
On Multi-Column Foreign Key Discovery

Meihui Zhang
National University of

Singapore

mhzhang@comp.nus.edu.sg

Marios Hadjieleftheriou
AT&T Labs - Research

marioh@research.att.com

Beng Chin Ooi
National University of

Singapore

ooibc@comp.nus.edu.sg
Cecilia M. Procopiuc
AT&T Labs - Research

magda@research.att.com

Divesh Srivastava
AT&T Labs - Research

divesh@research.att.com

ABSTRACT
A foreign/primary key relationship between relational tables is one
of the most important constraints in a database. From a data anal-
ysis perspective, discovering foreign keys is a crucial step in un-
derstanding and working with the data. Nevertheless, more often
than not, foreign key constraints are not specified in the data, for
various reasons; e.g., some associations are not known to designers
but are inherent in the data, while others become invalid due to data
inconsistencies. This work proposes a robust algorithm for discov-
ering single-column and multi-column foreign keys. Previous work
concentrated mostly on discovering single-column foreign keys us-
ing a variety of rules, like inclusion dependencies, column names,
and minimum/maximum values. We first propose a general rule,
termed Randomness, that subsumes a variety of other rules. We
then develop efficient approximation algorithms for evaluating ran-
domness, using only two passes over the data. Finally, we validate
our approach via extensive experiments using real and synthetic
datasets.

1. INTRODUCTION
A foreign/primary key relationship between relational tables is

one of the most important constraints in a database. From a data
analysis perspective, discovering foreign keys is a crucial step in
understanding and working with the data. For that reason, database
systems allow the explicit specification of foreign key constraints
in the database schema. Nevertheless, in practice, database design-
ers frequently fail to specify such constraints for various reasons,
including: they are not aware of implicit relationships inherent in
the data; such relationships might hold across multiple databases; it
is not feasible to specify the constraints due to data inconsistencies
(e.g., those arising from data integration or from database evolu-
tion over time); or because of performance considerations. When
this happens in enterprise databases, which often contain hundreds
of tables, thousands of columns and insufficient (or missing) doc-
umentation, even expert users have a difficult time identifying for-
eign key constraints.

In this paper, we propose a novel approach for discovering for-
eign/primary key (fk/pk) relationships between single or multiple

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

TID CID SMB ...

1

...

10000

Holding

TID SMB QTY ...

1

...

10000

Holding Sum.

CID BID ...

1 54

... ...

1000 2

CID SMB QTY

Trade Customer Acct.
BID STID ...

1

...

100

Broker

TID STID ...

1

...

10000

Trade History

Figure 1: A small subset of the TPC-E schema with one multi-
column and several single-column foreign keys.
columns in relational databases. Surprisingly, little previous work
deals with the case of discovering multi-column foreign keys [14].
Even for single-column keys, existing work is limited and focuses
mainly on identifying inclusion dependencies, since the only for-
mal requirement for specifying a foreign key constraint is that the
foreign key be a subset of the primary key [1,14]. However, check-
ing only for inclusion can lead to a large number of false positives.

For example, Figure 1 shows a portion of the benchmark TPC-
E schema, which represents a stock transaction system. It has
information about customer accounts, companies, brokers, stock
trades, etc. Column Trade.TID contains all integers in the interval
[1, 10000], while column Broker.BID, which is unrelated to TID,
contains all integers in [1, 100]. A simple inclusion test would in-
correctly report (Broker.BID, Trade.TID) as a foreign/primary key
pair. This scenario arises frequently in practice because of auto-
increment fields. Of course, one could adapt the test so that it
discards pairs in which one column is a consecutive subset (e.g.,
a prefix or a suffix) of the other. However, that is not sufficient.
Notice that the values in column Customer Account.BID, which
is a foreign key of column Broker.BID, are a random subset of
a prefix of Trade.TID. Hence, the inclusion test adapted as above
would still incorrectly report (Customer Account.BID, Trade.TID)
as a foreign/primary key pair. To complicate matters further, this
problem is not limited to numerical attributes. It arises with date-
time fields that may contain consecutive values, or even alphanu-
meric fields composed of letters followed by a number (e.g., A-
1, A-2). The same is true for multi-column keys. For example,
Holding.(CID, SMB) is a two-column foreign key of Holding Sum-
mary.(CID, SMB). However, Broker.(BID, STID) is not a valid for-
eign key of Trade History.(TID, STID), even though column-wise
inclusion is satisfied.

Reducing the number of false positives is a critical requirement805

in order to make the identification of useful relationships feasible.
As we show in the experimental section the number of false posi-
tives (i.e., pairs of columns that satisfy inclusion but are not valid
fk/pk constraints) can be in the order of hundreds. Even for domain
experts the task of sifting through and manually validating candi-
dates is overwhelming. Previous work has proposed heuristic rules
to reduce the number of false positives by identifying important
properties that a good foreign key should satisfy. A comprehensive
list of such properties, compiled based on extensive experimenta-
tion, appears in Rostin et al. [17]. Some of the most important rules
are: 1. A foreign key should have significant cardinality; 2. A for-
eign key should have good coverage of the primary key; 3. A for-
eign key should not be at the same time a primary key for too many
other foreign keys; 4. The set of values of a foreign key should not
be a subset of too many primary keys; 5. The average length of the
values in foreign/primary key columns should be similar (mostly
for strings); 6. The primary key should have only a small percent-
age of values outside the range of the foreign key; 7. The column
names of foreign/primary keys should be similar. Indeed, a lot of
previous work, especially in the realm of schema matching, has
used similar rules to find associations between columns [10].

It is important to note that counter-examples exist for any rule
one tries to devise. One can easily come up with such examples for
rules 1 and 2. A counter-example for rules 3 and 4 is when social
security numbers or telephone numbers are used in a database as
primary keys. Such keys are expected to appear in a large number
of tables. Kang and Naughton [10] give several counter-examples
for rule 7, i.e., columns with no meaningful association but very
similar names.

In this work, we propose a novel method for measuring the like-
lihood that a pair of columns that satisfy inclusion is a useful fk/pk
constraint. Our approach subsumes a variety of previous rules, and,
as we show in Section 5, is both highly scalable and accurate.

Consider the set of values in a primary key P , ordered by the
natural order in the underlying domain (i.e., numerical order for
numeric attributes, lexicographic order for strings). We conjecture
that in most cases the values in a foreign key column F form a
(nearly) uniform random sample of the values in P . For example,
consider columns Broker.BID and Customer Account.BID from
Figure 1. The broker ids that appear in Customer Account are ex-
pected to be “sprinkled” uniformly throughout the ordered set of
all broker ids. This is because we have no reason to expect a cor-
relation between the semantics of the foreign key constraint (“this
broker works with these customers”) and the mechanism through
which the broker ids are generated. For example, ids may be con-
secutive numbers between 1 and 100 generated via auto-increment.
By contrast, the subset of broker ids that appear in Customer Ac-
count may reflect, say, those brokers with great reputation. It is
highly unlikely that a database instance is designed such that a for-
eign key is a biased sample of the respective primary key (e.g., a
prefix or a suffix in the ranked order). Even if this is the case, for
dynamic databases the distribution of fk/pk values is expected to
change over time, eventually eliminating such bias. The closer a
column F is to being a uniform random sample of a primary key
P , the higher we consider the likelihood that (F, P) is a useful
fk/pk constraint.

Randomness is a strong requirement that implies rules 1-6: If F
is a uniform random sample of P , rule 2 (and by extension rule 1
relative to the cardinality of P) is satisfied. Similarly for rule 6. If
the underlying distribution of column F is the same as column P ,
and F is a random sample of P , then the probability that a substan-
tial number of columns F ′ are random samples of F , without any
real correlation between F and F ′, is very small (rule 3). Similarly,

if F is a random sample of P , and F is a random sample of some
other column P ′ with the same underlying distribution as P , then
P and P ′ are clearly highly correlated. First, it is unlikely that a
large number of such correlated columns P ′ exist (rule 4). Second,
any such association (F, P ′) has high confidence if (F, P) has high
confidence, so it is equally valid. Finally, if F is a random sample
of P rule 5 is straightforwardly satisfied.

Nevertheless, one can come up with counter-examples for the
randomness rule as well. Consider a data warehouse that contains
a table P with all historical transactions, and a table F that refer-
ences only the last month of transactions (for the purpose of effi-
ciently answering queries on the latest data). If transaction identi-
fiers are assigned using an auto-increment field, then the transaction
id field in table F is a foreign key to table P and the transaction id
values in F form a suffix of the ids in P . Note that this example
also invalidates rule 6. Unless a foreign key constraint is specified
in the schema, no formal method can decide with 100% certainty
whether a column F is a foreign key with respect to primary key
P . As mentioned above, useful fk/pk relationships are often data-
dependent, and may not be specified in the schema. Hence, we
cannot expect to find a solution with 100% precision/recall. How-
ever, as we show via extensive experiments over a large number of
real databases, the randomness rule eliminates a very large number
of false positives in practice.

In this paper we show that Randomness efficiently discovers mean-
ingful foreign keys, including multi-column foreign-keys (which
have not been considered by previous work). Our experiments
show that our approach has higher accuracy than previously pro-
posed methods, scales to very large datasets, and does not require
any prior knowledge of the data (in contrast with the method in [17]).
Our contributions are as follows:

• We define a distance measure between distributions, which
allows us to quantify Randomness. This leads to a novel for-
eign key discovery rule that prunes a large number of false
positives.
• We design fast approximate algorithms for evaluating ran-

domness over a large set of columns, using quantile sum-
maries.
• We design an I/O efficient algorithm for discovering single

and multi-column foreign keys, which requires only two lin-
ear scans of the data. It outputs a list of fk/pk pairs, in de-
scending order of their randomness scores. The score reflects
the likelihood that the pair is a useful foreign key constraint.
• We present a comprehensive experimental validation of our

approach using a large number of real and synthetic datasets.

2. PRELIMINARIES
Let T be a collection of relational tables, possibly from multiple

databases. Let C be the set of all columns in T. For the remainder
of this paper, we use F (P) to refer to both a single and multi-
column foreign (primary) key. Abusing notation, F and P refer
both to the names of the columns (or multi-columns) and to their
respective set of distinct values (or tuples). In general, F and P are
multi-sets. Let |X| be the number of distinct values in multi-set X
(or distinct tuples if X is multi-column).

We assume that the single and multi-column primary keys in T
are known, either from schema specification or from a preprocess-
ing phase. In the latter case, Gordian [19] can be used to compute
them. Let Ps (Pm) denote the set of single-column (multi-column)
primary keys and P = Ps ∪Pm.

Similar to previous work, in order to cope with data inconsisten-
cies, we relax the inclusion property that a foreign key must satisfy.806

P

SMB

C
I
D

F F'

Figure 2: A good foreign key F is a set of random values from
the primary key. Column F ′ fails the randomness test.
More precisely, we require that

σ(F, P) =
|F ∩ P |
|F | ≥ θ,

where σ(F, P) is the inclusion coefficient and θ is user-defined. In
our experiments, we use θ = 0.9, i.e., partial inclusion is satisfied
if at least 90% of the values in F are also contained in P . We use
the notation F ⊂θ P to denote that σ(F, P) ≥ θ.

Computing σ(F, P) is very expensive, especially when consid-
ering the potentially very large number of multi-column candidate
fk/pk pairs. Therefore, we estimate all inclusion coefficients by
computing a bottom-k sketch [5] for each column (refer to Ap-
pendix C for details on bottom-k sketches). We then use the SCS
estimator from [5], which estimates the Jaccard coefficient ρ(F, P) =
|F∩P |
|F∪P | . Since σ(F, P) = ρ(F,P)

ρ(F∪P,F)
, we estimate σ(F, P) by di-

viding the estimators for the two Jaccards. 1 Section 4 provides
details on how to efficiently compute bottom-k sketches for both
single and multi-column candidate keys.

3. RANDOMNESS
In this section we assume that the inclusion coefficients between

all pairs of single/multi-column pks and columns in C have been
computed, and pairs that do not satisfy partial inclusion have been
discarded. As mentioned in Section 1, we conjecture that random-
ness is a strong indicator of the quality of an fk/pk pair. Formally:

DEFINITION 1 (RANDOMNESS TEST). Given two sets of val-
ues (tuples) F and P , test the statistical hypothesis that the distinct
values (tuples) in F have the same underlying distribution as the
distinct values (tuples) in P .

Figure 2 shows an example of a two-column primary key and
two candidate foreign keys. Set F is a good fk, since it appears to
be a random subset of values from the pk. Set F ′ is a contiguous
subset of the pk and does not pass the randomness test.

Domain Order. The randomness test requires the existence of
an underlying order over the domain of the primary and foreign
keys. To see this, consider the example in Figure 3. If the val-
ues are sorted numerically, then the candidate column F is a prefix
of the primary key. However, when the same values are sorted
lexicographically, F falsely appears to be a random sample of the
primary key. To handle this issue, we adopt the following natu-
ral convention: numeric values are sorted numerically, and strings
are sorted lexicographically. The implicit assumption is that it is
very rare that a column containing only numeric values is a foreign
key for a primary key that contains strings (in which case it should
have been sorted lexicographically, rather than numerically). When
columns contain both numeric, alphanumeric, and string values, we
use a combination sort (same as the Unix “sort -n” command). For
multi-column keys we define an order along each dimension, as
above.

1In Section 5 we discuss two alternative estimators we considered.
Each had a significant drawback. By contrast, this estimator proved
highly accurate.

Buy SmartDraw!- purchased copies print this
document without a watermark .

Visit www.smartdraw.com or call 1-800-768-3729.

Figure 3: A column containing numeric values might falsely
appear to be a random sample of a primary key based on lexi-
cographic sorting of values.

P

F

FL MA ND NJ TX

FL TX

CA MA NJ TXFL ND TXCA

CA

FL

CA

1.5 1.5 3.5 3.5 5 6 7 8.5 8.5

WA

WA

10

Figure 4: The Wilcoxon test: 1. Sort values in multi-set F ∪ P ;
2. Assign ranks; 3. Compute the rank-sum of values in F (13.5
in this example).

Randomness measure. A standard, non-parametric statistical
test for randomness is the Wilcoxon rank-sum test [18]. Assume
that F, P are single-column candidate keys. Sort the values in the
multi-set union F ∪P and rank them. Since F ⊂θ P , the majority
of values in F appear in P , so there are duplicate values. Assign
the mean rank for duplicate values (i.e., if a duplicate value is 3rd
and 4th in the sorted order, it is assigned rank 3.5; see Figure 4).
Finally, compute the sum of ranks of all values in F . This rank-
sum is an indication of whether F and P are drawn from the same
distribution. Intuitively, if the rank-sum is too small, then most
values in F are contained in a prefix of P , and if the rank-sum is
too large then most values in F are contained in a suffix of P .

The Wilcoxon test is straightforward for univariate distributions
but does not generalize to multivariate distributions, so it cannot be
used for multi-column keys. Attempting to apply the Wilcoxon test
separately for each dimension of a multi-column key results in false
negatives. For example, consider the multi-column key F in Figure
2. Even though F appears to be a uniform random sample of P ,
the projection of F in either dimension is not a uniform sample due
to the multiplicity of some of the values (two points project into the
same value in both dimensions). An independent Wilcoxon test in
either dimension would dismiss F .

We now propose a novel approach for deciding whether two
multi-dimensional sets are drawn from the same distribution. Our
method computes a value that reflects how close the distributions
of the two sets are. We start by defining a probability distribu-
tion for each set, so that the total probability mass is 1 (this step
is detailed later in the section). A standard distance measure be-
tween two probability distributions is the Earth Mover’s Distance
(EMD) [16]. The smaller the value EMD(F, P) is, the closer the
distributions of F and P are. The output of our algorithm is the
list of (F, P) pairs, in increasing order of their (normalized) EMD
values.

Intuitively, EMD measures the amount of work needed to con-
vert the set of values of the foreign key into the set of values of the
primary key. If we regard each distribution as piles of dirt spread
over some space, EMD is the least amount of effort needed to con-
vert the first set of piles into the second. The effort is the amount
of dirt that needs to be moved times the distance it has to travel.
Figure 5 illustrates the computation of EMD for pairs (F, P) and
(F ′, P) from Figure 2. In this example, all points in a set have
equal probability and the sum in each set is equal to 1. To convert
F into P , a probability mass of 0.1 needs to be moved from each807

P

SMB

F F'

0.1

0.1

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.1

0.1

C
I
D

Figure 5: EMD quantifies the amount of work required to con-
vert one set of values into another.

point p ∈ F to the nearest point np(p) ∈ P \ F . Similarly for
F ′ and P . Since the points of F are uniformly distributed over P
the average distance between p and np(p) is smaller than the aver-
age distance for F ′. Hence, the amount of work needed to convert
distribution F to P is smaller than the one to convert F ′ to P .

While the definition of EMD applies to single and multi-dimen-
sional sets, it has a crucial restriction: unlike the Wilcoxon test,
EMD requires a metric distance between the values of the two dis-
tributions. A metric distance can be used only when both columns
F and P contain numeric values, but not when they contain strings.
Even for numeric values, using the underlying distance is undesir-
able because we need to be able to compare EMD values between
different candidate pairs for sorting pairs according to confidence.
However, given distinct F, F ′, P, P ′, if F and P have larger ranges
of values than F ′ and P ′, then EMD(F, P) will generally tend to
be larger than EMD(F ′, P ′), even if F is a “more random” sub-
set of P than F ′ is for P ′. Therefore, a uniform way of defining a
distance function for numeric and string columns is needed, which
is independent of the range of values in any column.

We propose using the distance between the ranks of the values in
the pk column. For single-column F and P , rank all values in P in
the underlying ordered space, then define the rank distance between
two values in F or P to be the (absolute) difference between their
ranks in P . For multi-columns F and P , define the rank distance to
be the sum of single-dimensional rank distances (i.e., the Manhat-
tan distance). However, the rank distance will still introduce bias
when comparing EMD(F, P) and EMD(F ′, P ′) if the number
of values in |P | is much larger than the number of values in |P ′|.
Therefore, the rank distance is normalized by the number of values,
in effect replacing ranks by quantiles:

DEFINITION 2 (QUANTILE DISTANCE). Given a multi-col-
umn set X consisting of n columns, a total order in each column
Xi, a function qi(x) that returns the quantile order of value x in
column Xi, and two tuples v, w ∈ X , the quantile distance is

d(v, w) =
∑

1≤i≤n

|qi(v)− qi(w)|.

Notice that the quantile distance is independent of the type of val-
ues in X as long as a total ordering of the values in each dimen-
sion is defined. We refer to the EMD measure using the quantile
distance as Quantile-EMD. A final normalization is needed to com-
pare (F, P) and (F ′, P ′) when they have different dimensionality.
Let EMDn(F, P) = EMD(F, P)/n, where n is the dimension-
ality of F and P .

Computing Quantile-EMD. We now consider the problem of
efficiently approximating EMD(F, P) for all pairs of candidate
keys (F, P). The first step is to define a probability distribution
for F and P . The easiest choice is to let each value in F have
a probability mass of 1/|F |, and each value in P have a proba-
bility of 1/|P |. Computing EMD is equivalent to the well-known
transportation problem and can be solved by the Hungarian algo-
rithm [7]. However, the Hungarian algorithm has cubic complexity
and is very inefficient over large F and P . For our purposes, it

P

SMB

C
I
D

1 1

1

1

1 1

11 1

1

A

B

Figure 6: Constructing a 2-dimensional 4-quantile histogram
for primary key P .

is sufficient to compute EMD on coarser probability distributions.
More precisely, we use a quantile histogram to define the probabil-
ity distribution in the primary key, since quantiles best approximate
the original distribution w.r.t. the quantile distance. The probability
distribution in the candidate foreign key is then defined with respect
to the quantiles of the primary key.

For every single/multi-column key P ∈ P construct a quantile
histogram based on the `-quantiles of P (for some constant `). In
one dimension, the histogram is equi-depth. In multiple dimen-
sions, compute quantiles separately on each dimension (over the
distinct values in that dimension) and construct a grid based on the
quantiles in each dimension. An example 2-dimensional 4-quantile
histogram is shown in Figure 6. Notice that in this particular exam-
ple there exists a three point tie in each dimension. After projecting
the points in either dimension there are only 8 distinct values left.
Hence, the 1st 4-quantile is the point with rank 8 · 1/4, the 2nd is
the one with rank 8 · 2/4, etc. The probability distribution of P
based on the corresponding histogram is defined as:

DEFINITION 3 (QUANTILE HISTOGRAM). Given a multi-col-
umn primary keyP consisting of n columns, letQi = {qi1, . . . , qi`i}
be the `i-quantiles of P in column i (different columns may have
different number of quantiles). LetGP = Q1×. . .×Qn be the cor-
responding n-dimensional quantile grid. The quantile histogram P̄
is defined as the number of values of P within each grid cell ofGP .
The total number of grid cells is |GP | = `1 × . . .× `n. The prob-
ability distribution over P is defined as the normalized P̄ ; i.e., the
count in each cell is divided by |P |.

For a candidate multi-column F , the probability distribution his-
togram based on the quantile grid GP of P is defined as:

DEFINITION 4 (DISTRIBUTION HISTOGRAM). Given a can-
didate pair (F, P), the distribution histogram F̄P of F with respect
to P is defined as the number of distinct values of F within each
grid cell of the quantile grid GP . The probability distribution over
F is defined as the normalized F̄P ; i.e., the count in each cell is
divided by |F |.

We now describe how to approximate EMD(F, P) using the
quantile histograms. Assume that the probability mass of a grid
cell is concentrated in its upper right corner. Therefore, the dis-
tance between two grid cells is defined as the quantile distance be-
tween the upper right corners of the cells. For example, in Figure 6,
the distance between grid cells A and B is (3/4− 2/4) + (2/4−
1/4) = 0.5. As before, the Hungarian algorithm is used to com-
pute the EMD between the two distributions. The input size is now
|GP | = `n � |P | (usually 1 ≤ n ≤ 4 and ` is small). Once the
normalized histograms are computed, the method requires no addi-
tional access to the raw data. Note that the value ` need not be the
same for all primary keys. Since Quantile-EMD uses the quantile
distance we can compare EMD(F, P) and EMD(F ′, P ′) even
if the quantile histograms were computed for different values of `.
This is important, since some primary keys may have only a few
values. On the other hand, a larger ` for larger primary keys will
improve accuracy.

Now we can bound the approximation error for the Quantile-808

EMD in the grid space GP versus the initial space P (the proof is
in Appendix D).

LEMMA 1. Let n be the space dimensionality, 1/` be the side
length of the cells in GP (in every dimension without loss of gen-
erality), and EMDn,P , EMDn,GP be the normalized EMD in the
primary space P and reduced space GP respectively. Then

|EMDn,P − EMDn,GP | ≤ 2/`.

4. DISCOVERING FOREIGN KEYS
Throughout this section, we use the notations from Section 2 (see

also Table 5 in the Appendix). To discover foreign keys, we first
compute inclusion between all pairs of primary keys and columns
in C and then evaluate randomness only on the pairs satisfying in-
clusion. We accomplish this by computing bottom-k sketches and
quantile histograms with two passes over the data. A pseudocode
of the algorithm described below appears in Appendix B.

For single-column candidate foreign keys and single/multi-col-
umn primary keys, the bottom-k sketches can be computed in one
linear scan of the database. Multi-column candidate foreign keys
are challenging due to their potentially large number. However, if
P is a primary key consisting of columns (C1, . . . , Cn) and F is
a candidate foreign key consisting of columns (C′1, . . . , C

′
n), then

σ(F, P) ≤ minni=1σ(C′i, Ci). Hence, it is sufficient to consider
only candidates F such that σ(C′i, Ci) ≥ θ, for all i, where all
C′is belong to the same table. We expect only a small number of
pairs (F, P) to have these properties (and confirm this experimen-
tally). For such pairs (F, P), we compute the bottom-k sketch of
F and estimate σ(F, P), with a second pass over only the relevant
columns in F (recall that the sketch of P has been computed during
the first pass).

Quantile histograms for a single-column primary key P can be
computed exactly in one linear scan if there exists an index on P
– as is usually the case for pks – by reading P in sorted order and
computing the quantiles incrementally (this requires knowledge of
|P | which can be found from table statistics). If an index does not
exist we can approximate the quantiles in linear time using quantile
summaries [9]. The distribution histograms of single-column can-
didate fks can be trivially computed in linear time after the quantile
histograms of all pks have been computed and stored in memory;
for an fk F we simultaneously compute all histograms w.r.t. all
pks P for which (F, P) passes inclusion. In our experiments, the
average number of such pairs, for a fixed F , was less than 10.

For a multi-column primary key P , the quantile histogram re-
quires two passes over the data. In the first pass, we compute the
quantile grid for each column C ∈ P (either using an index or a
quantile summary) and construct a multi-dimensional quantile grid.
A subtle point here is that a column C of a multi-column pk might
not be a pk itself; estimating quantiles on the distinct values in
C requires using duplicate insensitive quantile summaries [6]. In
the second pass, we scan P and populate the quantile grid. We
also scan each multi-column fk F and simultaneously compute all
relevant distribution histograms. In our experiments, the average
number of such pairs, for a fixed F , was less than 5.

We now summarize each of the two linear scans:
Phase 1. Read all columns in table-wise order (i.e., row by row)

and build bottom-k sketches for all columns in C, as well as for
all multi-column primary keys in Pm. Also build quantile grids
for all single/multi-column primary keys. All structures are stored
in two hash tables B (for bottom-k sketches) and Q (for quan-
tile/distribution histograms), using the name of the column(s) as the
hash key. Evaluate all (single-column) inclusions between F ∈ C
and P ∈ Ps and store candidate pairs in Fs. Finally, evaluate

(single-column) inclusions between C ∈ C and Ci ∈ P, P ∈ Pm

and store candidates in S(Ci).
Phase 2. For each multi-column pk P = (C1, . . . , Cn), con-

sider the n sets S(Ci) = {C ∈ C | σ(C,Ci) ≥ θ, 1 ≤ i ≤ n}
computed in Phase 1. Then F = (C′1, . . . , C

′
n) ∈ S(C1) × . . . ×

S(Cn) is a candidate fk for P if there exists a table T s.t. ∀1 ≤
i ≤ n : C′i ∈ T . Compute, for each multi-column pk P the set of
its candidate foreign keys and insert pairs (F, P) in Fm. This re-
quires access only to the sets S(C1), . . . , S(Cn), which are stored
in memory.

Next, for each (F, P) ∈ Fs, scan each single-column F and
compute its distribution histograms w.r.t. all relevant primary keys
P . Compute EMD1(F, P) and store it in memory. For each
multi-column candidate (F, P) ∈ Fm scan F and compute its
multi-column bottom-k sketch as well as its distribution histograms
w.r.t. all P . For each such P , verify whether (F, P) satisfies inclu-
sion (recall that the multi-column bottom-k sketch of P was com-
puted in Phase 1). If (F, P) does not pass the test, discard the dis-
tribution histogram F̄P and remove (F, P) from Fm. Finally, com-
puteEMDn(F, P) for all (F, P) ∈ Fm and return F = Fs∪Fm,
sorted in increasing order of EMDn values.

5. EXPERIMENTAL EVALUATION
We evaluate our algorithm for discovering fk/pk constraints on

two benchmark synthetic databases (TPC-E and TPC-H), as well as
on two real datasets: a Wikipedia (WP) snapshot from March 2008
and an IMDB snapshot from January 2010. All these datasets come
with a schema specification (see Appendix E for details). We im-
plemented our algorithms in C++, and performed the experiments
on an Intel Core2 Duo 2.33 GHz CPU with 4GB RAM running
MySQL. We use three standard accuracy measures to evaluate our
method: precision, recall and F-measure (the harmonic mean of
precision and recall). Each measure is applied to two sets of fk/pk
constraints: the “golden standard” set specified in the schema, and
the top-X% constraints reported by our algorithm (for various X).
We start by evaluating the accuracy of EMD computation, then
evaluate the overall algorithm for both accuracy and scalability. In
addition, we discuss how the results change if we also take into
account the similarity of column names. Finally, we compare our
results with the machine learning approach of Rostin et al. [17],
which uses the 7 rules discussed in Section 1. For completeness,
we also include experiments on bottom-k sketches, which show
that the partial inclusion estimator is highly accurate and does not
influence the overall results.

5.1 EMD Computation
By Lemma 1, the error in the computation of EMD(F, P) is

bounded by 2/`, where ` is the number of quantiles in each dimen-
sion. In practice, this error is negligible even for small `. Table 1
shows the average difference between the EMD computed using
` ∈ {4, . . . , 1024} quantiles and 2048 quantiles. The averages are
over all columns in the TPC-H database that pass inclusion. The
reason we do not compute the differences to the actual EMD value
(i.e., using all quantiles) is that EMD has cubic complexity, which
is very expensive to compute when the primary key has Ω(104) val-
ues. Clearly, the EMD values converge very quickly as ` increases.
Therefore, small values of ` are sufficient.

The last column of Table 1 shows that, when using 256 approxi-
mate quantiles, the difference is only 10−4 bigger than for 256 ex-
act quantiles. This is not surprising, since the quantile histograms
of foreign keys should remain roughly the same over small shifts
in the quantile grids. The main difference between approximate
versus exact quantiles is computation time. To our surprise, com-809

` 4 16 64 256 1024 256(A)
Diff 0.06 0.009 0.002 3 10−4 4 10−5 4 10−4

Top-25% R 1 1 1 1 1 1
P 0.9 0.9 0.9 0.9 0.9 0.9

Top-20% R 0.78 0.78 0.89 0.89 0.89 0.78
P 0.88 0.88 1 1 1 0.88

Top-15% R 0.56 0.67 0.67 0.67 0.67 0.56
P 0.83 1 1 1 1 0.83

Table 1: EMD accuracy for different quantile grid sizes;
Diff=EMDn,G` − EMDn,G2048 .

Dataset TPC-H TPC-E WP IMDB
SC-FK 9 44 10 8
MC-FK 1 1 0 0
θ = 0.9 1 0.9 1 0.9 1 0.9 1

Cand. SC 38 34 304 214 12 8 24 24
Cand. MC 1 1 4 3 0 0 0 0

Table 2: Number of candidate pairs that satisfy inclusion;
SC=single-column, MC=multi-column.
puting exact quantiles was about 20% faster! The reason is that the
vast majority of primary keys are indexed, so using an ORDER BY
SQL query had the complexity of a linear scan. By contrast, com-
puting approximate quantiles incurred the overhead of maintaining
the quantile summaries [9]. Henceforth, all reported results are for
exact quantiles.

Since normalized EMD values determine the order in which we
report fk/pk pairs, we also measured the effect of quantile grid sizes
on the precision and recall of the final results. Smaller grid sizes,
as well as approximate quantiles, do impact both precision (P) and
recall (R) for the top-15% and top-20% reported pairs (see last 4
rows in Table 1). However, they have no effect for the top-25%
pairs. The reason is that EMD values are very close to each other
within the top-25% pairs, so even small changes impact the or-
der of results. However, pairs below top-25% have EMD values at
least one order of magnitude larger. As we discuss below, we use
precisely this jump in EMD values to determine the best set of con-
straints to present to a user. For TPC-H, the best set is the top-25%,
which remains unchanged for all grid sizes.

5.2 Overall Algorithm
For all experiments in this section, we use ` = 256 quantiles for

single-column primary keys, and ` = 16 quantiles per dimension
for multi-column primary keys. Table 2 shows the number of can-
didate fk/pk pairs that pass the inclusion test for each dataset. This
illustrates the large number of false positives our algorithm must
eliminate. For example, 217 pairs pass inclusion for TPC-E (214
single-column pairs and 3 multi-column pairs). Of these, only 45
are specified in the schema.

To evaluate the utility of our method, we measure the precision,
recall and F-measure after selecting the top-X% results as the an-
swer set, and comparing them with the golden standard specified in
the schema. We report the results in two groups, for reasons that
we explain later in this section.

TPC-H, WP and IMDB: Figure 7 shows the results for these
three databases. A larger X (i.e., a bigger answer set) implies a
larger number of false positives, hence lower precision. On the
other hand, a smaller X has more false negatives (i.e., undiscov-
ered fk/pk constraints), and thus worse recall. There is a sweet
spot, which depends on each dataset, that balances precision and
recall. That spot also corresponds to a big jump in the respective
EMD values; we illustrate this by plotting the EMD values on the
same graph. For TPC-H the sweet spot occurs at X = 25, for
IMDB at X = 35, and for WP at X = 80. Thus, by examining

1

0.8

0.6

0.4

0.2

0

30252015105

Top-X%

EMD
recall

precision
F-measure

(a) TPC-E.

1

0.8

0.6

0.4

0.2

0

30252015105

Top-X%

EMD
recall

precision
F-measure

(b) TPC-E extended.
Figure 8: Utility measures on TPC-E using the golden standard
and extended constraints.

Foreign Key Primary Key
Column Values Column Values

Exchange.ex ad id 1-4 Address.ad id 1-7504
Company.co ad id 5-2504 Address.ad id 1-7504
Customer.c ad id 2505-7504 Address.ad id 1-7504

Trade.t st id B Status type.st id A,. . .,E
Broker.b st id A Status type.st id A,. . .,E

Company.co st id A Status type.st id A,. . .,E
Customer.c st id A Status type.st id A,. . .,E
Security.s st id A Status type.st id A,. . .,E

Table 3: False negatives in TPC-E (A=Active, B=Completed,
C=Canceled, D=Pending, E=Submitted).

the significant jumps in EMD values, the algorithm automatically
proposes one or more answer sets deemed “relevant” (note that for
WP, an EMD jump also occurs for X = 60). An answer set can
then be verified either experimentally (e.g., by running queries and
testing if the results are meaningful), or by a domain expert.

For all three datasets in Figure 7, we achieve F-measure above
0.8 at their respective sweet spot X . For TPC-H, the answer set
(top-25%) has only one false positive: the pair of columns Part-
Supp.PS AVAILQTY and Supplier.S SUPPKEY, the first contain-
ing values from 1 to 9999 and second from 1 to 10000. Clearly,
only a supervised algorithm would be able to recognize this false
positive. For IMDB, the answer set is exactly the golden standard.

For WP, the loss in recall originates from an unlikely source.
The schema specifies that ImageLinks.il to is a foreign key to the
primary key Image.img name. However, its inclusion coefficient is
only 51%. Since we set the inclusion threshold at 90%, this results
in a false negative. (We note that three other specified fk/pk pairs
have inclusion coefficient below 1, but higher than 0.9). Such data
inconsistencies verify the intuition that real data does not always
follow the ideal rules from database theory.

TPC-E: For this database, we report two sets of experiments. In
the first set (Figure 8(a)) we measure precision/recall with respect
to the golden standard specified in the schema. Notice that the F-
measure is below 0.6 across the board. A careful analysis of the
data reveals that the reported accuracy is misleading: many false
positives occur either because of symmetry or transitivity. Symme-
try refers to the case when a pair of primary key columns (A,B)
is specified in the schema as fk/pk in one direction, but not in the
other. However, (B,A) is clearly a valid constraint in this case.
Transitivity occurs when, for three columns A, B and C, with B
and C being primary keys in their respective tables, the constraints
(A,B) and (B,C) are specified in the schema, while (A,C) is not
(although it is clearly valid). By applying symmetry and transitiv-
ity rules, we extend the set of valid constraints against which we
test our results. Reporting precision/recall with respect to this aug-
mented set of constraints improves results significantly; see Fig-
ure 8(b).

Nevertheless, none of the measures reaches 1. We attribute this810

1

0.8

0.6

0.4

0.2

0

30252015105

Top-X%

EMD
recall

precision
F-measure

(a) TPC-H.

1

0.8

0.6

0.4

0.2

0

10080604020

Top-X%

EMD
recall

precision
F-measure

(b) Wikipedia.

1

0.8

0.6

0.4

0.2

0

4035302520

Top-X%

EMD
recall

precision
F-measure

(c) IMDB.
Figure 7: Utility measures on TPC-H, Wikipedia and IMDB.

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

lo
g 1

0(
T

im
e

in
 s

)

log10(Size in MB)

Phase 1
Phase 2

Total

Figure 9: Scalability results.

to the data generation process itself. A total of 15 false positive
pairs (some pairs are counted in both directions) are between only
eight columns. These columns belong to seven different tables and
contain exactly the same number of rows and number of distinct
values: the numbers 1 to 5000. Clearly, only a domain expert
can label them as false positives (in our case, we used the exten-
sive TPC-E documentation). The algorithm also fails to discover
8 out of 45 true constraints and 28 implied constraints; the pairs
are shown in Table 3. Five of these foreign keys contain only one
distinct value (either the status ‘Completed’ or ‘Active’). Clearly,
the generator assigns a default value for this column for every row
in the table, since not all trades in Trade can be completed, while
all trades in Broker are active. One column contains address iden-
tifiers 1 to 4 even though the corresponding primary key contains
7504 distinct addresses. Finally, the other two address columns are
(almost) a prefix and a suffix of the primary key and constitute a
counter-example for the randomness rule.

5.3 Scalability
We tested the scalability of our method on TPC-H, for which it

is easy to generate instances of progressively larger sizes. We used
five instances with sizes 1MB, 10MB, 100MB, 1GB and 10GB.
The running times for each of the two phases, as well as the total
time are shown in Figure 9. For readability, we use a logarithmic
scale on both axes. As expected, each phase takes linear time. The
second phase is faster because we only have to scan the columns
that satisfy inclusion (while in the first case, we scan all columns).
For the 10GB instance, the total running time is less than 2.5 hours,
making our method applicable to enterprise-scale datasets.

5.4 Column Names
So far our foreign key discovery process has been a data-driven

approach. However, it is easy to enhance it by considering the or-
thogonal approach of looking at the column names (rule 7 in Sec-
tion 1). As shown in [10], comparing column names is not neces-
sarily straightforward, and can lead to false conclusions. For exam-
ple, in TPC-E columns that form valid fk/pk constraints have very
different names, because they contain an abbreviation of the table
name as a prefix (e.g., columns Trade History.th t id and Trade.t t id
are an fk/pk pair; the prefixes ’th’ and ’t’ in the column names stand

Precision Recall F-measure
TPC-H 1 1 1
TPC-E 0.57 0.82 0.67

TPC-E Ext. 1 0.89 0.94
IMDB 1 1 1

Table 4: Results after eliminating non-matching column
names.

for Trade History and Trade respectively). Fortunately, TPC-E has
extensive documentation that explains the naming conventions, so
we can delete these prefixes and compare the remaining strings.
The resulting names are identical only if the pair is a valid con-
straint.

We are not aware of any method for automatically determining
which string similarity measure to use for any given schema. In Ta-
ble 4, we report our results using string identity (for TPC-E, we ap-
ply this to column names after deleting their table prefixes). The re-
sults are generated as follows: First, we compute for each database
the most relevant answer set, i.e., the top-X% for the best valueX .
We then delete all pairs from these sets whose column names are
not identical, and compute the precision/recall on the resulting an-
swer set. For TPC-E, we also report results using the extended set
of valid constraints. For WP there is no single pair with identical
column names, hence we exclude it from this experiment.

5.5 Comparison With Alternatives
The algorithm of Rostin et al. [17] uses a learning phase to train

four different classifiers that are then used to discover single-column
keys only. Each classifier uses a training set consisting of known
fk/pk pairs from four out of five different databases. The goal is to
learn the relative importance of rules 1-7 stated in Section 1, then
apply them to the fifth database. No classifier was consistently the
best across all datasets.

We compare our results over TPC-H using the results already re-
ported in [17]. As reported in that paper, the best classifier (J48)
for the TPC-H dataset results in F-measure equal to 0.95, with the
average value over all classifiers being 0.915. The success of J48
for TPC-H can be largely attributed to the use of rule 7 (match-
ing column names), making TPC-H an easy target. Our method
achieves an F-measure of 1 for TPC-H when using column names
(even without column names, F-measure is 0.95).

5.6 Inclusion Estimators
We considered two alternative estimators for the inclusion coef-

ficient σ(F, P):

1. The estimator proposed in [3], which is unbiased. However,
it is defined over sketches whose sizes are a user-defined frac-
tion of the size of the original column. This is generally too
large for practical purposes (e.g., the Wikipedia database has
size O(109), so the size of 1%-sketches is O(107)). Note811

0.6

0.5

0.4

0.3

0.2

0.1

0
2048102451225612864

A
bs

ol
ut

e
E

rr
or

K

Estimator 1
Estimator 2

Figure 10: Accuracy of bottom-k estimators for the inclusion
coefficient, as a function of k.

that the size of sketches impacts not just storage require-
ments, but more importantly, the running time for computing
all inclusion coefficients.

2. Divide the estimated value of |F ∩P | by the estimated value
of |F |. Both estimated values are computed using the estima-
tors proposed in [2]. The advantage is that these estimators
work over bottom-k sketches which have constant size. Fig-
ure 10 shows an experimental comparison (over TPC-E) of
this estimator, denoted Estimator2, to the one described in
Section 2, which we denote as Estimator1. Clearly, Estima-
tor1 is significantly more accurate, and it also uses bottom-k
sketches. Therefore, all our experiments use Estimator1 for
the inclusion coefficient. We set k = 256.

6. RELATED WORK
The state of the art for efficient, automatic discovery of single

and multi-column primary keys is Gordian [19]. Gordian formu-
lates the problem as a cube computation that corresponds to the
computation of the entity counts of all possible column projections.

Surprisingly, very little work has dealt with discovery of foreign
keys. Most work focuses on computing inclusion dependencies
only [1, 4, 12–15]. Recently, Bauckmann et al. [1] proposed SPI-
DER for efficiently detecting single-column inclusion dependen-
cies. The algorithm first sorts the distinct values in all columns
in C and then uses a parallel merge-sort like algorithm to com-
pute all inclusions simultaneously. SPIDER computes inclusions
exactly, but the cost is super-linear to the size of the data. A sim-
ilar approach was proposed by Marchi et al. [14], using a linear
pass over the data to compute an inverted index over each data type
(e.g., strings, floats, integers). Subsequent passes over the index
can discover single/multi-column inclusions. Marchi and Petit [15]
propose a hybrid technique based on association rule mining to find
low-dimensional inclusions and an optimistic exploration of high-
dimensional inclusions using clique-finding. Koeller and Runden-
steiner [12] utilize clique-finding for discovering high-dimensional
inclusions. Partial inclusion is not addressed in these works. Lopes
et al. [13] use a query workload based approach to discover foreign
key relationships based on the assumption that SQL join queries
use fk/pk keys. This approach is based on the availability of a
query workload. Furthermore, inclusion is not a sufficient condi-
tion for foreign keys, resulting in a large number of spurious keys.
Rostin et al. [17] introduced a machine learning approach for dis-
covering foreign keys that is based not only on inclusion, but on
a variety of other properties of good foreign keys. The authors
use the SPIDER algorithm to discover all inclusion dependencies.
Most importantly, the algorithm requires a learning step, which
implies the availability of datasets with known fk/pk keys. The
quality of the training dataset affects performance significantly. Fi-
nally, multi-column keys are not addressed in that work. Dasu et
al. [8] proposed using minhash sketches to find potential associa-
tions between columns (or sets of columns) as a function of Jaccard

coefficient. However, Jaccard is not a good indicator of inclusion
coefficient when set sizes differ substantially.

7. CONCLUSION
In this work we introduced the notion of Randomness and showed

that it can be used effectively to reduce a large number of false pos-
itive pairs produced by partial inclusion. We also provided an effi-
cient approximation algorithm for evaluating randomness between
pairs of multi-column candidate keys. We presented a combined
algorithm that can discover good single/multi-column foreign keys
with only two linear scans over the data. Finally, we performed a
comprehensive experimental evaluation showing the efficacy of our
techniques.

8. ACKNOWLEDGEMENT
The work of Meihui Zhang and Beng Chin Ooi were in part sup-

ported by Singapore NRF grant R-252-000-376-279.

9. REFERENCES
[1] J. Bauckmann, U. Leser, F. Naumann, and V. Tietz. Efficiently

detecting inclusion dependencies. In ICDE, pages 1448–1450, 2007.
[2] K. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and R. Gemulla. On

synopses for distinct-value estimation under multiset operations. In
SIGMOD, pages 199–210, 2007.

[3] A. Broder. On the resemblance and containment of documents. In
SEQUENCES, pages 21–30, 1997.

[4] M. A. Casanova, R. Fagin, and C. H. Papadimitriou. Inclusion
dependencies and their interaction with functional dependencies. In
PODS, pages 171–176, 1982.

[5] E. Cohen and H. Kaplan. Leveraging discarded samples for tighter
estimation of multiple-set aggregates. Joint Intl. Conf. on
Measurement and Modeling of Comp. Syst., pages 251–262, 2009.

[6] J. Considine, M. Hadjieleftheriou, F. Li, J. W. Byers, and G. Kollios.
Robust approximate aggregation in sensor data management systems.
TODS, 34(1), 2009.

[7] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson.
Introduction to Algorithms. McGraw-Hill Higher Education, 2001.

[8] T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk. Mining
database structure; or, how to build a data quality browser. In
SIGMOD, pages 240–251, 2002.

[9] M. Greenwald and S. Khanna. Space-efficient online computation of
quantile summaries. In SIGMOD, pages 58–66, 2001.

[10] J. Kang and J. F. Naughton. On schema matching with opaque
column names and data values. In SIGMOD, pages 205–216, 2003.

[11] D. Kifer, S. Ben-David, and J. Gehrke. Detecting change in data
streams. In VLDB, pages 180–191, 2004.

[12] A. Koeller and E. A. Rundensteiner. Discovery of high-dimensional
inclusion dependencies. In ICDE, pages 683–685, 2003.

[13] S. Lopes, J.-M. Petit, and F. Toumani. Discovering interesting
inclusion dependencies: application to logical database tuning.
Information Systems, 27(1):1–19, 2002.

[14] F. D. Marchi, S. Lopes, and J.-M. Petit. Unary and n-ary inclusion
dependency discovery in relational databases. Journal of Intelligent
Information Systems, 32(1):53–73, 2009.

[15] F. D. Marchi and J.-M. Petit. Zigzag: a new algorithm for mining
large inclusion dependencies in databases. In ICDM, pages 27–34,
2003.

[16] S. Peleg, M. Werman, and H. Rom. A unified approach to the change
of resolution: space and gray-level. TPAMI, 11(7):739–742, 1989.

[17] A. Rostin, O. Albrecht, J. Bauckmann, F. Naumann, and U. Leser. A
machine learning approach to foreign key discovery. In WebDB,
2009.

[18] S. Siegel and N. Castellan. Nonparametric statistics for the
behavioral sciences. McGraw–Hill, Inc., second edition, 1988.

[19] Y. Sismanis, P. Brown, P. J. Haas, and B. Reinwald. Gordian:
Efficient and scalable discovery of composite keys. In VLDB, pages
691–702, 2006.

812

APPENDIX
A. NOTATIONS

Table 5 summarizes the notations used in the paper.
Symbol Description

T Set of tables
C Set of columns
Ps Single-column primary keys
Pm Multi-column primary keys
Fs Single-column candidate foreign keys
Fm Multi-column candidate foreign keys
B Hash table for bottom-k sketches
Q Hash table for quantile/distribution histograms
F Single/multi-column candidate foreign key
P Single/multi-column primary key
Ĉ Bottom-k sketch of C
F̂ Bottom-k sketch of F
P̂ Bottom-k sketch of P
P̄ Quantile histogram of P
F̄P Distribution histogram of F with respect to P

σ(F, P) Inclusion coefficient
θ User-defined threshold for inclusion coefficient

Table 5: Notation used throughout the paper.

B. ALGORITHM

Algorithm B.1: DISCOVER FOREIGN KEYS(C,Ps,Pm, θ)

Phase 1.
Fs ← ∅,Fm ← ∅, B ← ∅, Q← ∅, S ← ∅
for all C ∈ C : B[C]← Ĉ
for all P = {C1, . . . , Cn} ∈ (Ps ∪Pm)

for p← 1 to n

do

for all Cf ∈ C

do

if σ(Ĉf , Ĉp) ≥ θ /*Ĉf , Ĉp ∈ B*/

then
{

if n = 1 : Fs ← (Cp, Cf)
if n > 1 : S[P,Cp]← Cf

if n > 1 : B[P]← P̂

/*For n = 1, P̂ already in B*/
Q[P]← P̄

Phase 2.
for all P = {C1, . . . , Cn} ∈ Pm

for all T ∈ T
Fm ← ({{C′1, . . . , C′n} | C′i ∈ S[P,Ci] ∩ T}, P)

for all F = ({C′1, . . . , C′n}, P) ∈ Fm

do

Build F̂
if σ(F̂ , P̂) ≥ θ /*P̂ ∈ B*/

then
{
Q[P]← P̄
Q[F]← F̄P

else Remove (F, P) from Fm
for all (F, P) ∈ Fs : Q[F]← F̄P

for all (F, P) ∈ (Fs ∪ Fm)
Compute EMDn(F, P) /*Using Q*/

Output F = Fs ∪ Fm in increasing order of EMDn

C. BOTTOM-K SKETCHES
Given a set F , a bottom-k sketch F̂ for F is computed as fol-

lows: Assign ranks to all values in F uniformly at random, and let

CID SMB ...

10 INTC

2 AAPL

217 GOOG

Hash

h(10|INTC) = 10

h(2|AAPL) = 1

h(217|GOOG)=5

Bottom-1

2|AAPL, 1

Figure 11: Constructing a Bottom-k sketch.
F̂ be the set of k values with the smallest ranks. In practice, to
compute the rank assignment we choose a hash function h, hash
each value in F , and keep the k values corresponding to the small-
est k hash values. If F is a set of tuples, rather than simple values,
we first concatenate all values in a tuple using a predefined field
separator and hash the resulting string as a whole. Figure 11 shows
an example bottom-1 sketch for a set of tuples. Clearly, a bottom-k
sketch can be computed in one pass over F .

Bottom-k sketches have been used to estimate various measures,
such as the Jaccard coefficient ρ(F, P) = |F∩P |

|F∪P | (see [5]) or the
intersection size |F ∩ P | (see [2]). The estimators require that
the same hash function h be used for computing both bottom-k
sketches F̂ and P̂ (hence, the sketches are called coordinated).

D. PROOF OF LEMMA 1
PROOF. Let EMDP=n·EMDn,P and EMDGP =n·EMDn,GP be

the unnormalized EMD values in the primary space P and the
reduced space GP respectively. Consider a movement of mass
m that EMDP executes in the primary space P , from a point p
to a point q. Its cost is m · d(p, q). Let a and b be the upper
right corners of the cells that contain p, respectively q. Then we
can define a valid movement of mass m in the space GP , be-
tween a and b. The cost of this mass movement is m · d(a, b)
≤ m(d(a, p)+d(p, q)+d(q, b))≤ md(p, q) + m 2n

`
. Making this

transformation for all mass movements in EMDP , we obtain a valid
mass movement in GP , of cost at most EMDP + 2n

`

∑
m ≤

EMDP + 2n
`

(the sum is over all the mass moved in EMDP).
Since EMDGP is the minimum cost movement in GP , we deduce
EMDGP ≤ EMDP +2n/`. A similar argument holds for the other
inequality, by transforming mass movements from EMDGP into
valid mass movements in P . We deduce that |EMDP−EMDGP | ≤
2n
`
.

E. DATASET DESCRIPTIONS
The datasets can be downloaded from the following sites: TPC-

H from http://www.tpc.org/tpch, TPC-E from http:
//www.tpc.org/tpce, WP from http://www.archive.
org/details/enwiki-20080312, IMDB from
http://www.imdb.com/interfaces.

When generating instances for the synthetic datasets, we use the
following parameter settings: For TPC-H we use scale factor 1. For
TPC-E we use 1000 customers, 20 trading days, and scale factor
1000. The characteristics of all datasets are given in Table 6, where
|T| is the number of non-empty tables, |CT | and max |CT | are the
average and maximum number of columns per table, and |RT | and
max |RT | are the average and maximum number of rows per table.

All these datasets come with a schema specification. Table 7
summarizes the single/multi-column foreign/primary keys explic-
itly stated in each schema. Notice that, e.g., TPC-E specifies nine
2-column primary keys but only one 2-column foreign key.

F. SCHEMA AND DATA UPDATES
Our methods can easily handle insertions and deletions of new

tables and columns given the existing bottom-k sketches and quan-
tile/distribution histograms. Let the new set of columns be C′.813

http://www.tpc.org/tpch
http://www.tpc.org/tpce
http://www.tpc.org/tpce
http://www.archive.org/details/enwiki-20080312
http://www.archive.org/details/enwiki-20080312
http://www.imdb.com/interfaces

|T| |CT | max |CT | |RT | max |RT |
TPC-H 8 8 16 1082504 6000003
TPC-E 32 6 24 171127 4469625
WP 15 6 16 24356005 227867141
IMDB 9 2 2 1136607 5107802

Table 6: Datasets characteristics.
TPC-H TPC-E WP IMDB

PK FK PK FK PK FK PK FK
SC 6 9 20 44 5 10 5 8

2 2 1 9 1 7 − 4 −
MC 3 − − 2 − 3 − − −

4 − − 1 − − − − −
Total 8 10 32 45 15 10 9 8

Table 7: Foreign/primary keys according to schema specifica-
tions.
First, identify new primary keys and insert them in Ps,Pm. Then,
re-run Algorithm B.1 on C′,Ps,Pm, θ, building only the new
bottom-k and quantile/distribution histograms, as necessary.

Handling data insertions and deletions on existing columns is a
little harder. Existing bottom-k sketches can easily be updated un-
der insertions only. The new values are simply hashed and inserted
in the corresponding sketches if necessary. However, deletions are
not straightforward: if a deleted value was part of the bottom-k
sketch, a rescan of the corresponding column is needed in order
to identify the new k-th minimum hash value. One way to handle
deletions without rescanning the data is to maintain larger bottom-
k sketches (e.g., twice as large as needed). That way, we only res-
can the data infrequently. Since in practice we expect a balanced
insertions and deletions workload, this simple strategy is likely to
obviate the need of a rescan in most settings.

Updating the quantile/distribution histograms is generally hard,
both under insertions and deletions. A small number of inser-
tions or deletions can be accommodated by identifying the his-
togram cells that contain the respective tuples, and incrementing
or decrementing their counters. However, if a large amount of data
is inserted or deleted, the distribution of the underlying columns is
likely to change. As a result, the quantile grids on each dimension
also change. This requires rescaning the data in order to compute a
new quantile grid and a new histogram. A simple way of reducing
the cost of updates is to use the existing quantile grid for a batch of
updates and rebuild it only after a certain number of updates. De-
pending on the application and the underlying data we can also use
well known techniques to detect a change in the distribution and
trigger a rebuild [11].

814

