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ABSTRACT
Probabilistic data is coming as a new deluge along with
the technical advances on geographical tracking, multime-
dia processing, sensor network and RFID. While similarity
search is an important functionality supporting the manip-
ulation of probabilistic data, it raises new challenges to tra-
ditional relational database. The problem stems from the
limited effectiveness of the distance metric supported by the
existing database system. On the other hand, some compli-
cated distance operators have proven their values for better
distinguishing ability in the probabilistic domain. In this
paper, we discuss the similarity search problem with the
Earth Mover’s Distance, which is the most successful dis-
tance metric on probabilistic histograms and an expensive
operator with cubic complexity. We present a new database
approach to answer range queries and k-nearest neighbor
queries on probabilistic data, on the basis of Earth Mover’s
Distance. Our solution utilizes the primal-dual theory in lin-
ear programming and deploys B+ tree index structures for
effective candidate pruning. Extensive experiments show
that our proposal dramatically improves the scalability of
probabilistic databases.

1. INTRODUCTION
Probabilistic data is coming as a new deluge along with

technical advances on geographical tracking [28], multime-
dia processing [13, 22], sensor network [11] and RFID [15].
This trend has led to the extensive research efforts devoted
to scalable database system for probabilistic data manage-
ment [3, 6, 7, 9, 10, 16, 28]. To fully utilize the information
underlying the distributions, different probabilistic queries
have been proposed and studied in different contexts, e.g.
accumulated probability query [2, 27] and top-k query [8,
14, 17, 20, 26]. Most of the existing studies on these queries,
however, simply extend the traditional database queries by
handling uncertain attributes instead of exact ones. Unfor-
tunately, these queries do not necessarily improve the useful-
ness of probabilistic database, because the underlying simi-
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larity measure on the probabilistic data remains unverified
in their respective domains. On the other hand, research re-
sults in other areas, such as computer vision, have indicated
that some complex distance operators are more meaning-
ful for retrieval and search tasks. In this paper, we aim to
bridge the gap between the database community and the
real-world applications. In particular, we discuss the prob-
lem of similarity search based on the Earth Mover’s Distance
(EMD), which is one of the most popular distance operators
in probabilistic domain.

Since the invention in late 1990s [21], EMD has become
the de-facto distance metric used in the analysis of proba-
bilistic histograms on multimedia data [13, 18, 22, 23, 25].
EMD is robust to outliers and tiny probability shifting, im-
proving the quality of similarity search on probabilistic his-
tograms. The improvement on search quality, however, pays
an expensive cost on computation efficiency due to the cubic
complexity of EMD with respect to the number of histogram
bins. To relieve the efficiency issue, some approximation
techniques are proposed in the computer vision [18, 25, 23]
and algorithm community [4], to reduce the computational
complexity of EMD. While these techniques accelerate the
EMD computation between two probabilistic records, all of
them do not scale well with huge amount of probabilistic
data.

In recent years, some researchers in the database commu-
nity are trying to address the similarity search problem on
EMD. They attempted to design scalable solutions [5, 29],
utilizing efficient and effective lower bounds on EMD. These
solutions are mainly built on the scan-and-refinement frame-
work, which incur high I/O costs and render low processing
concurrency on the database system. To overcome the dif-
ficulties of these methods, we present a general approach to
provide a truly scalable and highly concurrent index scheme
applicable with mainstream relational databases, such as
PostgreSQL and MySQL.

In our approach, all probabilistic records are mapped to
a group of one-dimensional domains, using primal-dual the-
ory [19] in linear programming. For each domain, a B+ tree
is constructed to index pointers to all probabilistic records
based on the mapping values. Given a range query with
a probabilistic histogram and threshold, our approach cal-
culates a pair of lower and upper bound for each domain,
guaranteeing that all of the query results are residing in the
corresponding intervals. Range queries are thus issued on
each B+ tree, whose retrieved records are joined with in-
tersection operator. Verifications and refinements are then
conducted on the candidates remaining in the intersection
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Figure 1: Examples of probabilistic records in form of histograms

Cells #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16

p 0 0 0 0 0 0 0.2 0.2 0 0.4 0 0 0.2 0 0 0
q 0 0 0 0 0 0 0 0.2 0 0 0.3 0.3 0 0.2 0 0

Table 1: Tuple representation of example distributions in Figure 1

results. More complicated algorithms are designed to an-
swer k-nearest neighbor query other than range query. Ex-
tensive experiments on real data sets show that our solution
dramatically improves the efficiency of similarity search on
EMD.

The rest of the paper is organized as follows. Appendix
A reviews some related work on probabilistic database and
Earth Mover’s Distance. Section 2 introduces preliminary
knowledge and problem definitions. Section 3 discusses our
index on the probabilistic records with B+ tree. Section 4
presents the details on the algorithms for range query and
k-nearest neighbor query. Section 5 evaluates our proposal
with empirical studies and Section 6 concludes this paper.

2. PRELIMINARIES
In this paper, we focus on the management of probabilis-

tic records represented by probabilistic histograms. We use
D to denote the object domain, covering all possible sta-
tus of the objects in the real worlds. Depending on some
domain knowledge, the object domain is partitioned into h
cells. The distribution of each object is thus represented by
a histogram, which records the probabilities of the objects
appearing in the respective cells. In Figure 1, we present
some examples of the probabilistic records. In this exam-
ple, the distributions model the readings from sensor nodes
monitoring temperature and humidity. The 2-dimensional
space regarding temperature and humidity is divided into
16 cells. The distribution of sensor s1 in Figure 1(b), for
example, indicates it is more likely to observe s1 with hu-
midity in range of [30%, 40%] and temperature in range of
[20◦C, 25◦C]. Every distribution p is thus written in vector
representation, i.e. p = (p[1], p[2], . . . , p[h]), in which p[i] is
the probability of p in cell i. In Table 1, we list the table for
the sensor reading distributions in Figure 1, in which h = 16
cells are numbered with increasing humidity and increasing
temperature.

To define Earth Mover’s Distance, a metric ground dis-
tance, dij on object domain D is provided to measure the
difference between cell i and cell j. If Manhattan distance
is employed as dij , for example, we have dij = 2 when
i = 10, j = 13 and dij = 1 when i = 7, j = 8. Given
dij , the formal definition of Earth Mover’s Distance is given

below1.

Definition 2.1. Earth Mover’s Distance (EMD)
Given two probabilistic records p and q, the Earth Mover’s
Distance between p and q, EMD(p, q), is the optimum achieved
by the following linear program:

Minimize :

∑

i,j
fij · dij

min{
∑

i
p[i],

∑

j
q[j]}

s.t. ∀i :
∑

j
fij = p[i] (1)

∀j :
∑

i
fij = q[j]

∀i, j : fij ≥ 0

Note that the objective function in the program above
can be simplified, because

∑

i
p[i] =

∑

j
q[j] = 1 in proba-

bilistic space. There are h2 variables used in the program
above, F = {fij}, which intuitively model the flows from
distribution p to distribution q. The cost of the flows is the
weighted sum over all individual flows between every pair of
cells. The constraints of the program guarantees that the
amount of the flows from cell i is equal to the probability
p[i] for all i. Similarly, the probabilities flowing into cell j is
exactly the same as q[j] for all j. Based on the intuitions,
EMD(p, q) is the cost of the optimal flow set, F ∗, minimiz-
ing the objective function. In Figure 2, we show an example
of the optimal flow set from distribution p to distribution
q in Figure 1 and Table 1, with Manhattan distance as the
ground distance dij in object domain. It is thus straightfor-
ward to verify that EMD(s1, s2) = 1.1.

There are two types of similarity search queries investi-
gated in this paper, including range query and k-nearest
neighbor query. Specifically, given a probabilistic database
D with n records, a query record q and a threshold θ, range
query finds all records in D with EMD to q no larger than
θ. A k-nearest neighbor query with respect to a record q,
finds k records in D with smallest EMD to q than others.

In the rest of the section, we provide a brief review to
the primal-dual theory of linear programming, paving the
foundation of our indexing technique. Most of the theories
and formulas introduced in this section can refer to [19].
1All the methods proposed do not rely on the choice of
ground distance function dij .
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For any linear program with minimization objective, known
as the primal program, there always exists one and only one
dual program, with maximization objective. Given the for-
mulation of EMD in Definition 2.1, the dual program can
be constructed as follows. In the dual program, there are
2h variables, {φ1, φ2, . . . , φh} and {π1, π2, . . . , πh}, each of
which corresponds to one constraint in the primal program.
The dual program can thus be written as:

Maximize :
∑

i
φi · p[i] +

∑

j
πj · q[j]

s.t. ∀i, j : φi + πj ≤ dij (2)

∀i : φi ∈ R

∀j : πj ∈ R

Given a linear program, a feasible solution to the pro-
gram is a combination of variable values satisfying all the
constraints in the program but not necessarily optimizing
the objective function. There can be arbitrarily large num-
ber of feasible solutions to a linear program. Assume that
F = {fij} and Φ = {φi, πj} are two feasible solutions to
the primal program (Equation (1)) and the dual program
(Equation (2)) of EMD respectively. We have:

∑

φip[i] +
∑

πjq[j] ≤ EMD(p, q) ≤
∑

fijdij (3)

Equation (3) directly implies a pair of lower bound and up-
per bound on the EMD between p and q. Our index scheme
mainly relies on the feasible solutions to the dual program.
The upper bound, derived with the feasible solution to pri-
mal program will be covered in Appendix B, which is used
as a filter in range query and k-nearest neighbor query pro-
cessing. In the following, we first present a simple example
of a feasible solution to the dual program.

Example 2.1. It is easy to verify that there is a trivial fea-
sible solution with φi = 1 for all i and πj = −1 for all
j, if dij is a metric distance, i.e. dij ≥ 0 for any i and
j. This feasible solution leads to a trivial lower bound on

EMD(p, q):
∑

φip[i] +
∑

πjq[j] =
∑

p[i]−
∑

q[j] = 0

In particular, the feasibility of a solution Φ only depends
on the distance metric dij defined on the object domain.
This property unveils the possibility on query-independent
construction of index structure supporting a general class of
lower bound computation on EMD.

3. INDEX STRUCTURE
Our index structure employs L B+ trees, {T1, . . . , TL},

to index the pointers of the probabilistic records in the
database D. Each tree Tl in the forest is associated with a
feasible solution Φl = {φl

i, π
l
j} in the dual program of EMD.

Section 3.1 presents the details on the transformation from
original probabilistic record to indexing value in Tl, and Sec-
tion 3.2 provides some guidelines on the selection of feasible
solutions. All the proofs of the lemmas and theorems in this
section are available in Appendix C.

3.1 Mapping Construction
To ease the understanding difficulty on the mapping con-

struction, the concepts of key and counter-key are first de-
fined below.

Definition 3.1. Key/Counter-Key
Given a probabilistic record p and a feasible solution Φl in
the dual program of EMD, the key of p on φl is

key(p,Φl) =
∑

i
φl

i · p[i] (4)

Similarly, counter-key is defined as follows

ckey(p,Φl) =
∑

j
πl

j · p[j] (5)

Given the selected feasible solution Φl, the B+ tree Tl

simply indexes all the pointers to the probabilistic records
based on the value of key(p,Φl). The calculations on both
key(p,Φl) and ckey(p,Φl) take only O(h) time, linear in the
number of cells in the object domain. It is important to
emphasize again that Φl is independent to the query, facili-
tating the computation of key(p,Φl) before the insertion of
p into Tl. The following two lemmas derive the lower bound
and upper bound on key(p,Φl), in term of any query record
q and EMD(p, q).

Lemma 3.1. Given a record p indexed by Tl and a query
record q, it is always valid that

key(p,Φl) ≤ EMD(p, q)− ckey(q,Φl)

Lemma 3.2. Given a record p indexed by Tl and a query
record q, we have

key(p,Φl) ≥ min
i

(φi + πi) + key(q, Φl)− EMD(p, q)

With the two lemmas above, all candidate records of the
range query, (q, θ), must be located in the interval below in
the domains constructed with Tl, i.e.,

key(p,Φl) ∈
[

min
i

(φi + πi) + key(q, Φl)− θ, θ − ckey(q, Φl)
]

(6)
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Figure 3: Example of the range query algorithm

This implies a simple scheme on range query processing.
Some 1-dimensional range queries are constructed and run
on all B+ trees and the intersection of these query outputs
are the candidates to the original query. Details of the al-
gorithms will be covered later in Section 4.

It is worthwhile to note that an alternative solution is
plausible here to deploy some multidimensional index trees,
i.e. an R Tree instead of a group of B+ trees. However,
the curse of dimensionality limits the use of such multidi-
mensional index tree with only few number of dimensions.
The architecture with B+ trees also enhances the flexibility
of the system with respect to the number of adopted feasi-
ble solutions. Specifically, B+ trees associated with specific
feasible solutions can be easily inserted or removed at run
time.

3.2 Selection of Feasible Solutions
The performance of the index scheme depends on the se-

lection of the feasible solutions {Φl} for the B+ trees {Tl}.
In Example 2.1, we show that some feasible solution only
provides trivial bounds on EMDs. In this part of the section,
we discuss the issue on the selection of feasible solutions.

The first question is whether we can construct a feasible
solution minimizing the gap between the lower bound and
upper bound in Equation 6. Intuitively, a smaller gap leads
to better pruning effect. Unfortunately, the following lem-
mas implies the gap cannot be improved.

Lemma 3.3. For any feasible solution Φl, the gap between
the lower and upper bound used on the range query (q, θ) in
Equation 6 is no smaller than 2θ.

Due to the impossibility result above, we adopt some
heuristic scheme to generate the feasible solutions for the
dual program of EMD. Generally speaking, our selection
method tries to avoid Dominated feasible solutions.

Definition 3.2. A feasible solution Φ is dominated by an-
other feasible solution Φ′, if φ′

i ≥ φi for all i and π′
j ≥ πj

for all j.

A dominated feasible solution is undesirable, since it al-
ways outputs a weaker bound, i.e. key(p,Φ) ≤ key(p,Φ′)
and ckey(q, Φ) ≤ ckey(q,Φ′) for any p and q. Basically, our
scheme depends on the lemma below to eliminate dominated
feasible solutions.

Lemma 3.4. If Φ is the optimal solution to the dual program
on EMD(p, q) for any p, q, it is not dominated by any other
feasible solution Φ′.

The lemma tells that a non-dominated feasible solution
can be found if we can find the optimal solution to the
dual program on any EMD(p, q). Therefore, the B+ trees
are constructed by selecting appropriate probabilistic record
pairs. There are two schemes designed for the selection pro-
cedure, as discussed below.
Clustering-Based Selection: In this scheme, a small sam-
ple set of the indexed records are retrieved from the database.
By running clustering algorithm on the sample records, rep-
resentative records are picked up from the clustering results.
The pairwise EMD distance is calculated with Alpha-Beta
algorithm [19], which returns optimal solutions for both pri-
mal and dual program. The solutions for the dual programs
are thus adopted to construct the B+ trees.
Random-Sampling-Based Selection: The clustering scheme
pays expensive cost on the clustering procedure. To reduce
the computation cost, a much cheaper random-sampling-
based scheme is proposed here. Given the probabilistic database
D, it can be simply implemented by randomly picking up
two records p and q from D. The rest of the construction is
similar to clustering-based selection scheme.

4. ALGORITHMS
In this section, we cover the details of the algorithms on

range query (Section 4.1) and k-nearest neighbor query (Sec-
tion 4.2) respectively. The pseudocodes of the algorithms
are available in Appendix D.

4.1 Range Query
Based on the index scheme introduced in the previous

section, it is straightforward to design processing algorithms
based on Lemma 3.1 and Lemma 3.2.

In Figure 3, we present a running example to illustrate the
query processing algorithm. Assume that there are 15 prob-
abilistic records indexed in database, from s1 to s15, and two
B+ trees are used with Φ1 and Φ2 as the construction feasi-
ble solutions respectively. Given a range query (q, θ),the al-
gorithm first generates two sub-range queries for T1 and T2,
according to the ranges on the keys derived in Section 3.1.
As shown in the figure, the sub-queries return two different
groups of candidates with respect to their query ranges. In
particular, the query result from T1 contains 7 candidates,
including {s4, s5, s6, s7, s8, s9, s10}. Similarly, T2 returns 6
candidates, including {s9, s13, s5, s14, s12, s7}. The intersec-
tion of the two query results renders the final candidate set,
{s5, s7, s9}.

With the candidates to our original range query on EMD,
filters are run in order to further prune the candidates.
Specifically, two filters are equipped in our algorithm, R −
EMD (EMD in reduced space)[29] and LBIM [5]. Details of
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Figure 4: Running example of K-NN query processing

the two pruning filters are referred to Appendix A.3. A new
upper bound, UBP calculation is added to further prune
unnecessary exact EMD computation, derived by feasible
solution in primal program of EMD, which is described in
Appendix B.

4.2 K-Nearest Neighbor Query
While range query is answered by selecting candidates

from the results of sub-queries on the B+ trees, the al-
gorithm for k-nearest neighbor query is more complicated,
since it is unlikely to know the range of the results on the
B+ trees. The basic idea of the algorithm is generating a
sequence of candidate records based on the B+ tree index
structure. These candidates are estimated and verified to re-
fresh the top-k nearest neighbor results. Some thresholds are
accordingly updated to prune unnecessary verifications. The
whole algorithm terminates when all records are pruned or
verified. The complete pseudocodes are listed in Appendix
D.2. In the rest of the subsection, we give a concrete exam-
ple to illustrate the procedure of the algorithm.

1s 2s 3s 4s 5s 6s 7s 8s 9s 10s 11s 12s 13s 14s 15s

1T

),( 1Fqkey

5s 4s 3s 2s 1s
6s 7s 8s 9s 11s 12s 13s 14s 15s10s

10s 6s 3s 15s 9s 13s 5s 14s 12s 7s 8s 4s 1s 2s 11s

2T

),( 2Fqkey

14s 12s 7s 8s 4s 1s 2s 11s

5s 13s 9s 15s 3s 6s 10s
2C

2C

1C

1C

Figure 5: Construction of cursors for K-NN query

Given the k-nearest neighbor query, with probabilistic
record q and integer k, the algorithm issues search queries on
each index tree Tl with key(q,Φl), where Φl is the feasible
solution used in the construction of Tl. In Figure 5, for ex-

ample, key(q, Φ1) is located in tree T1 between record s5 and
s6. After the positioning of key(q, Φ1), the algorithm builds

two cursors
−→
C1 and

←−
C1 to crawl the records from the posi-

tion in right and left directions respectively. This renders
two lists or record pointers, as shown in the figure. Similarly,
−→
C2 and

←−
C2 are initialized to visit the pointers sequentially

on the tree T2.
With the 2L cursors on L B+ trees, our algorithm filters

the candidates following the strategy of top-k query process-
ing [12]. An empty buffer for temporary k-nearest neigh-
bor results is initialized and all cursors start advancing on
their lists in a round robin manner. A candidate is selected
only when it is visited by exactly L cursors of different tree.
The selected candidate is verified with the filters and finally
evaluated with exact EMD computation if necessary. When
the temporary k-nearest neighbor results are updated, the
ranges for possible new results are calculated. The range
boundaries on the trees are used to prune the cursor lists
correspondingly. When all the cursor lists are finished, the
algorithm stops and returns the current results in the k-
nearest neighbor buffer. Figure 4 shows how the algorithm
iterates over the cursors. In the first round, the cursors read
the first record in their list. Since s5 is on the top of two
cursor lists, it will be added into the temporary buffer. The
second round of the iterations does not select any records
because no record has accumulated enough appearance in
the cursor lists. The third round of the iteration selects the
record s7, leading to the update on thresholds and pruning
of records on the cursor lists. The algorithm thus finishes
the computation in the next round. Similar to range query,
our k-nearest neighbor query algorithm applies all the filters
used in range query algorithm except the UBP .

5. EXPERIMENTS
The details of the experimental settings are available in

Appendix F. In this section, we present the experimental re-
sults on range query (Section 5.1), k-nearest neighbor query
(Section 5.2) respectively. For the space limitation, we skip
some figures and leave them to our technical report [30].
We named our approach TBI (Tree-Based Indexing) and
named Scan and Refinement algorithm in [29] as SAR. TBI-
R represents the feasible solution used for constructing the
B+ trees is Random-sampling-based while TBI-C indicates
the Clustering-based, see section 3.2. The results of TBI-R
method is the average based on 3 groups of random gener-
ated feasible solutions. We use the default parameter setting
values mentioned in Appendix F for those non-marked pa-
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Figure 6: Effect of threshold on average query CPU time for range queries
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Figure 7: Effect of threshold on average EMD refinement number for range queries

rameters in the figures.

5.1 Experiments on Range Query
Figure 6 and Figure 7 discuss the impact of similarity

search threshold θ on the querying CPU time and the num-
ber of exact EMD refinements done for the queries. Figure
6 illustrates that both TBI-R and TBI-C beat SAR and the
time cost of SAR can be 3-6 times larger than that of TBI
on the DBLP data set. That’s because the number of EMD
refinement in TBI is markedly cut down especially on DBLP
data set (see Figure 7). As discussed in previous sections,
exact EMD calculation is an expensive operator with cubic
complexity. Therefore, the number of exact EMD calcula-
tion is an important factor affecting the efficiency of EMD-
based query processing. The decline of EMD refinement in
TBI illustrates that our B+ tree-based filtering technique
and UBP filtering method are better on candidate pruning
for range query. Besides, although there is no remarkable
difference on both the CPU time and the EMD refinement
number between TBI-R and TBI-C on all data sets, TBI-R
wins TBI-C a little which is quite delightful for TBI-R is
much more easily than TBI-C to implement.

In Figure 8, we test the query CPU time by varying the
number of B+ trees in our indexing method. On RETINA1,
the CPU time of both TBI-R and TBI-C gently decreases
and there is not apparent difference between them. The dif-
ference between TBI-R and TBI-C is magnified on IRMA
and TBI-C lags TBI-R in most of the settings. This phe-
nomenon can be explained as the high dimensionality of
IRMA leads to the worse clustering results used in the con-
struction of B+ trees. On DBLP data set, which has the
largest cardinality (cardinatlity = 250, 000) but the small-
est histogram dimensionality (dimensionality = 8), the query
efficiency gradually deteriorates when more than 3 or 4 trees
are employed. This phenomenon also happens for TBI-R on
IRMA. The reason for the performance deterioration is be-
cause that the pruning ability is strong enough with 2 or 3
trees and the addition of more trees only incur more search-
ing time but unhelpful in reducing the number of candidates.

Figure 9 summarizes the experimental results on the ef-
fectiveness of the filters equipped in our query processing al-
gorithm. The bars in the figure show the number of records
passing the respective filters. From this figure we can see
that filters after the B+ trees index remain valuable for can-
didate pruning. Recall the results in Figure 7, since SAR
proceeds with R−LBIM filter (LBIM in reduced space) and
then R−EMD filter, our B+ tree index and LBP methods
do provide excellent additional pruning power in an efficient
way. Another observation in the figure is on the effective-
ness of UBP . It is more effective on lower dimensional data,
especially on the DBLP data set.
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Figure 10: Effect of data size on range queries

In Figure 10, we show the impact of database cardinality
on CPU time and EMD refinement number. We can observe
from the figure that without the assistance of B+ tree index
and UBP filters, the SAR suffers a quick linear increase
on both CPU time and EMD refinement number while our
TBI methods exhibit a much slower growth. This explicates
that the pruning effects of B+ tree filter and UBP filter
remain significant even when the data cardinality is as large
as 250,000.

The results of I/O cost are depicted in Figure 11. In
Figure 11(a), we vary the database cardinality and observe
that the I/O cost increases linearly with respect to the size
of database. That’s for with the increase of data cardi-
nality, we need to visit much more records under a certain
search range. When we alter the tree number, the I/O cost
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Figure 8: Effect of tree number on average query CPU time for range queries
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Figure 9: Effect of filter functions on query selectivity for range queries
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Figure 11: Test of I/O cost for range queries

drops evidently between tree number 1 to 2 and then de-
clines slowly from 2 to 5. The reason is that installing more
than 2 B+ trees can not apparently decrease the number
of candidates need to be accessed and thus the I/O decline
becomes less remarkable.

5.2 Experiments on k-Nearest Neighbor Query
In this subsection, we empirically evaluate the perfor-

mance of our algorithms on k-nearest neighbor query. Figure
12 summarizes the CPU time of k-NN query over different
data sets. Our TBI approaches are generally better than
SAR on all data sets and have an obvious advantage on
large data sets. To explain this, we have claimed in Ap-
pendix A.3 that SAR can obtain an excellent query-based
data ranking based on the KNOP framework [24]. Query-
based data ranking is quite helpful to prune the unpromising
records in the k-NN query and thus the EMD refinement
number in SAR is lower than that of ours on IRMA and
DBLP data sets (see Figure 13). However, the time cost
in ranking becomes a bottleneck when the data cardinality
is quite large (e.g., DBLP data set) or the time complex-
ity of ranking distance function is very high (i.e., on IRMA
data set, the ranking distance function can be the EMD over
any two 60-dimensional reduced histograms and the ground
distance used by EMD is the Euclidean distance between
40-dimensional feature vectors). That’s why TBI can still
win SAR although SAR has less EMD refinement number on
IRMA and DBLP data sets. As to RETINA1, the ranking
based on the reduced 18-dimensional histograms can not re-
flect the accurate order in the original 96-dimensional data

space and thus increase the EMD refinement number which
naturally leads to the degradation of query efficiency.
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Figure 14: Effect of data size for k-NN queries

The results on CPU time and EMD refinement number
with varying the data size of DBLP in Figure 14 also match
our expectation. For the ranking order of records in SAR
is so perfect, its EMD refinement number approaches the
optimal value 16 in a 16-NN query. However, the ranking
cost causes the SAR to exhibit a poor CPU time.

6. CONCLUSION
In this paper, we present a new indexing scheme for the

general purposes of similarity search on Earth Mover’s Dis-
tance. Our index method relies on the primal-dual theory to
construct mapping functions from the original probabilistic
space to one-dimensional domain. Each mapping domain
is thus effectively indexed with B+ tree structure. This
proposal shows great advantage on the efficiency of query
processing on different data sets.
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APPENDIX

A. RELATED WORK
In this section, literature reviews are conducted to provide

a brief introduction. In particular, Section A.1 focuses on
the definitions on existing probabilistic queries in database
systems and techniques of answering these queries. Section
A.2 introduces the recent studies on approximation tech-
niques of Earth Mover’s Distance for fast evaluation. Section
A.3 discusses in details on the existing solutions to similarity
search on EMD, from database’s perspective of view.

A.1 Probabilistic Queries in Database
Recent years have witnessed the fast advances of proba-

bilistic data management, especially in techniques for effi-
cient and effective query processing. In all of the studies
on probabilistic query processing, two types of queries have
been intensively investigated, top-k query and accumulated
probability query2.

Definition A.1. Top-K Query
Given the multidimensional database D = {s1, s2, . . . , sn}
with exact values in d-dimensional space and weighting vec-
tor (w1, w2, . . . , wd), top-k query returns k objects with the
maximal weighted sum on all dimensions.

While the definition on top-k query is clearly stated, it is
challenging to extend it to probabilistic database. If the ob-
ject si is uncertain on some dimensions, the weighted aggre-
gation also becomes uncertain. To overcome the difficulty,
different solutions are proposed to complete the semantic of
top-k query in probabilistic database, including Uncertain
Top-k [26], Uncertain Rank-k [26], Probabilistic Threshold
Top-k [14], Expected Rank-k [8], PRF ω and PRF e [17].

Definition A.2. Accumulated Probability Query
Given the distributions from database D = {p1, p2, . . . , pn},
accumulated probability query with range R and threshold θ,
return all distributions appearing in R with probability larger
than θ, i.e. {pi ∈ D | Pr(pi ∈ R) ≥ θ}.

Different indexing techniques have been proposed to sup-
port queries following the definition above. When the un-
derlying domain contains a single dimension, for example,
Agarwal et al. [2] proposed an index structure approximat-
ing the distributions with line segments. If the data is rep-
resented with Possible World model, some efficient Monte-
Carlo simulation methods are proposed to evaluate the ac-
cumulated probability query efficiently [9, 20]. There is also
some research studies on R-tree based index structure with
multi-dimensional probability distributions [27].

The problem of range query and k-nearest neighbor query
on EMD is totally different from the query types mentioned
above. First, the objective is to discover similar distribu-
tions, but not to concern the probability of a specified re-
gion in the space. Second, the k-nearest neighbor is based
on the distance to the querying distribution, which cannot
be formulated with a simple ranking scheme as top-k query
does.

2While it is called range query in some studies, we use the
name here to distinguish from our range query definition
w.r.t. EMD.

A.2 Earth Mover’s Distance
Due to the formulation based on linear programming, the

computation cost of Earth Mover’s Distance is expensive.
When first proposed in [21], Rubner et al. showed that exact
EMD can be evaluated with the existing algorithm designed
for the Transportation Problem. The complexity of the al-
gorithm is cubic to the number of bins in the histograms.
This has become the major efficiency bottleneck for any ap-
plication employing EMD as the underlying metric.

Some attempts have been made to accelerate the compu-
tation of exact EMD. In [18], Ling and Okada investigated a
special case of EMD, which used Manhattan distance as the
ground distance dij . They modified the original Simplex Al-
gorithm [19] to exploit the property of Manhattan distance.
Although there is no theoretical proof on the acceleration
effect, their empirical studies implies that their algorithm
takes quadratic time in term of the cell number.

Shirdhonkar and Jacobs [25], as an another attempt, pro-
posed a new distance function to approximate EMD. They
conduct wavelet decomposition on the dual program of EMD
and eliminates the parameters on small waves. The new
distance can be efficiently calculated with linear time to the
number of cells in the histograms. However, their method
does not scale well with large data set.

A.3 Similarity Search on EMD
Existing solutions to the indexing problem on EMD mainly

rely on the framework of scan and refinement [5, 29]. In this
framework, a linear scan on the complete data records ren-
ders some candidates to the query results based on some ef-
ficient lower bound filters on EMD. A detailed framework of
[29], for example, is shown in Figure 15. In pre-processing
step, dimensionality reduction is conducted. In the scan
phase, all reduced records are verified with two filters, EMD
computation in reduced space and LBIM . Given a range
query, a final verification phase returns the final result by
verifying the distances of all candidates passing the previous
filters. For k-nearest neighbor query, the algorithm follows
the optimal multi-step retrieval framework, known as KNOP
[24], to guarantee not more candidates are produced in the
each filter step. Firstly, all records are sorted on a lower
bound. Another sequence of random accesses are conducted
based on that ranking, until the top-k threshold is smaller
than the lower bound of next record in the order. The ma-
jor drawback of KNOP ,w.r.t. EMD, is the high I/O cost
incurred by the sorting operation. Our solution based on
B+ tree successfully overcomes this difficulty and achieves
much better scalability and high concurrency.

In the following, we discuss in details on two lower bound-
ing techniques on EMD, LBIM and Dimensionality Reduc-
tion, both of which are equipped in our index scheme.
Independent Minimization Lower Bound (LBIM):

Given two probabilistic records p and q of dimensionality h
which satisfy

∑

i
p[i] =

∑

j
q[j] = 1, the independent mini-

mization lower bound is the optimal result of the following
linear program:

Minimize :
s.t.

∑

i,j
fij · dij

∀i :
∑

j
fij = p[i] (7)

∀i, j : fij ≤ q[j]

∀i, j : fij ≥ 0
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algorithm

LBIM simplifies the original linear programming prob-
lem of EMD by replacing the constraint

∑

i
fij = q[j] with

fij ≤ q[j]. Intuitively, this LBIM relaxes the original con-
straints on EMD by only requiring the incoming flow not
to exceed the bin’s capacity. This lower bound can be effi-
ciently evaluated with quadratic complexity to the bin num-
ber.
Rule for Histogram Reduction:
A general linear dimensionality reduction of histogram from
dimensionality d to d′ is pictured by a reduction matrix

R = [rij ∈ R
d×d′

]. And the reduction procedure of a d-
dimensional histogram H to a d′-dimensional histogram H ′

is given by:

H ′ = H · R (8)

where the reduction matrix R ∈ Rd×d′ is defined by com-
plying with the following constraints:

∀1 ≤ i ≤ d ∀1 ≤ j ≤ d′ : rij ∈ {0, 1} (9)

∀1 ≤ i ≤ d :
∑d′

j
rij = 1 (10)

∀1 ≤ j ≤ d′ :
∑d

i
rij ≥ 1 (11)

Any dimensionality reduction of the Earth Mover’s Dis-
tance also requires the specification of the corresponding
reduced cost matrix which provides the ground distance in-
formation in the reduced space. The optimal reduced cost
matrix with respect to a certain reduction matrix R can be
obtained by following the rule below:
Rule for Cost Matrix Reduction.
The optimal reduced cost matrix C′ = [c′i′j′ ] is defined by:

c′i′j′ = min{cij |rii′ = 1 ∧ rjj′ = 1} (12)

This rule can ensure the lower bound property to the orig-
inal cost matrix and thus the EMD over the reduced his-
tograms and the LBIM over the reduced histograms can be
the lower bound to the original distance function.

B. UTILIZING FEASIBLE SOLUTION IN
PRIMAL PROGRAM

Algorithm 1 Select Primal Feasible Solution (record
p, record q)

1: Sort the probabilities {p[i]} in non-ascending order
2: Initialize an array {r[j]} with r[j] = q[j]
3: Initialize flow set {fij} with fij = 0
4: for each p[i] in the order do

5: for each r[j] in ascending order of dij do

6: if r[j] > p[i] then

7: fij = p[i]
8: r[j] = r[j]− p[i]
9: else

10: fij = r[j]
11: r[j] = 0
12: p[i] = p[i]− r[j]
13: Return {fij}

Equation 3 implies that any feasible solution to the pri-
mal program serves as an upper bound on EMD. In this
section, we discuss the details on the fast construction of
such feasible solution. This technique is utilized to prune
the computation of exact EMD(p, q) in range query when
the upper bound of EMD(p, q) is already smaller than the
the threshold θ.

Intuitively speaking, our feasible solution construction al-
gorithm sorts the probabilities of p in non-ascending order.
For each p[i], the algorithm tries to construct flows to as-
sign the probability to cells with closer distance. The as-
signment automatically removes the capacity of the target
cell. This procedure continues until all the probabilities are
assigned. The correctness of the algorithm relies on the fact
that

∑

p[i] =
∑

q[j]. Thus, the assignment always ends
with a valid flow set satisfying all the constraints in the pri-
mal program of EMD. In Algorithm 1, the details of the
method are presented. The array {r[i]} is used to maintain
the current capacity of the cells in the histogram. If r[j] can
be fully absorbed by the nearest cell, the algorithm finishes
the computation on p[i]. Otherwise, the computation keeps
assigning p[i] to other cells until enough capacity is met.

4.0]10[ =p 2.0]13[ =p2.0]8[ =p2.0]7[ =p

]11[q ]12[q]14[q]12[q]8[q]14[q

3.0 1.0 2.0 2.0 1.0 1.0

3.141.011.012.012.011.013.0 =´+´+´+´+´+´

Figure 16: Example on feasible solution construc-

tion

Recall the example shown in Table 1. If running the al-
gorithm above s1 and s2 in the table, the algorithm fin-
ishes with the feasible solution in Figure 16. The cost of
the feasible solution is the upper bound UBP of the origi-
nal EMD (Here, UBP =1.3, if dij is Manhattan distance on
the cell positions). Compared against the optimal flows in
Figure 2, the upper bound is slightly larger than the exact
EMD(p, q) = 1.1.

C. THEOREM AND LEMMA PROOFS
In this section, we provide all the proofs to the theorems
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and lemmas in this paper.
Proof to Lemma 3.1

Proof. Based on the primal-dual theory shown in Equa-
tion (3), we know

∑

i
φip[i]+

∑

j
πjq[j] ≤ EMD(p, q) for any

feasible solution Φ. By replacing
∑

i φip[i] with key(p,Φ)
and

∑

j
πjq[j] with ckey(q, Φ), we reach the conclusion of

the lemma.

Proof to Lemma 3.2

Proof. Due to the symmetry property on the metric dis-
tance, we have EMD(p, q) = EMD(q, p). Thus, the lower
bound on EMD(q, p) also works for EMD(p, q). By apply-
ing Lemma 3.1, we have

key(q, Φ) + ckey(p,Φ) ≤ EMD(p, q) (13)

On the other hand, if add key(p,Φ) into ckey(p,Φ), the
following inequalities can be derived.

key(p,Φ) + ckey(p,Φ) =
∑

i
φip[i] +

∑

j
πjp[j]

=
∑

j
(φj + πj)p[j]

≥
∑

j
min

i
(φi + πi)p[j]

= min
i

(φi + πi) (14)

Combing Equation (13) and Equation (14), some simple
algebra brings us to the conclusion of the lemma.

Proof to Lemma 3.3

Proof. The gap between the lower bound and upper
bound on the range query (q, θ) in Equation 6 is minimized
with the following inequalities.

(θ − ckey(q,Φl))−
(

min
i

(φi + πi) + key(q,Φl)− θ
)

= 2θ −min
i

(φi + πi)− (ckey(q,Φl) + key(q,Φl))

≥ 2θ − (ckey(q, Φl) + key(q,Φl))

= 2θ (15)

The first inequality is due to the the metric property of dij

and the constraint on φi and πj , i.e. φi + πi ≤ d(i, i) = 0.
The second inequality is derived with the lower bound on
EMD(q, q).

Proof to Lemma 3.4

Proof. If there exists some feasible solution Φ′ dominat-
ing Φ, it is true that φ′

i ≥ φi for all i and π′
j ≥ πj for all j

based on Definition 3.2. This leads to the inequality below.

∑

i
φ′

ip[i] +
∑

j
π′

jq[j] ≥
∑

i
φip[i] +

∑

j
πjq[j] (16)

Since Φ′ is a feasible solution to the constraints, Φ′ is then
a better solution than Φ to the dual program on EMD(p, q),
which contradicts to the optimality condition of Φ in the
linear programming. Therefore, such Φ′ does not exist.

D. ALGORITHM PSEUDOCODES
In this section, detailed algorithm pseudocodes are pro-

vided to supplement Section 4.

Algorithm 2 Range Query (record q, threshold θ, B+

trees {Tl})

1: for each Tl do

2: Calculate minSuml = min
i

(φl
i + πl

i)

3: lb = minSuml + key(q, Φl)− θ
4: ub = θ − ckey(q,Φl)
5: Cl = RangeQuery(Tl, lb, ub)
6: Clear buffer B
7: B = C1 ∩ . . . ∩ CL

8: Filter the B based on R-EMD
9: Filter the B based on LBIM

10: Filter the B based on UBP

11: Refine the B using the original EMD
12: Return B

D.1 Range Query Algorithm
Given a range query, (q, θ), from line 1-6 of Algorithm

2, we firstly calculate the lower bound and upper bound
based on the theory proposed in Section 3.1. Range queries
on the B+ trees with the corresponding query range return
candidate sets to {Cl}. Intersection on these sets renders a
new candidate set in buffer B. Candidates in B are then
filtered with the bound derived with R−EMD, LBIM and
UBP in order. Finally, the exact query result is verified with
exact EMD computation, as shown from line 7 to line 11.

D.2 kNN Query Algorithm
In Algorithm 3, from line 1-2, we firstly locate the address

of the leaf node whose key value is closest to key(q, Φl). At

second, two pointers,
−→
Cl and

←−
Cl, are initialized with pointers

to that leaf node. In line 4, we set kNN threshold ε to MAX
which means that we need to consider all data records at
the first round. Traversal on each B+ tree continue, using

pointers
−→
Cl and

←−
Cl, on line 7-16. Emphatically,

−→
Cl and

←−
Cl

crawl the data records from the position in right and left di-
rections respectively. If the crawled record is observed by L
B+ trees, it is added into the checkList. Later, each record
in the checkList is verified by use of B+ Tree filter(line
20-21), R − EMD filter(line 22-23) and LBIM filter(line
24-25). Final refinement using exact EMD computation is
performed and the update on both ε and kNN list when a
record in checkList has an EMD value smaller than the cur-
rent ε, see line 27-31. The updated ε is then used to update
the range boundaries of L trees. If all elements within its
tree’s range boundary is visited and the checkList is empty,
the algorithm terminates and returns the final kNN results.

E. ALGORITHM COMPLEXITY ANALYSIS
For the algorithm complexity analysis between TBI and

SAR, we provide the worst case analysis on kNN query
below in brief. The worst case for both TBI and SAR
happens when none of the filtering techniques is able to
prune any candidate record from the database. Assume
that the database cardinality is N , the number of histogram
bins is d and there are L B+ trees equipped. SAR takes
O(N) time to scan the complete data set, O(N log 2N) time
to sort all the candidates and O(Nd3) time to verify the
EMDs for all records. The total computation time of SAR is
thus O(N log N + Nd3). In the same situation, TBI spends
O(L(log N + N)) time on candidate selection over all L B+
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Algorithm 3 kNN Query (record q, k, B+ trees {Tl})

1: for each Tl do

2: Initialize
−→
Cl and

←−
Cl using the info of key(q, Φl)

3: Initialize each element in array status as 0
4: ε =MAX
5: while TRUE do

6: for each TL do

7: if
−→
Cr.next(ε)! = NULL then

8: rId =
−→
Cr.getNext()

9: status[rId] + +;
10: if status[rId] == L then

11: checkList.add(rId)

12: if
←−
Cl.next(ε)! = NULL then

13: lId =
←−
Cl.getNext()

14: status[lId] + +
15: if status[lId] == L then

16: checkList.add(lId)
17: if (Cannot getNext in all trees)

&&(checkList.empty==TRUE) then

18: Return {kNNList}
19: for each element eli in checkList do

20: if max
l

(key(eli, Φl) + ckey(eli, Φl)) > ε then

21: continue;
22: else if Can be filtered by R-EMD then

23: continue;
24: else if Can be filtered by LBIM then

25: continue;
26: else

27: if EMD(eli, q) < ε then

28: kNNList.add(eli)
29: if kNNList.size == k + 1 then

30: Delete the one in kNNList with the
largest EMD to q

31: ε = max
i

(EMD(kNNList[i], q))

trees and O(Nd3) time on distance refinements. This leads
to the total complexity of O(LN + Nd3). Restate that L is
normally a small constant and N can converge the infinity,
which means the time complexity of TBI is better than that
of SAR.

F. EXPERIMENT SETUP
In this section, we introduce the setup of the experiments,

including the data preparation, experimental environment
and parameter settings. We begin with describing the three
real data sets we used.
RETINA1 Data Set: This is an image data set consists
of 3,932 feline retina scans labeled with various antibod-
ies. For each image, twelve 96-dimensional histograms are
abstracted. Each bin of the histogram has a 2-dimensional
feature vector. A feature represents the location of its corre-
sponding bin and is used for the ground distance calculation.
IRMA Data Set: This data set contains 10,000 radiogra-
phy images from the Image Retrieval in Medical Application
(IRMA) project [1]. The dimensionality of each histogram in
IRMA is 199 and the feature of each bin is a 40-dimensional
vector. Thus, IRMA becomes the most time-consuming data
set for each individual EMD calculation amongst our three
real data sets.
DBLP Data Set: This is a 8-dimensional histogram data

Parameters Varying Range

search range RETINA1-θ 0.3,0.35,0.4,0.45,0.5
search range IRMA-θ 0.3,0.4,0.5,0.6,0.7
search range DBLP-θ 0.1,0.15,0.2,0.25,0.3
k of kNN query 2,4,8,16,32,64
ground distance Euclidean, Manhattan
DBLP data size 50,100,150,200,250 (×103)

Table 2: Varying parameters

set with 250,100 records, and it is generated from the DBLP
database retrieved in Oct. 2007. The 8 dimensions of each
histogram represent 8 different domains in computer sci-
ence, including artificial intelligence, application, database,
hardware, software, system, theory and bio-information. We
define the feature of each bin/domain considering its corre-
lation to the following three aspects, i.e., computer, mathe-
matics and architecture. As thus, each histogram dimension
will have an 3-dimensional feature vector. For the other spe-
cific content of DBLP data set, please refer to [31].

RETINA1 and IRMA data sets are also used by literature
[29]. We calculate the ground distance between arbitrary
two bins based on their feature vectors. For example, on
IRMA data set, the ground distance between bin i and bin
j can be the Euclidean Distance between their corresponding
40-dimension feature vectors.

The reported results in our experiments are the averages
over a query workload of 100. Each complete data set is di-
vided into a query data set containing 100 query histograms
and the remaining data form the database to be queried.
Therefore, the cardinalities of the RETINA1, IRMA and
DBLP databases are 3,832, 9,900 and 250,000 respectively.
We compare our similarity query algorithm with the scan-
and-refine algorithm (we named it as SAR) proposed in lit-
erature [29]. The SAR algorithm, to the best of our knowl-
edge, is the most efficient exact EMD-based k-NN algorithm
over high-dimensional histograms. The dimension reduction
matrixes used in SAR are the most excellent ones accord-
ing to the experimental results in [29]. Specifically speak-
ing, we use the 18-dimensional reduction matrix generated
by FB-ALL-KMed method on RETINA1 data set and use
the 60-dimensional reduction matrix yielded by also the FB-
ALL-KMed method on IRMA data set. The default filter
function chain we used in our TBI methods follows ’B+

Tree Index → R-EMD(EMD on reduced space)→ LBIM →
UBP → EMD(EMD on original space)’. Particularly, we
leave out the UBP filter in the k-NN query. And we skip
the R-EMD filter on the DBLP data set, for the histogram
dimensionality in DBLP is 8 and it is already very low. To
verify the efficiency of our algorithm, we measure the Query
Response Time, the Number of EMD Refinement, Querying
I/O cost in our experiments.

In Table 2, we summarize the parameters and their vary-
ing ranges in our experiments. The default value of each
parameter is highlighted in bold.

All the programs are compiled by Microsoft VS 2005 in
Windows XP and run on a PC with Intel Core2 2.4GHz
CPU, 2G RAM and 150G hard disk.
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