process is repeated for v and its quad-
tree, and so on, until vt is reached.

2.2 Wireless Broadcasting and Air Indexes
In this model the server repeatedly transmits identical

broadcast cycles, each containing the entire database and po-
tentially some indexing information (called air index). The
broadcast cycle consists of fixed-size packets, defining the
smallest information unit transmitted.

The most common organization of the broadcast cycle is
the (1,m) interleaving scheme [6], exemplified in Figure 1;
the data tuples are placed into m equi-sized data segments
interleaved by m copies of the index (e.g., a B-tree). To
process a query, the client tunes in the broadcast channel
and waits until the next index is broadcast; the larger m is,
the shorter the wait for the index. The client receives the
index, performs its point/range selection, and then waits
until the data segments that contain the result tuples are
broadcast; the larger m is, the longer the wait for the data.
The optimal balance between the wait for index and the wait

for data, is achieved for m =
√

data packets
index packets

. During any

wait, the client sleeps (i.e., stops listening to the channel),
thus preserving energy.

The performance factors considered in this setting are tun-
ing time and access latency. Tuning time is the number of
packets necessary for query processing, which essentially de-
termines the energy consumption at the client (see Section
3.1 for this rationale, supported by current device specifi-
cations). Access latency is the time (expressed in number
of packets) elapsed between the user request and the time
when all result tuples are received.

[6] considers point and range selections, and hence B-tree
air indexes. [16, 17] address range and nearest neighbor
queries on spatial data (in Euclidean space), based on space-
filling curves. [12] addresses the same queries, relying on an
implicit grid partitioning. None of the above applies to our
problem, as they cannot capture the constraints imposed
by a road network, and they rely on Euclidean concepts
(space-filling curves, rectangles, and circles) impossible, or
at least non-trivial, to interpret into the network distance
space. A detailed review of the above methods can be found
in Appendix A.

3. PRELIMINARIES

3.1 Performance Factors
The main performance factors involved in our problem

are: (i) tuning time, (ii) memory requirements (at the client
side), (iii) access latency, (iv) CPU time (at the client side),
and (v) pre-computation time (at the server side).

Power consumption is essentially determined by tuning

748

time (i.e., number of packets received). To exemplify the
relation, consider that the (widely used) 802.11 WaveLAN
card consumes 1.65W, 1.4W, and 0.045W in transmit, re-
ceive, and sleep states, respectively [8]. Computations (i.e.,
the CPU) also consume power, but their effect is outweighed
by communication; almost 98% of the market’s mobile de-
vices are integrated with an Advanced RISC Machines (ARM)
processor whose very characteristic is energy preservation
(with a typical peak consumption of 200mW).

Mobile devices have much smaller RAM memory than
desktop or laptop computers. More importantly, only a
fraction of this memory is available to applications; space is
primarily reserved for the operating system and user data,
while application development platforms, like the ubiqui-
tous Java 2 Micro Edition (J2ME), impose a further limit
on the working memory (termed heap size). As we show
in Section 7 based on actual device specifications, memory
requirements are a major concern in our problem, yielding
several methods inapplicable to large or even moderately
sized road networks.

Access latency relates to the responsiveness of the system.
Technical limitations aside, the time between asking a query
and receiving the shortest path determines the user experi-
ence; it is essential for the success of the model that this
time is within acceptable limits. As absolute time depends
on the network speed, access latency is measured in number
of packets between query posing and the last packet received
for shortest path computation.

Another performance factor is CPU time, i.e., the time
taken by calculations at the client side. As explained above,
calculations do not significantly affect power consumption.
Also, CPU time is negligible compared to access latency (in
absolute terms) for real network speeds, as shown in the ex-
periments. It remains, however, a necessary consideration.

The last factor pertaining to the efficiency of a solution is
pre-computation time. This is the time required to form the
broadcast cycle, including possible shortest distance/path
pre-calculations. Although it is a one-off cost, and therefore
not one of our main design criteria, it must be reasonable.

Among the above, our design decisions take into consider-
ation primarily the first three performance factors, although
the last two are not ignored either.

3.2 Adaptation of Existing Approaches
In this section we attempt to adapt existing shortest path

algorithms to the broadcast setting, and identify drawbacks
thereof. Assume for simplicity that the user location (i.e.,
the source of the shortest path) and her destination are lo-
cated at two network nodes vs and vt, as opposed to some
arbitrary location on an edge. Consider first Dijkstra’s algo-
rithm. It does not require any pre-computation, and there-
fore the broadcast cycle includes only the road network in-
formation, i.e., the adjacency lists of all nodes. Assume that
the client knows at which node it is located at (i.e., it knows
vs) and that it somehow knows when to wake up in order to
receive the adjacency information for a specific node. The
device should first wake up to receive the adjacency infor-
mation of vs and en-heap all its adjacent nodes. Letting v
be the node at the head of the heap, Dijkstra next needs to
listen to v’s adjacency list. As this information may have al-
ready been broadcast, the device might need to wait for the
next broadcast cycle. The access latency of this approach is
unacceptable, as the device may have to wait for as many

cycles as the number of nodes popped by Dijkstra. Since
there is no way to tell in advance what the source and the
destination of user queries will be, it is not possible to orga-
nize the nodes in the broadcast cycle in a certain order so
that every needed node appears later than the previously de-
heaped one. The situation could be improved if the network
was partitioned into regions and the adjacency lists for the
same region were broadcast together; still, however, when
Dijkstra search reaches the borders of the current region,
the device might have to wait for the next cycle in order to
receive network information about the neighboring regions.

Due to the above problem we abandon the idea of selective
tuning in Dijkstra’s adaptation. To achieve reasonable ac-
cess latency, the client could listen to the entire broadcast
cycle, and then process the query locally in the complete
network. Access latency this way never exceeds one cycle.
Particularly, since the broadcast cycle is the shortest pos-
sible (as no indexing/extra information is broadcast), this
method is expected to be very competitive in terms of ac-
cess latency. On the other hand, it has very large memory
requirements (equal to the size of the entire network) and in-
curs long tuning time (all packets of the cycle are received).

ArcFlag, Landmark, and SPQ would broadcast for each
edge/node (in addition to its adjacency information) a bit
vector, a distance vector and a colored quad-tree, respec-
tively. All three would face the same issues with selective
tuning as Dijkstra: information of next edge/node to visit
may have already been transmitted, requiring wait for the
next cycle and causing unacceptable delays. Again, some-
how partitioning the network would not cure the problem.
The only viable option is that the device listens to the entire
cycle and performs processing in the entire network. Com-
pared to Dijkstra’s adaptation, these three methods would
be inferior according to all performance factors in Section
3.1 (since now the broadcast cycle includes extra informa-
tion and, thus, is longer), except CPU time at the client.

HiTi is the only approach that could effectively achieve
selective tuning (thus reducing tuning time), since it uses
an index structure to determine the needed regions of the
network in advance. For this pruning of the search space
to be possible, however, the client should receive the entire
index. As we show in the experiments, the index size can
be several times larger than the actual network, due to the
numerous pre-computed distances stored. This leads to a
long broadcast cycle (and thus access latency), large tuning
time, and high memory requirements at the client. Note
that even for moderately sized networks, the index cannot
fit in the heap size of the mobile device used in Section 7.

4. ELLIPTIC BOUNDARY (EB) METHOD
Intuitively, in order to efficiently process shortest path

queries we have to partition the road network into regions
and use an index structure to guide the search through them.
To satisfy the requirements in Section 3.1, the index should
be particularly concise, much more so than existing indexes
designed for disk-resident networks. The Elliptic Boundary
method (EB) follows this approach.

Its crux is to first provide the client with an upper bound
of the shortest path distance between vs and vt. This bound
is used to prune (i.e., to avoid listening to) network infor-
mation about nodes that lie too far away from vs and vt to
affect the shortest path search. This is achieved by parti-
tioning the network into regions, and placing in the index

749

of EB information about the minimum and maximum pos-
sible distance from any partition to any other. EB owes its
name to the fact that the search area is reminiscent of a
network-based ellipse with foci the regions of vs and vt.

1

4.1 Index of EB
The index of EB includes two components. The first de-

fines partitions and provides a mapping of nodes into re-
gions; the second specifies minimum/maximum distances
between regions.

To commence query processing, the client must first iden-
tify the regions Rs and Rt of the source vs and destination
vt, respectively. This process is bound to the partitioning
method used. A straightforward approach is to superimpose
a Euclidean regular grid (of equi-sized rectangular cells) over
the network, and consider the part of the network inside each
cell as a region. In this approach the client could trivially
map the Euclidean coordinates of vs and vt to regions Rs

and Rt, requiring only knowledge of the grid granularity
(e.g., k×m cell partitioning), and of the total spatial extent
of the grid. The drawback of this approach is that some
regions would contain too few nodes (or be empty), while
others would be too full. This would reduce the benefits of
partitioning and impede the search.

As shown in [11], a simple, yet very effective partition-
ing method (in terms of facilitating shortest path search) is
kd-tree partitioning. To illustrate, consider the example in
Figure 2. Initially, the network is divided into two regions
by a straight line parallel to x-axis. In our case, this line
is y = 10 (see number next to horizontal line), correspond-
ing to the median y coordinate of all network nodes. Each
of the resulting two regions is divided by a line parallel to
y-axis, corresponding to the median x coordinate of their
contained nodes; for the upper region this line is x = 9 and
for the lower it is x = 11 (values 9 and 11 are illustrated
next to the corresponding vertical lines). The process con-
tinues recursively, alternating between the two axes, until a
desired number of partitions (i.e., kd-tree leaves) is reached.
In Figure 2 and for the case of 16 regions, the kd-tree shown
on the right implicitly defines the partitions created; the
value in each node corresponds to the x or y value used for
splitting the corresponding region into its children.

In the kd-tree case, the client needs more information to
identify Rs and Rt than with a regular grid. Specifically, it
needs to reconstruct the tree in Figure 2. To achieve this,
the first component of the EB index includes the splitting
values of the kd-tree, transmitted in breadth-first order; this
information suffices to implicitly define the partitions. In
our example, the first component of the index is sequence
< 10, 9, 11, 16, 15, 7, 6, 5, 4, 12, 13, 7, 8, 14, 15 >. In the gen-
eral case, if there are n partitions, the sequence includes n−1
values. Note that this is preferable over explicitly transmit-
ting the x and y extent of each region (that would require
4n values). Another remark is that kd-tree splitting is also
used to implicitly enumerate (name) the regions; we estab-
lish the convention that the leftmost region of the leftmost
leaf is R1, and increment the region number for its sibling.
We apply this rule to the second leaf node (R3, R4), etc,
and derive the region numbers shown in the figure.

As mentioned before, in order to allow selective tuning,

1We stress that the search space is by no means an ellipse
or any other geometric shape, as we assume no relationship
between network distance and Euclidean distance.

10

9 11

16 15 7 6

5 4 12 13 7 8 14 15

10 11

9

15

16

7
6

12

4

5

7

8
15

14

R1 R2

R3 R4

R5
R6

R7
R8

R9 R10

R11 R12

R13 R14

R15 R16

13

Figure 2: Kd-tree

the second component of the EB index provides the mini-
mum and maximum distances between every pair of regions.
This component is essentially an n× n array A, where n is
the total number of partitions. Each row represents a po-
tential source region and each column a destination region.
Every cell ARi,Rj contains two values; the minimum and
the maximum distance from any border node in Ri to any
border node in Rj (recall that border nodes are those whose
at least one adjacent node lies in a different partition). To
create array A, EB needs to pre-compute the shortest path
distances for all possible pairs of border nodes from different
regions (we show experimentally that this pre-computation
cost is manageable even for very large networks).

The two components described above constitute the in-
dex of EB. The network information (i.e., the adjacency
lists of nodes) need also be included in the broadcast cy-
cle; the adjacency lists of nodes that belong to the same
region are placed contiguously in the cycle, while region or-
dering abides by the assigned region numbers. For the client
to be able to receive the node information for a specific re-
gion Ri, the index is appended with pointers to the data of
each region. Essentially, a column is appended to array A,
providing the offset (in number of packets) where the region
data for the corresponding row will start being transmitted.

To keep the access latency low, we replicate the index
m times in the broadcast cycle, following the (1,m) scheme
and setting m according to the analysis in [6]. However, we
force the index copies to appear between regions, as opposed
to fixed, evenly spaced intervals, so that adjacency data for
the same region are not cut in by index packets. Every
packet, regardless of its contents, includes a pointer (offset)
to the next copy of the index in the broadcast cycle.

The region data received can be reduced based on a clas-
sification of the network nodes. Let S be the set of pre-
computed shortest paths, i.e., paths between any pair of
border nodes that belong to different regions. Let R be
a region to be received, other than Rs and Rt. We observe
that the shortest path from vs to vt may only pass via nodes
v ∈ R that appear in at least one path in S. We call nodes
that appear in S cross-border, and the rest local. Each re-
gion’s data are divided into the cross-border segment and
the local segment, so that if R /∈ {Rs, Rt} the client may
listen only to the former and ignore the latter. Note that
both segments are needed for Rs and Rt, as local nodes
may appear in the path from vs to a border node of Rs, or
from a border node of Rt to vt. In our experiments, this
optimization reduces tuning time by around 20%.

4.2 Client-side Processing in EB
Posed a query, the client tunes in the broadcast channel,

and listens to the current packet. It retrieves the pointer to
the next index and sleeps; it wakes up when the index starts

750

 R1 R2 R3 R4 R5 R6
 Min Max Min Max Min Max Min Max Min Max Min Max

R1 1 5 6 8 1 4 3 7 8 9

R2 1 5 1 3 2 5 1 2 2 4

R3 4 6 1 3 5 8 2 4 1 4

R4 1 3 2 4 5 8 2 3 4 7

R5 3 6 1 3 2 4 1 3 1 2

R6 7 9 2 4 1 2 5 6 1 3

R1 R2

R4

R3

R5 R6

Figure 3: EB method’s index

being broadcast, and receives it in its entirety. Regions Rs

and Rt are determined as described in Section 4.1. The
second component of the index (array A) is then used to
derive an upper bound UB for the shortest path distance
from vs to vt; the maximum value stored in ARi,Rj serves
as UB. The correctness of this upper bound can be easily
seen, since any path from source to destination has to pass
through at least one border node of each Rs and Rt.

The next step is to determine which regions must be re-
ceived. Based again on A, the client needs to listen to only
those regions R for which mindist(Rs, R)+mindist(R,Rt) ≤
UB, i.e., the sum of minimum distance from Rs to R plus
the minimum distance from R to Rt is no larger than UB.
Upon deciding which regions are necessary, it sleeps and
wakes up when their data (contained nodes and adjacency
lists thereof) are broadcast. When all necessary regions are
broadcast and received, the client performs a Dijkstra search
in their union (a sub-graph of the network) and reports the
computed shortest path; this is guaranteed to be the correct
answer in the entire network. Observe that access latency
does not exceed one broadcast cycle.

In Figure 3, the source vs is in region R1 and the destina-
tion vt in region R5. The maximum shortest path distance
is UB = 7 (see AR1,R5). Hence, the client need only receive
the regions of the source and destination, plus R2 (1+1 < 7)
and R4 (1 + 2 < 7). Region R3 and region R6 are not nec-
essary since the sum of their minimum distances is larger
than UB (6 + 2 and 8 + 1, respectively). The pseudo-code
of the EB method can be found in Appendix B.

5. NEXT REGION (NR) METHOD
While EB allows for selective tuning, its search space (i.e.,

the set of regions received by the client) may still be large.
The problem is exacerbated when the source and destina-
tion are far away, as EB’s network-based ellipse includes an
increasing number of regions. In the extreme case where vs
and vt are located in the furthest regions, it is possible that
EB needs to receive all regions. Note that in this degener-
ate case, performance may actually be worse than Dijkstra’s
algorithm, since the broadcast cycle of EB is longer.

In this section we present the Next Region method (NR),
which avoids the above problem. The server again pre-
computes the shortest paths between all border nodes of
different regions, but now the index keeps for each pair of
Ri, Rj the identifiers of intermediate regions appearing in
any shortest path between any of their border nodes. These
regions are guaranteed to contain the shortest path from any
node in Ri to any node in Rj . To exemplify, consider that
the index includes an n × n × n array A of boolean values,
where n is the number of network regions. The bit in cell
ARi,Rj ,Rk is 1 if and only if there exists a shortest path from
Ri to Rj that traverses Rk. Given array A, the client knows
in advance which regions are necessary for query processing.

Consider the example in Figure 4. The source is in region
R1, which has two border nodes; the destination is in R16,

R1 R2 R3 R4

R5
R6

R7 R8

R9 R10 R11 R12

R13 R14 R15 R16

Figure 4: Shortest paths from R1 to R16

 R1 R2 R3 R4 R5

 R6 R7 R8 R9 R10

 R11 R12 R13 R14 R15

 R16 R17 R18 R19 R20

 R21 R22 R23 R24 R25

Figure 5: Needed regions

which has a single border node. There are two shortest
paths between the border nodes of R1 and R16. One of
them traverses regions R2, R6, R7, R11 and R12, and the
other regions R5, R6, R7, R11 and R12. The NR index
records that any shortest path from R1 to R16 may only
pass through the union of the above region sets (shown gray
in the figure), and the corresponding bits in A are set to 1.

Array A as described above has n3 size, and would lead
to a large index. This, in turn, implies a long broadcast
cycle, especially if the (1,m) scheme is applied. In Section
5.1 we show how we can retain the pruning effectiveness of
NR while both (i) keeping the broadcast cycle short and
(ii) achieving low access latency. We stress that the re-
duced access latency is provided by local, region-specific in-
dexes, broadcast immediately before the corresponding re-
gions. This eliminates the need for (1,m) interleaving, and
is fundamentally different from the common practice in the
literature of having a global index, and replicating identical
copies of it in the broadcast cycle.

5.1 Index of NR
The first component of the index in NR is the same as EB,

and is used to identify the source and destination regions
Rs and Rt. Regarding the second component, the main
idea is that, since the device will have to wake up every
time a needed region is broadcast, it does not need to know
all the required regions in advance. It suffices, instead, to
only know when the next required region will be broadcast.
When the client receives that region, it also listens to the
adjacent local index in order to determine the next required
region, and so on. This way, we keep the broadcast cycle
small, we enable the client to receive only the relevant parts
of (instead of the entire) indexing information, and allow the
device to commence query processing shortly after tuning in
for the first time, without employing the (1,m) scheme.

Specifically, the index Am of region Rm is an array with
n rows and n columns. Am is placed in the broadcast cycle
immediately before Rm’s data. Every cell Am

Ri,Rj
indicates

the next region Rnxt in the broadcast cycle that is needed for
a shortest path from Ri to Rj . Note that Rnxt could be Rm

itself. Figure 5 shows the structure of the cycle, where the
unlabeled slot before each region corresponds to its index.

751

 R1 R2 R3 R4 R5

 R6 R7 R8 R9 R10

 R11 R12 R13 R14 R15

 R16 R17 R18 R19 R20

 R21 R22 R23 R24 R25

12
th

 R1 R2 … R24 R25

R1 R1 R13 R13

R2 R1 R13 R13

…

R24 R13 R13 R24

R25 R13 R13 R24

Figure 6: NR algorithm; receiving A12

5.2 Client-side Processing in NR
Posed a query, the device tunes in the channel, receives

the current packet, and waits until the subsequent index
is broadcast (for this to be possible, every packet in the
cycle includes a pointer (offset) to the subsequent index).
The client receives this index, and finds out what the next
required region Rnxt is. It wakes up when Rnxt is broad-
cast and keeps listening until Anxt+1 is also received. From
Anxt+1, it determines the next needed region, and so on.
Note that if the end of the current broadcast cycle is reached,
another starts, and processing continues as if it was the same
cycle. When the latest index received indicates that Rnxt

is a region that the client already possesses, listening stops
and a Dijkstra search computes the shortest path over all
collected regions.

Similarly to EB, the access latency in NR does not exceed
one broadcast cycle. Regarding tuning time and memory
requirements, we expect NR to be superior to EB, as the
client listens only to a subset of the regions necessary in EB.
The same holds for CPU time at the client. Pre-computation
cost is identical to EB (assuming the same partitioning), as
the same shortest paths among border nodes are computed.

To illustrate, consider the broadcast cycle in Figure 5.
The user wants to find the shortest path from a source in R1

to a destination in R25. The needed regions for this shortest
path computation are shown in gray color, but the client
does not know this in advance. Assume that the query is
posed while R11 data are broadcast, which points the client
to index A12. Index A12 (shown in Figure 6) indicates that
R13 is the next needed region, so the device sleeps and wakes
up to receive R13 and also the adjacent index A14. A14 in-
dicates that R14 is also required, so the client continues to
receive data from the channel, until A15 points to R19, as
shown in Figure 7. The device sleeps until R19 is broad-
cast, and so on. The process continues this way until R8 is
received and index A9 points to the already available R13;
listening stops and the shortest path is computed. Algo-
rithm 2 in Appendix B formalizes this process.

So far we have assumed that source and destination are
network nodes. In practice this may not always be the case,
i.e., the source/destination could be at arbitrary locations on
the network. EB and NR work as described, the difference
being that the border nodes of a region are now defined as
the intersections of its network edges with the splitting lines
of the kd-tree (i.e., with the boundary of the region).

6. PRACTICAL CONSIDERATIONS

6.1 Memory-bound Processing
Both NR and EB methods receive all the needed regions

before processing the shortest path query. In case however
a device has very limited memory, it is possible to reduce
space requirements if the client pre-computes some shortest

 R1 R2 R3 R4 R5

 R6 R7 R8 R9 R10

 R11 R12 R13 R14 R15

 R16 R17 R18 R19 R20

 R21 R22 R23 R24 R25

15th R1 R2 … R24 R25

R1 R1 R19 R19

R2 R1 R19 R19

…

R24 R19 R19 R24

R25 R19 R19 R24

Figure 7: NR algorithm; receiving A15

5
4

5
6

5

3

4

4

3

3

5

5
3

3

4

2

2

2 vs

vt

2

Super edge

Border edge

vs Start node

vt Target node

Figure 8: G′ graph

paths within each needed region R as soon as R is received.
The region data can be discarded, and only the local shortest
paths (called super-edges) can be kept in memory.

Specifically, if R is not Rs or Rt, a super-edge is computed
for each pair of R’s border nodes. Especially for Rs and Rt,
we include vs and vt to the border node set. This produces
a graph G′ through the needed regions, that includes only
super-edges and border edges (i.e., edges between border
nodes); the costs of super-edges equal the costs of the short-
est paths they represent. An example is given in Figure 8,
where received regions are shown in gray, the arrows are
border edges, the line segments correspond to super-edges,
and the numbers next to super-edges are their costs.

When all needed regions have been received and their
super-edges pre-computed, the client executes Dijkstra’s al-
gorithm on G′ to find the shortest path from vs to vt. In
the returned path, super-edges are replaced by their corre-
sponding path. A further optimization in the last step is to
ignore border nodes adjacent only to irrelevant (white) re-
gions, along with their super-edges, as they cannot be part
of the shortest path; edges of such border nodes are shown
as dashed arrows in the figure.

For the above technique to be fully effective, pre-computing
the super-edges in a region must be faster than receiving the
next region’s data. This is always the case for typical 3G
network speeds and the widespread ARM processor used in
our evaluation. In our experiments, this mechanism reduces
peak memory consumption roughly by 35%.

6.2 Dealing with Packet Loss
When receiving data through a wireless channel, packets

may be lost due to bad reception, noise and/or network
errors [15]. A practical method should be able to deal with
this situation. In Dijkstra’s algorithm, if a packet is lost,
search is not guaranteed to return the shortest possible path;
the missing nodes could lead to a shorter distance than that
in an incomplete graph. Therefore, the client has to receive
lost packets in the next broadcast cycle.

In ArcFlag, Landmark, and SPQ it is important to sepa-
rate the adjacency lists of nodes from pre-computed infor-

752

 R1 R2 R3 … Rj … Rn

R1

R2

R3

…

Ri

…

Rn

Cells in a packet

Needed cells

Figure 9: Cell placement into packets

mation. The reason is that missing the pre-computed data
for a node/edge, can potentially be overcome if the adja-
cency data are intact (although the reverse does not hold).
To minimize the chances that both pieces of information are
lost, we avoid placing them in the same packet. In HiTi this
separation is already in place, since there is a distinct index.

Specifically, if a bit vector is missing in ArcFlag, all its bits
are assumed to be 1, and processing is possible as long as the
adjacency data are available. In Landmark, if a node’s dis-
tance vector is lost, the lower bound of its distance from vt
is assumed to be 0. In SPQ, loss of a quad-tree implies that
all adjacent edges of the specific node have to be considered
by the search. In HiTi, a lost index packet can be recon-
structed if the underlying data (raw adjacency lists or lower
index level) are available. In all cases, missing any needed
adjacency data still requires waiting for the next cycle.

Similarly, in EB and NR loss of needed region data de-
mands receiving them in the next cycle. If a packet of their
first index component (used for locating vs and vt) is lost,
the next index is received. Loss in their second (and larger)
index component can be effectively dealt with. Consider EB
first, and let Rs and Rt be the ith and jth region, respec-
tively. A central observation is that all minimum/maximum
distances required for EB pruning are contained in the ith

row and jth column of array A, shown light gray in Figure
9. If the lost packet contains any of these values, the client
must wait for the next index. To minimize the chances that
this happens, each index packet corresponds to a square
(w × w) area of cells in A; e.g., the dark gray cells would
be placed in the same packet. We use squares since, among
all rectangles that cover the same number of cells, a square
intersects the smallest number of rows and columns.

In NR a single value is necessary from each local array Am

(i.e., Am
Rs,Rt

), so the above optimization is not meaningful.
This very fact, however, means that even if an Am packet is
missed, the probability that it contains the necessary value
is small. In the event that value Am

Rs,Rt
is missed, NR must

listen to the adjacent region Rm and to the next index Am+1.
Note that it is not possible to simply ignore Rm and directly
proceed to index Am+1. In Figure 7, assume that the neces-
sary value from A15, which in reality points to R19, is lost.
The client has no means to infer whether R15 is needed, un-
less it waits for A15 to be broadcast again (recall that every
region’s index is unique). To avoid this cycle-long delay, R15

is received anyway, and included in the final Dijkstra search.
A general remark is that the lower the tuning time of a

method, the less it degrades with packet loss. Hence, we
expect our approaches to be significantly more resilient to
losses than those in Section 3.2, with NR the least affected.

7. EVALUATION
In this section we evaluate alternative methods w.r.t. the

performance factors in Section 3.1. Client-side algorithms
were implemented in the proliferous Java 2 Micro Edition

Table 1: Broadcast cycle length
Method Packets Sec. (2Mbps) Sec. (348Kbps)

Dijkstra (DJ) 14019 6.845 40.284
NR 14260 6.963 40.977
EB 15299 7.470 43.962

Landmark (LD) 21236 10.369 61.022
ArcFlag (AF) 29233 14.274 84.003

SPQ 52337 25.555 150.391
HiTi 58138 28.387 167.061

(J2ME) platform, using Java ME SDK v3.0. The device
(memory, CPU, etc) is simulated inside the SDK as a generic
GPS-enabled clamshell phone supporting the current J2ME
standards: CLDC-1.1 and MIDP-2.1. The default heap
memory of this generic device is 8MB. Server-side process-
ing (i.e., pre-computation for broadcast cycle creation) was
implemented in C++ and run on a 3GHz machine. We use 5
real road networks, the default being Germany with 28,867
nodes and 30,429 edges.

Our evaluation considers Dijkstra’s algorithm, ArcFlag,
Landmark, EB and NR. HiTi and SPQ are excluded as their
space requirements exceed our device’s heap size even for the
smallest of our networks; for further indications about their
impracticality see Table 1 and discussion thereof.

In ArcFlag, EB, and NR, the regions are produced by
kd-tree partitioning. We fine-tuned ArcFlag, EB, and NR
w.r.t. the number of partitions (choosing 16, 32, and 32 for
the default network, respectively) and Landmark w.r.t. the
number of landmarks (the best being 4); the fine-tuning ex-
periment can be found in Appendix C. In each experiment
we process 400 shortest path queries between randomly se-
lected source and destination nodes. The packet size is set
to 128 bytes; packet size affects methods in a similar way,
thus experiments for different sizes are omitted.

In our default network, shortest path pre-computation at
the server takes around 62 seconds for EB and NR, 58 sec-
onds for ArcFlag, and 1 second for Landmark. This one-off
cost is reasonable for all methods. Measurements for other
networks are given in Appendix C.

Table 1 shows the size of the broadcast cycle in packets.
To express its duration in absolute terms, we also show the
time it takes to broadcast over a 2Mbps and a 384Kbps chan-
nel, which are typical in 3G networks for static and moving
devices. The reported times also serve as an indication of
the access latency in seconds. Dijkstra has the smallest cy-
cle (containing only network data), followed closely by NR
and EB; this verifies that our methods satisfy the design ob-
jective of broadcasting very little indexing information, as
opposed to any pre-computation-based competitor. Observe
that the extra information of HiTi and SPQ is several times
larger than the network itself. In addition to high space
requirements, this implies an excessive tuning time (as the
client needs to receive the entire index/all the quad-trees)
and a long access latency.

The broadcast cycles of Dijkstra, ArcFlag, and Landmark
also indicate their space consumption, since an entire cycle
must be received for query processing. Their memory re-
quirements exceed the available heap size of our device for
larger networks; Table 2 presents which methods managed
to run in the various networks. Germany was chosen as the
default, because it is the largest network where all our three
competitors work. Complete performance investigation for
different networks is given in Appendix C.

753

Table 2: Method applicability per network
Nodes Edges AF LD DJ EB NR

Milan 14021 26849
√ √ √ √ √

Germany 28867 30429
√ √ √ √ √

Argentina 85287 88357
√ √ √

India 149566 155483
√ √

S. Francisco 174956 223001
√

Tuning Time

0

5

10

15

20

25

30

35

0-3.5 3.5-7.0 7.0-10.5 10.5-14.0

SP Range (thousands)

p
a

c
k

e
ts

 (
th

o
u

s
a

n
d

s
)

NR EB Dijkstra Landmark ArcFlag

(a) Tuning Time

Memory

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0-3.5 3.5-7.0 7.0-10.5 10.5-14.0

SP Range (thousands)

M
b

y
te

s

NR EB Dijkstra Landmark ArcFlag

(b) Memory

Access Latency

0

5

10

15

20

25

30

35

0-3.5 3.5-7.0 7.0-10.5 10.5-14.0

SP Range (thousands)

p
a

c
k

e
ts

 (
th

o
u

s
a

n
d

s
)

NR EB Dijkstra Landmark ArcFlag

(c) Access Latency

CPU Time

0

50

100

150

200

250

0-3.5 3.5-7.0 7.0-10.5 10.5-14.0

SP Range (thousands)

m
s

NR EB Dijkstra Landmark ArcFlag

(d) CPU Time

Figure 10: Effect of shortest path length

In Figure 10 we present the tuning time, memory require-
ments, access latency and CPU time in Germany network
versus the length of the shortest path. The 400 queries/paths
computed are classified into 4 length categories. We note
that the diameter of the network is 14,383 while the 400
paths have lengths from 597 to 13,249. NR is by far the best
method in tuning time and memory consumption, and EB
is the runner-up, which verifies their pruning effectiveness.
On the other hand, the deficiencies of EB w.r.t. NR are ob-
vious for long paths, as anticipated. Competitors perform
poorly since they listen to (and store) the entire broadcast
cycle; the problem is more serious for ArcFlag and Land-
mark, whose cycles are particularly long. An interesting
result is that NR achieves lower access latency even than
Dijkstra, although the latter has the shortest possible cycle;
this is because NR receives only a subset of the broadcast
packets, which usually does not span the entire cycle. This
is not the case for EB, as its longer cycle outweighs this ef-
fect. In terms of CPU time, Landmark is faster than NR
and EB. However, as explained in Section 3.1, this is the
least important factor, as its effect on power consumption
is minimal compared to tuning time, and insignificant w.r.t
responsiveness too (CPU time is in the order of milliseconds,
while access latency in the order of seconds).

We evaluated the competing schemes for various packet
loss rates; results show that NR and EB are quite robust,
and retain their performance advantages over competitors.
Also, we investigated the effectiveness of the technique in
Section 6.1 in reducing space consumption for memory-bound
devices. We found that client-side pre-computation lowers
peak memory utilization by around 35% for both EB and
NR. Detailed results for the above are given in Appendix C.

8. CONCLUSIONS
The continuing diffusion of mobile devices enables a flour-

ishing market of location-based services, but also poses seri-
ous scalability concerns. This motivates the wireless broad-
cast model, where a server repeatedly transmits the entire
database, while clients selectively tune in the communica-
tion channel and process their queries locally.

In this paper, we propose the first study on shortest path
computation in this model. We first adapt existing shortest
path approaches to the broadcast setting, and identify their
deficiencies. Then, we propose two novel methods tailored
to the technical peculiarities of the model and of real-world
handheld devices. Finally, we empirically demonstrate the
efficiency of our techniques using real road networks and
actual device specifications. A promising direction for future
work is to consider on-air processing of spatial queries in
road networks, e.g., range and nearest neighbor retrieval.

9. REFERENCES
[1] Mobile World Congress: Network Breaking Point, February

17 2010.
[2] C.-Y. Chow, M. F. Mokbel, and W. G. Aref. Casper*:

Query processing for location services without
compromising privacy. ACM TODS, 34(4), 2009.

[3] E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1:269–271, 1959.

[4] A. V. Goldberg and C. Harrelson. Computing the shortest
path: A∗ search meets graph theory. In SODA, pages
156–165, 2005.

[5] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE
TSSC, 4(2):100–107, 1968.

[6] T. Imielinski, S. Viswanathan, and B. R. Badrinath. Data
on air: Organization and access. IEEE TKDE,
9(3):353–372, 1997.

[7] N. Jing, Y.-W. Huang, and E. A. Rundensteiner.
Hierarchical encoded path views for path query processing:
An optimal model and its performance evaluation. IEEE
TKDE, 10(3):409–432, 1998.

[8] E.-S. Jung and N. H. Vaidya. An energy efficient MAC
protocol for wireless LANs. In INFOCOM, 2002.

[9] S. Jung and S. Pramanik. An efficient path computation
model for hierarchically structured topographical road
maps. IEEE TKDE, 14(5):1029–1046, 2002.

[10] E. Köhler, R. H. Möhring, and H. Schilling. Fast
point-to-point shortest path computations with arc-flags. In
9th DIMACS Implementation Challenge - Shortest Paths,
2007.

[11] R. H. Möhring, H. Schilling, B. Schütz, D. Wagner, and
T. Willhalm. Partitioning graphs to speedup Dijkstra’s
algorithm. J. Exp. Algorithmics, 11:2.8, 2006.

[12] K. Mouratidis, S. Bakiras, and D. Papadias. Continuous
monitoring of spatial queries in wireless broadcast
environments. IEEE TMC, 8(10):1297–1311, 2009.

[13] J. Pigg. Mobile backhaul: Will the levees hold?, 2009.
[14] H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable

network distance browsing in spatial databases. In
SIGMOD, pages 43–54, 2008.

[15] I. Stojmenovic. Handbook of wireless networks and mobile
computing. John Wiley & Sons, 2002.

[16] B. Zheng, W.-C. Lee, and D. L. Lee. Spatial queries in
wireless broadcast systems. Wireless Networks,
10(6):723–736, 2004.

[17] B. Zheng, W.-C. Lee, K. C. K. Lee, D. L. Lee, and
M. Shao. A distributed spatial index for error-prone
wireless data broadcast. VLDB J., 18(4):959–986, 2009.

754

APPENDIX A: SPATIAL AIR INDEXES
For range and k nearest neighbor (kNN) queries, [16] presents
the Hilbert curve index (HCI) method, which is based on the
(1,m) interleaving scheme. The data objects (2-dimensional
space) are mapped onto a Hilbert curve (1-dimensional space)
and indexed with a B+-tree. This index is then broadcast
on the air.

To execute a range query, a client initially determines the
first and the last points on the Hilbert curve that fall in the
query window. Then, it retrieves all objects with Hilbert
values between them. Finally, it maps the collected objects
back to the 2-dimensional space and checks which of them
are actually inside the query window.

In the case of kNN processing, the method consists of two
steps. In the first step, the position of the user is mapped
onto the Hilbert curve and the k objects with Hilbert values
closest to it are determined. In the second step, the client
calculates the maximum Euclidean distance between its lo-
cation and these k objects. Using this distance as radius,
a range query is processed around the client’s location (in
the way described before) in order to retrieve the candidate
neighbors. Eventually, the distances of these candidates are
computed and the k closest are reported as the actual kNNs.

The distributed spatial index (DSI) [17] aims at minimiz-
ing the access latency of HCI at the cost of longer tuning
time. The objects are sorted on their Hilbert values and
placed into equi-sized frames. Each frame also contains an
index, which points to subsequent frames along with the
minimum Hilbert value inside them. The index does not
point to all subsequent frames. Instead, it points 2n frame
positions afterwards, where n = 0, 1, 2, 3, This way, fast
access to both nearby and distant frames is possible. The
client listens to an index and finds the furthest frame where
the minimum Hilbert value does not exceed the required
Hilbert value. This process is repeated until the required
Hilbert value is found. The processing of queries is similar
to HCI, exploiting again the Hilbert curve’s properties.

In the broadcast grid index (BGI) method [12], the data
objects are initially partitioned using a regular grid, i.e., a
grid with equi-sized cells. Each grid cell holds the coor-
dinates of objects that lie inside it, plus their total num-
ber. This information forms the index of BGI. The full ob-
ject information is divided into m segments using the (1,m)
scheme, and a copy of the index precedes each segment.

In order to compute a kNN query, the algorithm performs
two steps. In the first step, the client receives index informa-
tion for the cells. Using the extent and number of objects
in each cell, it calculates an upper bound dmax of the ra-
dius around its position that contains at least k objects.
In the second step, the device receives from the broadcast
cycle only the objects within distance equal to or smaller
than dmax. As the client receives index information about
more cells or more object coordinates, it reduces the up-
per bound dmax incrementally, excluding more unnecessary
packets each time. BGI can additionally support contin-
uous kNN queries; these are standing queries that require
continuous re-evaluation as the data objects move.

APPENDIX B: CLIENT-SIDE ALGORITHMS
Below are the pseudo-codes that summarize query process-
ing at the client side in EB and NR (Algorithms 1 and 2,
respectively).

Algorithm 1 EB Algorithm

1: connect();
2: receive network data();
3: Let Rs=find source region();
4: Let Rt=find destination region();
5: sleep until index broadcast();
6: connect();
7: Let index=receive index();
8: for i = 1 to number of regions do
9: if index[Rs][i].min + index[i][Rt].min ≤

index[Rs][Rt].max then
10: needed regions.add(i);

11: while needed regions.size > 0 do
12: Let next region = needed regions.pop

(next region to be broadcast);
13: sleep until broadcast(next region);
14: connect();
15: get region(next region);

16: calculate SP();

Algorithm 2 NR Algorithm

1: connect();
2: receive network data();
3: Let Rs=find source region();
4: Let Rt=find destination region();
5: sleep until index broadcast();
6: connect();
7: Let first index=receive index();
8: Let first region=first index[Rs][Rt];
9: sleep until broadcast(first region);

10: connect();
11: get region(first region);
12: Let current index=indexof(first region + 1);
13: next region = current index[Rs][Rt];
14: while first index 6= current index and first region 6=

next region do
15: sleep until broadcast(next region);
16: connect();
17: get region(next region);
18: Let current index=indexof(next region + 1);
19: Let next region = current index[Rs][Rt];

20: calculate SP();

755

APPENDIX C: EXTENDED EVALUATION
This section includes additional experiments that were ei-
ther omitted or simply summarized in Section 7.

C.1 Method Fine-tuning
To fine-tune the methods, we measure their performance for
various numbers of partitions (for ArcFlag, EB and NR) and
landmarks (for Landmark). Figure 11 plots the results; the
x-axis corresponds to the number of regions or landmarks,
depending on the method. Dijkstra’s algorithm is included
for comparison purposes only.

For EB and NR, too few partitions imply looser pruning,
and therefore receipt of more region packets. Too many,
however, lead to large indexes, and thus to listening more
index packets. On the contrary, access latency strictly in-
creases for more regions, because the broadcast cycle grows.
Using 32 partitions seems to strike the best balance for both
EB and NR. There is a single measurement for ArcFlag (for
16 regions), since for more regions its space requirements
exceed the client’s heap size. Regarding Landmark, we use
4 landmarks, as at least its CPU improvements are visi-
ble. Its trends demonstrate clearly that conventional pre-
computation methods, in general, are unsuitable to wire-
less broadcasting, due to their voluminous indexes/bit vec-
tors/distance vectors.

C.2 Pre-computation Time
In Table 3 we present the pre-computation time needed to
form the broadcast cycle at the server for different road net-
works. These times are reasonable for all approaches even
for the largest networks, as this is a one-off cost paid dur-
ing the setup of the system. Note that EB and NR have
the same cost as they need to pre-compute the exact same
shortest paths (when starting with the same regions).

C.3 Performance for Different Networks
To test the methods for different networks, we fine-tune
them every time as above. Figure 12 shows their perfor-
mance. Missing values correspond to cases where the respec-
tive approach run out of memory at the client, as explained
in Table 2. The only method that works for all networks
is NR. Moreover, even for the largest network, it uses less
than half of the available heap size.

C.4 Memory-bound Processing
In Section 6.1 we mentioned that it is possible to further
reduce the memory requirements of EB and NR if the client
pre-computes several shortest paths as soon as some regions
are received. The memory requirements with and without
this technique are depicted in Figure 13(a). Figure 13(b)
shows the cost of shortest path calculation after all necessary
data are received. The downside of this technique is that it
requires extra CPU effort at the client (and thus consumes

Table 3: Pre-computation time (sec)
EB/NR ArcFlag Landmark

Milano 55.516 68.500 0.453
Germany 61.797 58.11 1.031
Argentina 454.766 308.859 2.641
India 2348.421 753.219 4.359
San Francisco 6332.468 2164.75 5.312

extra power) for pre-computations in the region receiving
phase.

C.5 Robustness to Packet Loss
In Figure 14 we measure the effect of packet loss on perfor-
mance, varying the loss rate from 0.1% to 10% (according to
[15], in practice the packet loss rates range up to 10%). Only
tuning time and access latency are considered, as memory
requirements and CPU time are essentially unaffected by
losses. The relative performance of the methods is similar
to previous experiments, with NR being the clear winner for
all loss rates in terms of both tuning time and access latency.

Tuning Time

0

5

10

15

20

25

30

35

40

45

50

16/2 32/4 64/8 128/16

of regions/landmarks

p
a

c
k

e
ts

 (
th

o
u

s
a

n
d

s
)

NR EB Dijkstra Landmark ArcFlag

(a) Tuning Time

Memory

0

1

2

3

4

5

6

7

8

9

16/2 32/4 64/8 128/16

of regions/landmarks

M
b

y
te

s

NR EB Dijkstra Landmark ArcFlag

(b) Memory

Access Latency

0

5

10

15

20

25

30

35

40

45

50

16/2 32/4 64/8 128/16

of regions/landmarks

p
a

c
k

e
ts

 (
th

o
u

s
a

n
d

s
)

NR EB Dijkstra Landmark ArcFlag

(c) Access Latency

CPU Time

0

20

40

60

80

100

120

140

160

16/2 32/4 64/8 128/16

of regions/landmarks

m
s

NR EB Dijkstra Landmark ArcFlag

(d) CPU Time

Figure 11: Fine-tuning

Tuning Time

0

5

10

15

20

25

30

35

40

45

Milan Germany Argentina India San

Francisco

network

p
a

c
k

e
ts

 (
th

o
u

s
a

n
d

s
)

NR EB Dijkstra Landmark ArcFlag

(a) Tuning Time

Memory

0

1

2

3

4

5

6

7

Milan Germany Argentina India San

Francisco

network

M
b

y
te

s

NR EB Dijkstra Landmark ArcFlag

(b) Memory

Access Latency

0

20

40

60

80

100

120

Milan Germany Argentina India San

Francisco

network

p
a

c
k

e
ts

 (
th

o
u

s
a

n
d

s
)

NR EB Dijkstra Landmark ArcFlag

(c) Access Latency

CPU Time

0

100

200

300

400

500

600

Milan Germany Argentina India San

Francisco

network

m
s

NR EB Dijkstra Landmark ArcFlag

(d) CPU Time

Figure 12: Different networks

756

Memory

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

M
b

y
te

s
NR (w/ precomp) NR (w/o precomp)

EB (w/ precomp) EB (w/o precomp)

(a) Memory

CPU Time

0

20

40

60

80

100

120

m
s

NR (w/ precomp) NR (w/o precomp)

EB (w/ precomp) EB (w/o precomp)

(b) CPU Time

Figure 13: Client-side pre-computation scheme

Tuning Time

0

5

10

15

20

25

30

35

0.1 0.5 1 5 10

% packet loss

p
a

c
k

e
ts

 (
th

o
u

s
a

n
d

s
)

NR EB Dijkstra Landmark ArcFlag

(a) Tuning Time

Access Latency

0

20

40

60

80

100

120

140

0.1 0.5 1 5 10

% packet loss

p
a

c
k

e
ts

 (
th

o
u

s
a

n
d

s
)

NR EB Dijkstra Landmark ArcFlag

(b) Access Latency

Figure 14: Effect of packet loss

757

