
Generating Databases for Query Workloads∗

Eric Lo† Nick Cheng† Wing-Kai Hon‡
†Hong Kong Polytechnic University ‡National Tsing Hua University

†{ericlo, csutcheng}@comp.polyu.edu.hk ‡wkhon@cs.nthu.edu.tw

ABSTRACT
To evaluate the performance of database applications and DBMSs,
we usually execute workloads of queries on generated databases
of different sizes and measure the response time. This paper intro-
duces MyBenchmark, an offline data generation tool that takes a set
of queries as input and generates database instances for which the
users can control the characteristics of the resulting workload. Ap-
plications of MyBenchmark include database testing, database ap-
plication testing, and application-driven benchmarking. We present
the architecture and the implementation algorithms of MyBench-
mark. We also present the evaluation results of MyBenchmark us-
ing TPC workloads.

1. INTRODUCTION
Query performance is a key factor of a successful database (DB)

application and DBMS. To evaluate the performance of DB ap-
plications and DBMSs, we usually execute workloads of queries
on generated databases in different sizes and measure the response
time.

This paper presents a workload-aware data generator, MyBench-
mark. Given a database schemaH and a set of queries, MyBench-
mark allows users to generate databases in different sizes with the
power to control not only the characteristics of the generated data
(e.g., value distribution) but also the characteristics of the workload
(e.g., cardinality of intermediate query operators). The applications
of MyBenchmark include the following:

• Testing DBMSs Recent papers [5, 16, 4, 14] have pointed out
that controlling the cardinalities of query operators in a test query
is very useful in DBMS testing. For example, testers can study the
performance of a hash-join implementation by varying the input
and output cardinalities of the join operator [5]. Recent data gener-
ation technology has made some progress in this respect. QAGen
[4] is an offline test database generator designed for this purpose.
It takes a test case and a database schemaH as input. A test case is
a parameterized queryQ with operators and base tables annotated
with cardinality and data distribution constraints. The output of
∗Research supported by grant PolyU 525009E from Hong Kong RGC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment,Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09...$ 10.00.

QAGen is a query-aware databaseD that conforms toH and a set
of parameter valuesP . Executing queryQ (with parameter values
P) onD (denoted asQP (D)) guarantees that the constraints anno-
tated onQ are satisfied. QAGen every time takes only one test case
as input and generates an independent test database that is specific
for that test case. To carry out a test ofn test cases on a DBMS
product, the test team needs to maintainn separate test databases,
which require a prohibitively high storage cost [16] (imagine a test
suite of 1000 test cases, where each test case demands a 10GB test
database).

Differing from QAGen, MyBenchmark takesa set of annotated
parameterized queries(or in this context, a set of DBMS test cases)
as input, and generatesa minimal set of database instanceswith the
same query cardinality and data distribution assurance as QAGen
does. As such, tests on DBMSs can be carried out more space effi-
ciently.1

• Stress testing database applications Consider a DB appli-
cation withn SQL queries. Developers of that application can
use MyBenchmark to generate a variety of synthetic workloads
to stress the application. For example, a developer may use My-
Benchmark to generate a 1GB database that guarantees all the ap-
plication queries return millions of rows.2 This functionality allows
the developers to test the functional and performance limits of their
applications.1

• Application-driven benchmarking Benchmarking requires the
generation of benchmark databases. Existing benchmarks such as
TPC benchmarks, although comprehensive, may not 100% reflect
the performance of a DBMS with respect to an enterprise’s envi-
ronment because of the differences in the schemas between TPC
benchmarks and the enterprise’s DB applications. By using My-
Benchmark, an enterprise is able to study the performance of a
DBMS with respect to its own DB applications. Suppose a new
start-up wishes to purchase a DBMS. The start-up may wish to
know which DBMS (e.g., Oracle, SQL Server) performs the best
for its application when dealing with one billion customer records
and selective user queries. The start-up can use MyBenchmark to
generate the relevant data and evaluate the DBMSs using its own set
of database application queries. These application-specific bench-
mark results can complement the TPC benchmark results and pro-
vide supplementary information to the company when purchasing

1In case MyBenchmark generates more than one test database, we may use
a database testing framework (e.g., DbUnit [1], HTpar [11]) to automati-
cally assign the generated databases to the test queries.
2In this case, the developers need to specify only the output cardinalities
of the final results and may leave the constraints of intermediate operators
empty.

848

Table R Bint, A)(

R
size=2

size=1

int

σ
R.A <:p1

Table
$b2
$b1
B

$a1
$a2

A

R

t1:
t2:

$a1<:p1, $b1

$a2>=:p1
RTable
$b2

$a1<:p1 $b1
BA

〈

R.A <:p1

t1: 〉

t2:
t1:

σ

A

100
100

40
4

RTable

B
R.A <22

〈4, 100〉t1:

t1:
t2:

σ

(a) Annotated QueryQ1 (b) The initial symbolic (c)D1 (d) Q1-aware
(:p1 is a parameter) database forQ1 (Q1-aware symbolic database) database

Figure 1: Symbolic query processing (SQP)

its DBMS.

To the best of our knowledge, we are the first to study the gener-
ation of workload-aware data. Compared with the state-of-the-art
(single)-query-aware data generation technology, workload-aware
data generation is more general and has more applications, but is
also more challenging. This paper contains our solution to the
problem, including the architecture and algorithms of implement-
ing MyBenchmark. This paper also contains the evaluation results
of MyBenchmark using TPC workloads.

The rest of this paper is organized as follows. Section 2 covers
the background and related work. Section 3 presents the architec-
ture and algorithms of MyBenchmark. Section 4 summarizes the
methodology of generating workload-aware data using MyBench-
mark. Section 5 shows the experimental results. Section 6 con-
cludes the paper with future research directions. The appendix
contains some supplementary details and the proofs of the lemmas
presented in the paper.

2. BACKGROUND AND RELATED WORK
Query-aware data generation was first studied by [15] and has

received renewed attention in recent years. In [15], the authors
studied the generation of test data that complies with functional de-
pendencies for simple relational queries. In [3], the authors studied
the generation of test data for functional testing database applica-
tions. The focus of [3] is to generateminimal sizetest databases for
asingleapplication query. In [17], the authors discussed the extrac-
tion of example data to facilitate dataflow (e.g., MapReduce) pro-
gramming. However, it also focuses on getting the smallest amount
of data as possible for the ease of human understanding.

We now give a brief background on QAGen. We refer read-
ers to Appendix A or [4] for additional details. The QAGen sys-
tem [4], the predecessor of MyBenchmark, is a query-aware test
database generator that takes an annotated parameterized queryQ
and a database schemaH as input. Each operator or base table inQ
is annotated with a set of constraints (usually cardinality and data
distribution). Figure 1a shows an annotated selection queryQ1 as
an example.Q1 specifies that tableR should be populated with
two tuples and the query should return one tuple (:p1 is a param-
eter).3 Figure 1d shows the output of QAGen forQ1, which is a
query-aware databaseD that conforms toH , and a set of parame-
ter valuesP . Executing queryQ (with parameter valuesP) onD
guarantees that the constraints defined onQ are satisfied.

To process a query like the one in Figure 1a before the data
is generated, QAGen introduces the concept of symbolic query
processing (SQP). SQP starts with the population of a symbolic
database (SDB) according to the sizes of the base tables specified in
the annotated query (Figure 1b). Tuples in an SDB contain symbols
rather than concrete values. During SQP, an operator evaluates the
input tuples according to its own semantics and at the same time, it

3Each input query is practically formulated as a number of SQL statements
and expected cardinality/distribution.

controls its output to its parent operator so that the parent operator
can work on the right tuples. After symbolic query processing, the
set of symbolic relations capture all the constraints defined on the
input query (Figure 1c). In the final step, QAGen has a data instan-
tiator to instantiate the symbolic tuples and the parameters and a
query-aware database is generated (Figure 1d).

SQP is an advanced data generation technology that is much
more complicated than traditional query-unaware data generation
technology such as [10]. Therefore, query-aware data generation
tools usually have a longer running time and run as an offline (back-
ground) process [14]. Nevertheless, the process can be easily par-
allelized usingn machines to SQPn queries.

3. MYBENCHMARK
MyBenchmark uses the symbolic query processing technique de-

veloped in [4] as a building block. However, as we will show later,
the generation of asinglesymbolic database for multiple queries
is NP-hard; thus, we do not restrict ourselves to find a single
database instanceD for all input queries. Instead, given a database
schemaH , a set of annotated queriesQ= {Q1, Q2, . . . , Qn} (the
operator(s) inQi are annotated with cardinality constraint(s)Ci),
MyBenchmark generatesm (m ≤ n) databasesD1, D2, . . ., Dm

andm sets of parameter valuesP1, P2, . . . , Pm, such that (1) all
databasesDj (1 ≤ j ≤ m) conform toH , and (2) the resulting
cardinalitiesC′

i of executingQi on one of the generated databases
Dj , using the parameter valuesPj , approximately meetCi (the de-
gree of approximation defined is based on the relative error between
actual cardinalities and annotated cardinalities; details are in Sec-
tion 3.2). Approximate cardinalities are sufficient for applications
such as DBMS testing [5, 16] and database application testing [3].
Assume that a DBMS test engineer wants to use MyBenchmark
to generate a workload with a 1GB database and ten application
queries, in which one of the queries,Q1, is annotated by the tester
as a highly selective query that returns one row. In this case, a gen-
erated database that returns five rows forQ1 is still very acceptable.
As SQP controls the data distributions through the operator cardi-
nalities, so we focus on the control of the operator cardinalities.
Also, we put our focus on SPJ (select-project-join) queries in this
paper.

Of course, ifm = n, that essentially means MyBenchmark is
the same as QAGen in which each query has to be executed on a
separate generated database. Therefore, the goal of MyBenchmark
is to minimizem, the number of generated databases, in best effort.

3.1 System Architecture
SQP was designed to generaten separate databases for then

input annotated queries. If SQP is carried out on a “processed”
symbolic database, SQP will generate many symbolic tuples with
contradictingconstraints (as different queries may impose different
constraints on thesamesymbolic tuple) and they will be unable to
be instantiated with concrete values.

To illustrate, assume that we need to generate a database for two
(annotated) application queriesQ1 andQ2. Let Q1 be the query
given in Figure 1a; andQ2 be a selection query in Figure 2a, which
specifies that tableR should have two tuples and the query should
return one tuple.4 AssumeQ1 is first symbolically processed by the
SQP engine and we obtain the symbolic databaseD1 (Figure 1c).
If the second queryQ2 is directly processed onD1, the selection
operator ofQ2 may annotate the positive constraint [>:p1] to t1
and the negative constraint [<=:p1] to t2. That will result in an

4In fact,Q2 must annotate consistent constraints withQ1 (e.g., two tuples
for tableR) or otherwise MyBenchmark will return an error to the user.

849

Table R Bint, A)(

R
size=2

size=1

int

σ
R.A >:p1

(a) Annotated QueryQ2

(:p1 is a parameter)

A B
t′1: $a1<:p1∧ $a1>:p1 $b1
t′2: $a2>=:p1∧ $a2<=:p1 $b2

TableR(A int, B int)
(b) An unsatisfiable symbolic
database after bad SQPQ2

on Figure 1c’sD1

Figure 2: Examples of SQP on a “processed” SDB

SQP

engine
Data

instantiator

MyBenchmark

Schema H

Symbolic

database

integrator

Size = 5

Size=200

Annotated queries

q1, …, qi, …, qn

SR

σ T

σ

Size = 20

σ
Size = 10

Size = 100

Size=20

Size=10
Size = 10

Zipf distribution Symbolic DB

D1

...

...
Symbolic DB

Di

Symbolic DB

Dn

Integrated

symbolic DB1

... ...
Integrated

symbolic DBm

DBm

DB1

Execution Planner

Figure 3: MyBenchmark architecture

SDB (Figure 2b) in which tuplet′1 is associated with a contradicting
constraint [$a1<:p1∧ $a1>:p1].

Figure 3 shows our proposed architecture for MyBenchmark. To
generatem databases forn annotated queriesQ1, Q2, . . ., Qn,
MyBenchmark first uses QAGen’s SQP engine as a black-box com-
ponent to process each annotated query separately (without data in-
stantiation) and generatesn symbolic databasesD1, D2, . . ., Dn.
Each symbolic databaseDi guarantees thatQi(Di) satisfies the
constraints annotated onQi. Then, a Symbolic Database Integra-
tor is used to integrate the SDBs. The integration algorithms are
designed to minimize the number of symbolic tuples with contra-
dicting constraints (e.g.,t′1 in Figure 2b) and the number of gen-
erated databases. Finally, we use the Data Instantiator of QAGen
to instantiate each integrated SDB with concrete values. The ma-
jor advantage of this architecture is that we can fully utilize the
capability of SQP in processing a variety of SQL queries. The Ex-
ecution Planner is designed for integrating multiple SDBs and we
defer its discussion until Section 3.3.

3.2 Symbolic Database Integration
We begin with the discussion of integrating two symbolic rela-

tions (with the same table definitions) that are separately generated
by the SQP engine for two annotated queries. We discuss the inte-
gration of multiple symbolic relations in the end of this subsection
and the integration of multiple symbolic databases in Section 3.3.

We use the annotated SQL queriesQ3 andQ4 in Figures 4a and
4c as the running example. For ease of exposition, bothQ3 and
Q4 are simple selection queries posed on tableS. Figures 4b and
4d show the corresponding symbolic databasesD3 andD4 that
are generated by the SQP engine forQ3 andQ4. When only two
symbolic relations are involved, the major challenge for the sym-
bolic data integrator is to minimize the number of symbolic tuples
with contradicting constraints. In other words, the integrator can-
not simply merget1 with t5, (i.e., treating symbols $a1 and $a5 as
the same symbol and joining the constraints oft1 andt5 together
to get [$a1>:p1 ∧ $a1<:p2]), t2 with t6, t3 with t7, andt4 with
t8. Such a naive integration would result in an integrated symbolic
databaseD̄ as shown in Figure 5a. The problem with̄D is that
many symbolic tuples are contradicting with each other:t′9 induces
a relationship:p2> :p1, butt′11 andt′12 induce a relationship :p2
≤ :p1. As such, the integration algorithms should be designed to

Table S()int

S
size=4

size=2

A

σ
S.A >:p1

(a) Annotated QueryQ3

(:p1 is a parameter)

A
t1: $a1> :p1
t2: $a2> :p1
t3: $a3<= :p1
t4: $a4<= :p1

TableS (A: int)
(b) D3

Table S()int

S
size=4

size=1

A

σ
S.A <:p2

(c) Annotated QueryQ4

(:p2 is a parameter)

A
t5: $a5< :p2
t6: $a6>= :p2
t7: $a7>= :p2
t8: $a8>= :p2

TableS (A: int)
(d) D4

Figure 4: Examples for symbolic database integration

A
t1t5 → t′9: $a1> :p1∧ $a1< :p2
t2t6 → t′10: $a2> :p1∧ $a2>= :p2
t3t7 → t′11: $a3<= :p1∧ $a3>= :p2
t4t8 → t′12: $a4<= :p1∧ $a4>= :p2

TableS (A: int)

A
t1t7 → t9: $a1> :p1∧ $a1>= :p2
t2t8 → t10: $a2> :p1∧ $a2>= :p2
t3t5 → t11: $a3<= :p1∧ $a3< :p2
t4t6 → t12: $a4<= :p1∧ $a4>= :p2

TableS (A: int)
(a) D̄ (t′9 contradictst′11 andt′12) (b) Ideal integrated symbolic database

Figure 5: SDBs integrated fromD3 (Figure 4b) andD4 (Figure
4d)

minimize the number of symbolic tuples with contradicting con-
straints in the integrated SDB. For example, Figure 5b shows an
ideal symbolic database that is integrated fromD3 andD4, and
does not contain any tuples with contradicting constraints.

To integrate two symbolic relationsSi andSj (whereSi andSj

share the same table definition), we model the problem as a graph
problem.

DEFINITION 1. (CONSTRAINEDNODE). A noden isconstrained
iff it is associated with a propositional formula,φn, composed of
variables under a finite domain (SQL data types).

DEFINITION 2. (SATISFIABLE EDGE). An edgee(u, v) is sat-
isfiable iff the conjunction of the propositional formula associated
with constrained nodesu andv is satisfiable. That is,φu ∧ φv is
satisfiable.

As an example, consider an edgee(u, v) connecting two con-
strained nodesu andv. Assumeu is associated with a propositional
formula x > p andv is associated with a propositional formula
x < p, thene is not satisfiable. On the contrary, ifu is associ-
ated with a propositional formulax > p andv is associated with a
propositional formulay < 10, thene is a satisfiable edge.

DEFINITION 3. (CONSTRAINED BIPARTITE GRAPH) A graph
G = (U, V,E) with node setsU andV and edge setE is acon-
strained bipartite graph(CBG) if G is a bipartite graph, all nodes
in U andV are constrained nodes, and all edges inE are satisfiable
edges.

Now, we can model a symbolic tupleti (tj) of symbolic relation
Si (Sj) as a constrained nodeui (vj) in a CBGG. For each pair of
tuplesti ∈ Si andtj ∈ Sj , if the conjunction (of the constraints) of
ti andtj is satisfiable (i.e., no contradiction), we add a satisfiable
edgee(ui, vj) to G. As a result, the two symbolic relations in
Figures 4b and 4d can be modeled as a constrained bipartite graph
Ga shown in Figure 6a.5 Now, we can model the integration ofSi

andSj as finding amaximum satisfiable matchingof a CBG.

DEFINITION 4. (SATISFIABLE MATCHING) Given a constrained
bipartite graphG = (U,V, E), a matchingM is satisfiableiff the
conjunction of the propositional formulas associated with all con-
strained nodes inM is satisfiable.

5Note thatGa is not necessarilycomplete.

850

(a) Ga

t2: $a2 > :p1

t1: $a1 > :p1

t3: $a3 <= :p1

t4: $a4 <= :p1

t5: $a5 < :p2

t6: $a6 >= :p2

t7: $a7 >= :p2

t8: $a8 >= :p2

(b) M1

t2: $a2 > :p1

t1: $a1 > :p1

t3: $a3 <= :p1

t4: $a4 <= :p1

t5: $a5 < :p2

t6: $a6 >= :p2

t7: $a7 >= :p2

t8: $a8 >= :p2

e1

e2

e3

e4

(c) M2

t2: $a2 > :p1

t1: $a1 > :p1

t3: $a3 <= :p1

t4: $a4 <= :p1

t5: $a3 < :p2

t6: $a4 >= :p2

t8: $a2 >= :p2

t7: $a1 >= :p2

Figure 6: (a) A constrained bipartite graph Ga modeling the integration of databasesD3 andD4 in Figure 4 (b) A maximum but not
maximum satisfiable matchingM1 (c) A maximum satisfiable matchingM2

DEFINITION 5. (MAXIMUM SATISFIABLE MATCHING) Given
a constrained bipartite graphG = (U, V,E), a satisfiable matching
M is maximum satisfiableiff the size ofM is largest among all
satisfiable matchings inG.

The size of a maximum satisfiable matching (MSM) could be
different from the size of a maximum matching. Figure 6b shows
a maximum but not satisfiable matchingM1 of Ga. Edgee1 in
M1 suggests that tuplet1 of D3 in Figure 4b should be integrated
with tuplet5 of D4 shown in Figure 4d. Therefore, if the integra-
tion follows M1, the resulting integrated database would become
D̄ in Figure 5a. On the other hand, if the integration followsM2

(see Figure 6c), which is a maximum satisfiable matching ofG1,
the resulting integrated database would become the ideal integrated
symbolic databases shown in Figure 5b.

We cast the problem of finding an MSM of a constrained bipar-
tite graph as a decision problem:

DEFINITION 6. (k-SAT-MATCH PROBLEM). Given a constrained
bipartite graphG = (U, V,E) and an input integerk, the decision
problemk-SAT-MATCH is to answer if there is a satisfiable match-
ingM of size that is at leastk.

Searching a maximum matching from a bipartite graph can be
done in polynomial time. However, searching a maximum satisfi-
able matching from a CBG isNP-hard (proof in Appendix C.1).
The main difficulty lies in the requirement of “satisfiability” among
the induced relationships of variables at run-time (e.g., in Figure 6b,
adding edge(t1, t5) to M1 will induce a relationship that hinders
adding edges(t3, t7) and(t4, t8) toM1). This is also the main rea-
son why applying SQP on a “processed” SDB online (mentioned
in Section 3.1) is not a good idea. Nevertheless, we have developed
many tricks to avoid the worst case in almost all circumstances.
Specifically, we have developed a best-effort symbolic database in-
tegration algorithm that utilizes the special properties of SQP to
reduce the search space. Our experiments show thatSI practically
solves the problem and scales well under a variety of inputs.

The Symbolic Database Integration Algorithm
The symbolic database integration algorithm (SI) solves the max-
imum satisfiable matching by separating the induced relationship
problem and the maximum matching problem. The main idea is as
follows. Given a constrained bipartite graphG as input, (1) it first
identifies all the total-order relationships that can be induced by the
satisfiable edges and puts them in a setR. (2) For each possible
subsetRi of R, it constructs a new constrained bipartite graphGi.
Gi includes the edges that induce total-order relationship(s) inRi

and the edges that induce no total-order (edges that induce only
partial-order relationships). (3) Find a maximum matchingMi for
each constructed bipartite graphGi. (4) Finally, for all the max-
imum matchings found, follow (any) one that has the maximum
matching size to perform tuple integration.

Assume thatSI takesG (Figure 6a) as input. As a first step, a
total-order relationshipr1=[:p2 > :p1] induced by edges (t1, t5)
and (t2, t5) and a total-order relationshipr2=[:p2 ≤ :p1] induced
by edges (t3, t6), (t3, t7), (t3, t8), (t4, t6), (t4, t7), and (t4, t8)
are added toR. Next, four constrained bipartite graphsG1, G2,
G3 andG4 are constructed according to Step 2 above. Specifically,
G1 (shown in Figure 7a) includes the edges that induce the total-
orderr1 and the edges that induce no total-order (e.g., (t1, t6)). G2

(shown in Figure 7b) includes the edges that induce the total-order
r2 and the edges that induce no total-order.G3 includes the edges
that inducer1 andr2 and the edges that induce no total-order (G3

is the same as the input graph).G4 includes the edges that induce
no relationships.6

By following the basic idea illustrated above,SI has to search
maximum matchings for2|R| constrained bipartite graphs. Al-
though it looks a lot on the surface,|R| is actually a small number
in practice. For example, in our experiments, the maximum values
of |R| found in TPC-W and TPC-C workloads 13 and 24, respec-
tively. Furthermore, we have incorporated four techniques intoSI
such that it actually visits only at most some tens CBGs in all our
experiments. We have also devised an approximation version of
SI that runs in linear time. However, our experiments show that
the exact version ofSI , in practice, scales well, and finds perfect
matchings easily such that the most time consuming part is usually
the preparation of SDBs using SQP. As such, we do not present the
approximation solution here.

Trick 1. Pruning CBGs that are constructed from contradicting
relationships The following lemma tells us that if a CBGGi con-
tains somecontradictingrelationships,SI can ignoreGi because
there exists another CBGGj with a larger MSM.

LEMMA 1. Let ri and rj be two contradicting total-order re-
lationships and letRij , Ri, andRj be three relationship sets. As-
sume{ri, rj} ∈ Rij ,Ri = Rij −{rj}, andRj = Rij−{ri}. Let
Gij , Gi, andGj be the constrained bipartite graphs constructed
fromRij , Ri, andRj , respectively. IfMij , Mi, andMj are max-
imum satisfiable matchings ofGij , Gi, andGj , respectively, then
|Mij | = max(|Mi|, |Mj |).

The proof of Lemma 1 is in Appendix C.2. In our example, by
Lemma 1,SI does not need to considerG3 becauser1 andr2 are
contradicting and therefore the size of the MSM ofG3 would not
be larger than the size of both the MSM ofG1 and the MSM ofG2.

Trick 2. Compressing the problem instances SI ’s efficiency
can be further improved bycompressingthe symbolic tuples. For
instance, in Figure 7a, tuplest1 andt2 are capturing the same selec-
tion predicateS.A > :p1 of queryQ3. Therefore, they are com-
pressed into asinglenode. A maximum matching problem is often

6Wedo not showG4 here for space reasons.

851

(a) G1

t2: $a2 > :p1

t1: $a1 > :p1

t3: $a3 <= :p1

t5: $a5 < :p2

t6: $a6 >= :p2

t7: $a7 >= :p2

t8: $a8 >= :p2t4: $a4 <= :p1

:p2 > :p1 No total-order (b) G2

t2: $a2 > :p1

t8: $a8 >= :p2

t7: $a7 >= :p2

t6: $a6 >= :p2

t5: $a5 < :p2t1: $a1 > :p1

t4: $a4 <= :p1

t3: $a3 <= :p1

:p2 <= :p1 No total-order

Figure 7: Examples for algorithm SI

t’s’
2

2 3

1

1

1

2

(a) G′
1

t3: $a3 <= :p1

t1: $a1 > :p1 t5: $a5 < :p2

t6: $a6 >= :p2

s’ t’
2

2
2

3

12 1

(b) G′
2

t3: $a3 <= :p1

t1: $a1 > :p1 t5: $a5 < :p2

t6: $a6 >= :p2

Figure 8: Flow networks

transformed into a maximum flow problem in network optimization
[2, 12]. Here,SI compresses the input constrained bipartite graph
G = (U, V,E) into a constrained flow networkG′ = (U ′, V ′, E′):

i. (Build node sets) for every group of nodesNu in U that cap-
tures the same predicate, add a noden′

u ∈ U ′; similarly for
V ′.

ii. (Build edge set) add an edge betweenn′
u andn′

v if there was
an edge (nu, nv) in G wherenu ∈ Nu andnv ∈ Nv.

iii. (Connecting source and sink) add an edge between sources′

andn′

u′ , and an edge betweenn′

v′ and sinkt′.

iv. (Calculate edge capacities) for edges of the form(s′, n′
u), the

capacity is set to|Nu|; for edges of the form(n′
v, t

′), the capac-
ity is set to|Nv|; for edges of the form(n′

u, n
′
v), the capacity

is set tomin(|Nu|, |Nv |).

Figures 8a and 8b show the flow networks compressed from Fig-
ures 7a and 7b, respectively. We can see that the number of nodes is
only half of the original constrained bipartite graph. In general, for
select-project-join (SPJ) queries, the number of compressed nodes
mainly depends on the number of predicates, not data size.

Trick 3. DFS and subset pruning Consider Figure 9, which is
a more complicated constrained bipartite graphG = (U, V,E), as
an example.G represents an instance of integrating two symbolic
relations after several rounds of integration, which often happens
when multiple queries are input to the system (see Section 3.3 for
details). For the time being, we focus on an MSM search for Figure
9.

In Figure 9, the set of edges induces the following set of total-
order relationshipsR={r1=[:p1 > :p2], r2=[:p2 ≥ :p1], r3=[:p2
> :p1]}. For example, edge (t1, t7) induces a total order [:p1>
:p2] and edge (t4, t6) induces a total order [:p2> :p1]. There

t1: $a1<:p1 ∧ $b1>:p3 ∧ $c1>:p4

t8: $a8>:p2 ∧ $b8≥:p3 ∧ $c8≥:p4

t5: $a5≤:p2 ∧ $b5≥:p3 ∧ $c5<:p4

t6: $a6≤:p2 ∧ $b6<p3 ∧ $c6≥:p4

t7: $a7>:p2 ∧ $b7≥:p3 ∧ $c7≥:p4

t4: $a4>:p1 ∧ $b4≤:p3 ∧ $c4≤:p4

t2: $a2<:p1 ∧ $b2≤p3 ∧ $c2>:p4

t3: $a3=:p1 ∧ $b3≤:p3 ∧ $c3≤:p4

:p1 > :p2 :p2 >= :p1 :p2 > :p1 No total-order

Figure 9: A CBG for a multiple-query integration instance.

r1

[:p1>:p2]

r2

[:p2>=:p1]

1 2 3 4 5 6 7 8

r1

[:p1>:p2]

r3

[:p2>:p1]

r2

[:p2>=:p1]

r2

[:p2>=:p1]

r2

[:p2>=:p1]

r3

[:p2>:p1]

r3

[:p2>:p1]

r3

[:p2>:p1]

r3

[:p2>:p1]

r3

[:p2>:p1]

r3

[:p2>:p1]

r3

[:p2>:p1]

inclu
de

in
cl
u
d
e

exclude

ex
clu
d
e

ex
clu
d
e! ! ! ! ! !

Figure 10: Search tree ofSI . Lemma 1 prunes cases 1, 2 and 3.
Lemma 2 prunes cases 6, 7, and 8.

are no total-orders induced from symbols connecting parameters
:p3 and :p4. For the example in Figure 9, we can visualize its23

cases (all possible subsets) as a search tree (Figure 10). The left
branch of the search tree denotes the inclusion of a relationship
and the right branch of the search tree denotes the exclusion of a
relationship. As an example, leaf node 5 represents the case that we
need to construct a constrained bipartite graph by including edges
that induce relationshipr2=[:p2 ≥ :p1] (e.g., (t3, t5)), edges that
induce relationshipr3=[:p2 > :p1] (e.g., (t4, t6)), and edges that
induce no total-order (e.g., (t4, t8)). Looking at Figure 10, we see
that Lemma 1 prunes cases 1, 2, and 3, as those cases include edges
from contradicting relationships (r1 contradicts bothr2 andr3).

SI traverses the search tree in a depth-first manner because the
order of node traversal helps prune the search space by the follow-
ing lemma:

LEMMA 2. Given two non-empty relationship subsets{Ri, Rj} ∈
R, if Ri ⊆ Rj , the size of the MSMMi, of the constrained bipar-
tite graph constructed fromRi, must be less than or equal to the the
size of the MSMMj , of the constrained bipartite graph constructed
fromRj (i.e., |Mi| ≤ |Mj |).

Lemma 2’s proof is in Appendix C.3. By Lemma 2,SI can
prune cases 6, 7, and 8 because the MSM obtained from these cases
cannot be larger than the MSM obtained from case 5. Up to this
point,SI needs to consider only cases 4 and 5.

Trick 4. Early Stopping Our goal is to find the largest MSM
among all the possible CBGs. The last trick is, ifSI finds a perfect
satisfiable matching in a CBG, it can stop early. Although simple,
experiments show that this trick is very useful sinceSI is often
able to find a perfect satisfiable matching very early in the process.

Implementation, Pseudo-code, and CorrectnessThe implemen-
tation details (e.g., choice of the maximum flow algorithm) and the
pseudo-code ofSI are in Appendix B. In Appendix C.4, we prove
that algorithmSI returns an MSM of a CBG correctly.

Multiple Attributes and Multiple Tables GeneralizingSI to
handle multiple attributes is straightforward. In case a tuple con-
tains multiple attributes, a single node is created for the conjunction
of all the constraints in the attributes. In fact, Figure 9 is an exam-
ple of said idea. Integrating two SDBs that contain more than one
pair of symbolic relations is also straightforward. We can simply
applySI on every pair of overlapping symbolic relations.

3.3 Multiple Queries
We now discuss how to integrate multiple symbolic databases

when each database is independently generated from a single input
annotated query by SQP. Intuitively, to integraten symbolic rela-
tions S1, S2, . . ., Sn (which share the same table definition and

852

(a)
D5SI

D4

SI

D2

SI

D3

D1

SI
(b)

D5SI

D4

SI

D2

SI

D3

D1

SI

Figure 11: (a) An Integration Plan (b) An Execution Plan

are generated by SQP forn queries), we can model the problem
as finding an MSM of a constrainedn-partite graph; however, that
problem is obviously too difficult to be solved while maintaining
both a good running time and a good matching size. Therefore, our
method of integrating multiple symbolic databases resembles the
concept of joining.

We useSI(Di, Dj) to denote the integration of two SDBsDi

andDj , and useDij to denote the resulting SDB. The integration
of three SDBs,Di,Dj , andDk, can then be achieved by one of two
integration plans, eitherSI(SI(Di, Dj), Dk) orSI(Di, SI(Dj , Dk)).
Figure 11a shows an integration plan of five SDBs. SDBsD1 and
D2 are first integrated, then the resulting databaseD12 is then
further integrated withD3 and so on. An observation is that an
SI operation is commutative, i.e.,SI(Di, Dj) ≡ SI(Dj , Di) in
terms of matching size. Nevertheless, for performance reasons,SI
is designed to return any one of the possible maximum satisfiable
matchings (if multiple MSMs exist). Therefore, the MSMMij re-
turned bySI(Di, Dj) may have a different set of matching edges
with the MSMMji returned bySI(Dj , Di). Consequently, anSI
operation is not associative, i.e.,SI(SI(Di, Dj), Dk) 6≡ SI(Di,
SI(Dj , Dk)), in terms of running time and matching size. For in-
stance,SI(SI(Di, Dj), Dk) may find a larger MSM thanSI(Di,
SI(Dj , Dk)).

Recall that given the SDBs ofn annotated queries, our goal is
to integrate then SDBs into as few databases as possible. As the
MSM returned by anSI operation may not be a perfect matching,
the size of the MSM may get smaller and smaller when the integra-
tion goes up to the root. In order to ensure the matching size, or the
quality, of an integrated database at a particular level of integration
is acceptable, MyBenchmark stops integrating two SDBs when the
quality of anSI operation drops below a user-defined-threshold.
Since the size of an MSM is not readily known to the users, we
define thequality threshold (from the user perspective) as the rela-
tive error between the annotated cardinality and the actual cardinal-
ity (obtained by posing the query on the generated data). Consider
Figure 11a again. Assume that afterSI(D1, D2), SI(D12, D3)
results in a databaseD123 in which posing a query (e.g.,Q2) on it
finds some query operator with relative error exceeding the thresh-
old. Then, MyBenchmark will not further integrateD123 with D4.
Instead, it discardsD123 and integratesD3 with D4 and so on (see
Figure 11b). In the example, two databasesD12 andD345 are gen-
erated to serve five queries.

Determining a good integration plan
Since there is an exponential number of possible integration plans,
deducing an optimal one that returns a minimum set of databases,
which have the lowest error, is a challenging problem. In fact, it is
as hard as finding the optimal joining plan [7], which isNP-hard
(see Appendix C.5). Traditional query optimization uses heuristics
and estimation to solve the join plan selection problem. Our solu-
tion borrows ideas from there. Specifically, in traditional query
optimization, we usually pre-build certain summaries (e.g., his-
tograms) on the data and exploit those to estimate the best plan
using some efficient algorithm. For MyBenchmark, we pre-build a

22

1

(a)

2 3

15

14

12

4

17
D2D3

D4 D5

D1
(b)

D5

SI

SI

D3

D1

D4

SI

D2

SI

Figure 12: (a) A graph representing the (scaled-down) MSM
sizes between pairs of input SDBs (bolded edges represent the
MST) (b) An integration plan deduced from the MST.

summary about the quality of some coreSI operations and exploit
that to estimate the best plan using a simple graph algorithm. More
specifically, our approach is to first pre-build a summary about the
sizes of the MSM between every pair of input SDBs. To obtain the
size of the MSM between a pair of SDBsDi andDj , we have to
carry outSI(Di, Dj). Givenn annotated queries (thusn SDBs),
we have to executeCn

2 SI operations (ifSI(Di, Dj) has no com-
mon table, thatSI is skipped and the MSM betweenDi andDj is
set to the largest possible integer). To optimize this process, we first
scale down the the cardinalities requirements of the input queries
(e.g., from generating 1GB data to 1MB data) by the test case gen-
eration tool in [14]. For example, the input query in Figure 4a
can be automatically scaled-down to have tableS annotated with
two tuples and the output annotated with one tuple (the tool will
make sure the scaling is meaningful and in proportion). This scale
down optimization is built upon the observation that (1) the num-
ber of total order relationships and more importantly (2) the ratio
between MSM size and the CBG size depend on the characteristics
of the input queries (e.g., the selection predicates) but not the size
of the databases to be generated. Thus, there would be no differ-
ence in (1), (2), and thus the number of resulting databases between
generating 1MB and 1GB data (our experiments confirmed this).
However, there would be a significant time difference between the
two. More specifically, the running time of anSI operation mainly
consists of: (T1) scanning the SDBs and constructing the flow net-
work, (T2) running the maximum flow algorithm, (T3) loading and
merging tuples according to the MSM and inserting them into a
new SDB, and (T4) the algorithmic overhead (e.g., checking con-
tradicting total-orders). Using the fourSI tricks, experiments show
that (T1) often is the most time consuming step because QAGen
(and thus MyBenchmark) store the symbolic/instantiated tuples in a
PostgreSQL (the data is usually too large to fit in memory). There-
fore, much time is spent on the overhead (e.g., JDBC) of reading
symbolic tuples from the database. By runningSI operations on
the scaled-down SDBs instead, we can obtain the summary about
the (proportionally scaled-down) sizes of the MSM between every
pair of SDBs (at the leaf level) more efficiently. As a note, this
summary can be obtained efficiently because it is independent of
the annotated data size and operator cardinalities.

The summary obtained is represented as a graph. In the graph,
a node denotes an SDB, an edge denotes anSI operation between
a pair of SDBsDi andDj , and the edge weight denotes the MSM
size betweenDi andDj . Figure 12a shows an example of such
a graph for the five SDBs. Recall that, one additional database is
required whenever the quality of the resulting instantiated database
drops below the user-threshold. Actually, that is directly related
to the size of the MSM obtained from eachSI operation. Since
our goal is to minimize the number of generated databases, the
best plan should be the one that maximizes the MSM size of each
SI operation. Therefore, we suggest that the best integration plan
should be derived from the Maximum Spanning Tree (MST) of the
graph. In Figure 12a, the MST of the graph is highlighted. Based

853

on the MST, the suggested integration plan (Figure 12b) follows a
decreasingly ordered, by the edge weight (the MSM size), sequence
of the MST, i.e.,SI(SI(SI(SI(D2, D1), D3), D4), D5).

The plan selection is taken care by the Execution Planner (see
Figure 3) of the system. Similar to any query plan selection al-
gorithm, our approach is also based on heuristics and estimation,
which may not find the optimal plan. Nevertheless, experimen-
tal results about this approach are quite encouraging. In our ex-
periments on TPC-C and TPC-W workloads, the plans suggested
by our method successfully integrate all databases into only two
databases.

4. SUMMARY OF THE METHODOLOGY
Overall, the execution of MyBenchmark is composed of two

steps:

StepA. Finding a good integration plan. This involves:
A1) Scale down the cardinalities in the input queries. This is done
by the tool in [14] using negligible time.
A2) SQP the scaled down input queries to get the small SDBs. This
step is doneonceby the SQP engine in [4] for each input query.7

A3) Build a summary (graph) of MSM size by runningSI on every
pair of small SDBs.
A4) Suggest a planP by finding a Maximum Spanning Tree from
the graph. We can use any Minimum Spanning Tree algorithm. In
our implementation, we used Kruskal’s algorithm [13], which runs
in O(n2log n) time. Asn is generally a small number for typi-
cal database applications (e.g., a TPC-W implementation has only
about 20 parameterized queries), this step runs very fast.

StepB. ExecutingP in the original scale. This involves:
B1) SQP the input queries to get the SDBs in original scale. This
step is doneonceby the SQP engine in [4] for each input query.7

B2) RunSI operations according toP .
a) After eachSI , instantiate the resulting SDB.
b) Pose the processed queries on the resulting database to check the
quality, i.e., the relative error between the actual cardinality and the
annotated cardinality of each operator. Add a new database if nec-
essary.

5. EXPERIMENTS
We have carried out experiments on MyBenchmark using work-

loads from TPC-W and TPC-C benchmarks. The implementation
and experimental setings are in Appendix D.1. In all experiments,
we exclude IUD (INSERT, UPDATE, and DELETE) SQL queries.
We also exclude “independent” queries that share no common ta-
bles with the others (e.g., a SELECT query that accesses a table
X is removed from consideration if no other SELECT queries also
accessX). That is because the symbolic databases generated for
independent queries can be “perfectly integrated” with other SDBs
without any effort.

We characterize the efficiency of MyBenchmark based on the
items listed in Section 4. The quality of the generated databases is
characterized by the error between the annotated and actual cardi-
nalities of all queries and their sub-queries.

Experimental Result: TPC-W Benchmark
The TPC-W benchmark models a typical web-commerce database

application. We downloaded an open-source implementation of
TPC-W from http://www.ece.wisc.edu/∼pharm/tpcw.shtml. For space

7SQP and data instantiation are not our focus as long as they scale.

reasons, we refer readers to the TPC-W specification for the de-
tails of the queries (we name the TPC-W queries according to their
appearance order in the specification). After removing IUD and
independent queries, 15 TPC-W queries remained. The expected
cardinalities annotated on the operators of the queries are specified
according to the actual cardinalities obtained by running the queries
on the TPC-W data with scale factor 1.0 (they are scaled-down to
become a scale factor of 0.1 during the plan search process). The
breakdown of the whole plan search process is as follows (rows in
gray mean they are not the implementations of this paper):

Item Description / Sub-item Time

A1 scale-down the input queries <1s
A2 SQP all down-scaled queries once7 6min
A3 Build a summary (graph) of MSM size 180s
A4 Suggest a planP by finding a MST from the graph 0.5s∑

A
9min

Running SQP on all scaled-down input queries to generate the
small SDBs (A2) is more time consuming than the other parts (A1,
A3, A4). This makes sense because query-aware data generation
is much more advanced than traditional query-unaware data gener-
ation technology and thus requires time to process symbolic data.
The time spent on runningSI onC15

2 pairs of SDBs (A3) is 180s.
The following table shows the experimental result about stepB,

i.e., executing the good integration plan in scale 1.0:

Item Description/Sub-item Total Time Spent

B1 SQP all queries in original scale7 53min
B2 Follow P to run SI operations 6min

(a) After each SI, instantiate the resulting SDB 46min
(b) Pose all the queries on the resulting database to check quality 0.26s∑

B
1hr46min

The overall running time,
∑

A
+
∑

B
, is 1 hour 55 minutes. By

following the suggested plan, two databasesDd andDn were gen-
erated. When posing the original queries on the generated database,
all queries obtainexactcardinalities as annotated in the input.

We now study the efficiency ofSI and the pruning effectiveness
of the tricks used bySI . The efficiency of theSI algorithm can be
studied through the four items (T1 to T4) we mentioned in Section
3.3. The effectiveness of anSI can be characterized by (i) thecom-
pression ratio: the total number of tuples (E1) vs. the total number
of nodes in the flow network (E2); and (ii) thepruning effective-
ness: the number of all possible cases (E3), the number of cases
actually examined (E4), and the number of cases pruned by Lem-
mas 1 and 2 (E5). E3, the number of all possible cases, can also
be regarded as the performance of a “baseline” solution in which
no tricks are used and can be used for comparisons. In this experi-
ment, we used the best plan found in stepA and measured the total
values of the aforementioned items of all executedSI operations.

Figure 14 presents the time breakdown of all executedSI op-
erations in different scale factors (1, 10, and 100). T1 is very
time consuming because it reads a large number of tuples from
the SDBs. Thanks to compression, the number of nodes (E2) is
significantly smaller than the original data (E1). Thus, the maxi-
mum flow running time (T2) and the time to integrate and instan-
tiate the compressed tuples (T3) are small. MostSI operations
involved very few unique relationships and the number of unique
relationships is the same across different scales. TheSI(Dj , D9)
operation involved 13 distinct relationships and thus the “baseline”
solution needed to examine213 = 8192 possible cases (E3). How-
ever, with our tricks, 7642 cases (E5) were actually pruned and the
SI operation actually examined only 8 CBGs (E4) before a per-
fect matching was found and stopped early. In someSI operations
(e.g.,SI(D11, D10)), there were no common tables andSI thus

854

Num. of Queries 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15∑
A

(in seconds) 24 50 78 107 139 173 209 247 287 329 373 419 467 517 569∑
B

(in seconds) 416 634 1050 1466 1883 2299 2716 3132 3549 3865 4382 4798 5214 5631 6377
Num. of DB 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

Figure 13: Scaling up the number of TPC-W queries

Running time breakdown of allSIsexecuted in part (B) SF=1.0 SF=10.0 SF=100

T1 Constructing flow networks 122s 608s 5956s
T2 Maximum flow algorithm 0.383s 0.234s 0.255s
T3 Merging tuples & inserting them into SDBs 0.064 0.1s 0.111s
T4 Algorithmic work 251s 381s 419s∑

SI
374s 989s 6376s

Effectiveness ofSI algorithm

E1. Total num. of nodes in all SDBs 134K 1.2M 12M
E2. Total num. of nodes in all flow networks 56 72 67

—the below is same for all scales—
Table customer item

Pruning Effectiveness E3 / E4 / E5 E3 / E4 / E5
SI(D11, D10) → Da 0 / 0 / 0 0 / 0 / 0
SI(Da, D14) → Db 0 / 0 / 0 0 / 0 / 0
SI(Db, D13) → Dc 8 / 1 / 3 0 / 0 / 0
SI(Dc, D4) → Dd 0 / 0 / 0 0 / 0 / 0
SI(Dd, D13) → De 0 / 0 / 0 0 / 0 / 0
SI(D6, D15) → Df 0 / 0 / 0 0 / 0 / 0
SI(Df , D8) → Dg 0 / 0 / 0 0 / 0 / 0
SI(D3, D2) → Dh 0 / 0 / 0 128 / 4 / 124
SI(Dh, D7) → Di 1 /1 / 0 0 / 0 / 0
SI(Di, D3) → Dj 8 /1 / 4 0 / 0 / 0
SI(Dj , D9) → Dk 0 / 0 / 0 8192 / 8 / 7642
SI(Dk, D1) → Dl 32 / 1 / 15 0 / 0 / 0
SI(Dl, D12) → Dm 1024 / 1 / 512 0 / 0 / 0
SI(Dm, D5) → Dn 0 / 0 / 0 4096 / 24 / 3872

Figure 14: Details ofSI algorithm (TPC-W)

examined 0 cases. The overhead (T4) (e.g., checking contradicting
relationship) is relatively less significant when compared with T1.
Overall, we can see that theSI algorithm scales linearly with the
size of the generated data.

To study the performance of the overall methodology with re-
spect to workloads of different sizes, we carried out an experiment
that varies the number of annotated queries in the input. Table
13 summarizes the results (time is in seconds). The running time
roughly scales linearly to the number of input queries. After we
processed the 6-th query, the quality of the generated data was be-
low threshold and thus one new database was added. All the gen-
erated databases are perfect (i.e,. no error).

We remark that experiments of this kind can only be carried out
by adding real queries. Other kinds of controlled experiments may
not be applicable. Specifically, the number of queries cannot be
scaled up even higher by using randomly generated queries because
they often return empty results (i.e., cardinality equals 0 in the out-
put operator). Also, it is difficult to control the number of unique
relationships in the workload because that depends on the query
semantic. Nevertheless, as TPC benchmarks are simulating real-
istic workloads, we believe that the number of queries we used is
enough to reflect realistic applications.

Other results and discussion. For space reasons, we put the ex-
perimental result of using TPC-C workload in the Appendix. Over-
all, we see that MyBenchmark successfully minimizes the num-
ber of generated databases. The running time scales linearly to the
data size and the number of input queries. Nevertheless, the num-
ber of input queries has some impact on the number of generated
databases. For all the experiments that we have conducted, we have
executed thousands to millions of extra randomly generated inte-
gration plans (using a cluster of machines) to get a picture of how
the best plans for each workload could be. We found that the in-
tegration plans suggested by our method have the same number of

generated databases (and 0 error) as the best plan we could find in
millions of plans, except in the experiment using TPC-C workload,
where we found a plan that integrated all databases into one with lit-
tle error, which is better than the one suggested by our method. As
a future work, we will study the better plans found in those random
trials to further improve our integration plan searching method.

6. CONCLUSION
MyBenchmark is a workload-aware data generator that takes as

input a set of queries and generates database instances for which the
users can control the characteristics of the resulting workload. Ap-
plications of MyBenchmark include database testing, database ap-
plication testing, and application-driven benchmarking. Although
the whole data generation process requires solving several diffi-
cult problems, our experiments show that our proposed methods
are able to practically solve them. Our future work will focus on
further improving the integration plan search methods.

7. REFERENCES
[1] Dbunit. http://www.dbunit.org.
[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.Network flows: theory,

algorithms, and applications. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1993.

[3] C. Binnig, D. Kossmann, and E. Lo. Reverse query processing. In
ICDE, 2007.

[4] C. Binnig, D. Kossmann, E. Lo, and M. T. Ozsu. QAGen: Generating
Query Aware Test Databases. InSIGMOD, 2007.

[5] N. Bruno, S. Chaudhuri, and D. Thomas. Generating Queries with
Cardinality Constraints for DBMS Testing.TKDE, 2006.

[6] B. V. Cherkassky and A. V. Goldberg. On implementing the
push-relabel method for the maximum flow problem.Algorithmica,
19(4):390–410, 1997.

[7] S. Cluet and G. Moerkotte. On the complexity of generating optimal
left-deep processing trees with cross products. InICDT, 1995.

[8] B. Cook, D. Kroening, and N. Sharygina. Cogent: Accurate theorem
proving for program verification. InCAV, pages 296–300, 2005.

[9] M. R. Garey and D. S. Johnson.Computers and Intractability: A
Guide to the Theory of NP-Completeness. 1990.

[10] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J.
Weinberger. Quickly generating billion-record synthetic databases. In
SIGMOD, 1994.

[11] F. Haftmann, D. Kossmann, and E. Lo. A framework for efficient
regression tests on database applications.VLDB Journal,
16(1):145–164, 2007.

[12] A. Kini, S. Shankar, J. F. Naughton, and D. J. DeWitt. Database
support for matching: limitations and opportunities. InSIGMOD
Conference, 2006.

[13] J. B. Kruskal. On the shortest spanning subtree of a graph and the
traveling salesman problem.Proceedings of the American
Mathematical Society, 7(1):48–50, 1956.

[14] E. Lo, C. Binnig, D. Kossmann, M. T. Ozsu, and W.-K. Hon. A
Framework for Testing DBMS Features.VLDB Journal,
19(2):203–230, 2010.

[15] H. Mannila and K.-J. Räihä. Test data for relational queries. In
PODS, pages 217–223, 1986.

[16] C. Mishra, N. Koudas, and C. Zuzarte. Generating targeted queries
for database testing. InSIGMOD, pages 499–510, 2008.

[17] C. Olston, S. Chopra, and U. Srivastava. Generating example data for
dataflow programs. InSIGMOD Conference, pages 245–256, 2009.

855

APPENDIX

A. BACKGROUND OF QAGEN
The QAGen system [4] is the predecessor of MyBenchmark.

QAGen is a query-aware test database generator that takes as in-
put an annotated parameterized queryQ and a database schemaH
as input. Each operator or base table inQ is annotated with a set
of constraints (usually cardinality and data distribution). Figure 1a
shows an annotated selection queryQ1 as an example. The SQL
statement ofQ1 is SELECT A FROM R WHERE R.A < :p1.
Q1 specifies that tableR should be populated with two tuples and
the query should return one tuple (:p1 is a parameter). The output
of QAGen is a query-aware databaseD that conforms toH , and
a set of parameter valuesP . Executing queryQ (with parameter
valuesP) on D guarantees that the constraints defined onQ are
satisfied.

As a means to process a query like the one in Figure 1a before
the data is generated, QAGen introduces the concept of symbolic
query processing (SQP). In SQP, each operator is implemented as
an iterator with methodsopen(), getNext(), andclose(). SQP starts
with the population of a symbolic database (SDB) according to the
sizes of the base tables specified in the annotated query. Figure
1b shows the SDB initialized for queryQ1. A symbolic database
consists of a number of symbolic relations. A symbolic relation
is a collection of symbolic tuples. Inside each symbolic tuple, the
values are initially represented by symbols rather than by concrete
values. For instance, tuplet1 in Figure 1b is a symbolic tuple of
symbolic relationR and symbol $a1 represents any value under the
domain of attributeA.

Since a symbolic database provides an abstract representation for
concrete data, SQP can control the output of each operator in accor-
dance with the user-defined constraints. Specifically, an operator in
SQP evaluates the input tuples according to its own semantics. It
manipulates the symbols in each input tuple in order to reflect the
constraints defined on the operator. At the same time, it controls its
output to its parent operator so that the parent operator can work on
the right tuples. Continuing with the example in Figure 1b, when
thegetNext()method of the selection operatorσR.A<:p1 is first in-
voked, it reads tuplet1 from R, annotates a “positive” constraint
[<:p1] (i.e., the selection predicate) to symbol $a1 and returns tu-
ple 〈$a1<:p1, $b1〉 to its parent. When thegetNext()method of
the selection operator is invoked a second time, the selection op-
erator reads the next tuplet2 from R, and annotates a “negative”
constraint [>=:p1] (i.e., the negation of the selection predicate) to
symbol $a2. However, this time it doesnot returnt2 to its parent
because the cardinality constraint (1 tuple) is already satisfied. Af-
ter symbolic query processing, the set of symbolic relations capture
all the constraints defined on the input query (see Figure 1c). In the
final step, a constraint solver is used to instantiate the symbolic tu-
ples and the parameters with concrete values.8 Figure 1d shows the
instantiated tableR and we can see that executingQ1 onR (with
:p1=22) would get exactly one tuple as defined by the user. In SQP,
joins and groupings are implemented by symbol replacements. For
example, if a group-by query is annotated to return 1 group from
tableR, the same symbolic relation in Figure 1b will be initial-
ized but the grouping operator will replace symbol $a2 with $a1
duringgetNext()on t2. Since both tuplest1 andt2 contain $a1 in

8A constraint solver takes as input a constraint formula and returns an in-
stantiation on each variable as output. E.g., if an input constraint formula
is 40<$a1+$b1<100, a constraint solver may return $a1=55, $b1=11 (or
any other correct instantiation) as output. Although the constraint satisfac-
tion problem on a finite domain isNP-complete, there are many best-effort
constraint solvers that can practically solve many forms of constraints.

their attributeA, the data instantiator will instantiate them with the
same concrete value. In SQP, the data distribution constraints are
controlled by the cardinalities.

QAGen is mainly composed of three components: a Query Ana-
lyzer, a Symbolic Query Processing (SQP) Engine, and a Data In-
stantiator. The Query Analyzer is used to parse annotated-queries
and determine the cardinality or the data distribution if they are
not specified on some query operator. The SQP Engine is used to
symbolically process the query and the Data Instantiator uses an
external constraint solver called Cogent [8] to instantiate the pro-
cessed SDBs and the parameters with real values according to the
user-given data distributions. The SQP Engine includes the SQP
implementations of most SQL operators including selection, pro-
jection, join, grouping, and aggregation. QAGen is thus able to
generate databases for a variety of SQL queries.

B. IMPLEMENTATION AND PSEUDO-CODE
OF SI

Algorithm 1 presents the pseudo-code ofSI . We have gone
through Steps (1) to (3) in the main discussion. As the relation-
ships are unweighted, so the search tree is constructed randomly.
In terms of implementation, Steps 4(a) and 4(b) are merged so that
we construct the flow network from the symbolic relations directly.
To implement Step 4(c), we use a push-relabel maximum flow algo-
rithm with complexityO(n3) [6] (n is the number of nodes in the
flow network). To implement Step 4(d), for each edge of the form
(n′

u, n
′
v) in the network flowG′

i with flow valuef , SI matchesf
members ofNu to f members ofNv. Finally, in Step 5,SI fol-
lows the largest maximum satisfiable matching that it has found to
perform tuple merging.

Algorithm 1 SI

(1) Identifies all the total-order relationships that can be induced by the
satisfiable edges and puts them in a setR.

(2) Construct a search treeT for each subsetRi of R that
(i) contains no contradicting relationships and
(ii) Ri is not a subset of another subsetRj .

(3) Initialize MAX -MSM=null to store the largest MSM discovered so far.
(4) Visit the search treeT in a depth-first order.

(a) construct a new constrained bipartite graphGi which includes
(i) the edges that induce the relationships inRi

appear as a left branch of a node (inclusion); and
(ii) the edges that induce no total-order (edges that induce only

partial-order relationships);
(b) transformGi into its flow network counterpartG′

i;
(c) find a maximum flowM ′

i from G′
i by invoking a maximum

flow algorithm;
(d) transform the resulting maximum flow into maximum match-

ing MSM;
if a perfect satisfiable matchingM is found, stop searching.
if |MSM|> size-ofMAX -MSM

setMAX -MSM= MSM
(5) Follow MAX -MSM to perform the integration.

C. PROOFS

C.1 Proof of k-SAT-MATCH is NP-complete.

THEOREM 1. Problemk-SAT-MATCH isNP-complete.

We begin with provingk-SAT-MATCH is in NP , and further
show that it isNP-hard by a reduction from theNP-complete
problem known as X3C (Exact Cover by3-set).

856

COROLLARY 1. k-SAT-MATCH is inNP .

PROOF. Each “yes” instance has a polynomial-size proof, which
consists of the set of edges in the matching, and the set of values for
each variable. Thus, each “yes” instance can be verified in polyno-
mial time.

COROLLARY 2. k-SAT-MATCH isNP-hard.

PROOF. Obviously, if we solely focus on the constraint satisfac-
tion problem (i.e., the condition on satisfiability required in Defi-
nition 4),k-SAT-MATCH is definitelyNP-hard. However, as we
want to show the difficulty of the matching problem itself (e.g.,
adding an edge to the matching set will induce some relationships
that hinder the matching of the other nodes), we assume here the
constraint satisfaction step is at no cost.

We are going to reduce X3C (Exact Cover by 3-Set) to thek-
SAT-MATCH problem. The X3C problem [9] takes as input a set
of elementsS= {S1, S2, . . . , S3n} and a collection of 3-element
setC= {C1, C2, ..., Cm} and asks whether there is a sub-collection
of C, whose size isn, such that it exactly covers all elements ofS .
The reduction is to construct a constrained bipartite graphG =
(U, V,E) as follows.

1. For each 3-element setCi = {Sj , Sk, Sℓ}, insert 3 constrained
nodesui,j ,ui,k, andui,ℓ to constrained node setU . The propo-
sitional formulas that are associated withui,j , ui,k, andui,ℓ

would be [$aj ≤wi], [$ak ≤wi] and [$aℓ ≤ wi], respectively
($aj , $ak, $aℓ are symbols andwi is any unique value).

2. For each elementSj , insert a constrained nodevj to constrained
node setV . The propositional formula that is associated with
vi would be [$bj ≥ w] (value w would be the same for all
elements).

3. Connect the nodes inU andV if they are created from the same
elementSj .
For instance, assume a 3-element setC2 = {S4, S5, S6} has
inserted 3 nodesu2,4,u2,5, andu2,6 toU in Step 1 and element
S4 has inserted a nodev4 into V in Step 2. Then, nodesu2,4

andv4 should be connected as both of them are created from
elementS4.

4. For each 3-element setCi, insert a nodeuCi with propositional
formula [$ci > wi] to U and insert a nodevCi with proposi-
tional formula [$di ≤ w] to V and connect the two nodes with
an edge.

The rest of the proof will establish:

PROPOSITION 1. There is an exact cover ofS if and only if the
size of maximum satisfiable matching ofG is exactly3n+(m−n).

Firstly, if the nodeui,j appears in the MSM, it must be matched
with the nodevj , so that it will induce the total-order relationship
wi ≥ w. On the other hand, ifuCi appears in the MSM, it must
be matched with willvCi , so that it will induce the total-order re-
lationshipw > wi. Thus, if eitherui,j , ui,k, or ui,ℓ appear in the
MSM, we cannot haveuCi in the MSM at the same time.

Suppose we denotez to be the number ofi’s such thatui,j ,
ui,k, or ui,ℓ appear in the MSM. Then, the size of MSM is at most
3z+(m− z), which in turn is at most3n+(m−n) sincez ≤ n.

The “only-if” direction . Next, suppose there is an exact cover
of S . In that case, letCi1 , Ci2 , . . . , Cin be the 3-sets such that they
exactly coverS . This implies the elements in these 3-sets must be
distinct from each other. Then, consider the following matching in
G:

1. For eachi ∈ {i1, i2, . . . , in}, the corresponding nodes ofCit ,
i.e., uit,j , uit,k, uit,ℓ, are matched tovj , vk, andvℓ, respec-
tively.

2. For eachi /∈ {i1, i2, . . . , in}, uCi is matched tovCi .

The above matching is also satisfiable because the edges induce
total-order relationships of the formwi ≥ w wheni ∈ {i1, i2, . . . , in},
and of the formwi < w for other choice ofi. Thus, all edges can be
satisfied simultaneously. Finally, it is easy to check that the above
matching has3n+ (m− n) edges, so that it is a maximum satisfi-
able matching.

The “if” direction . If the size of MSM is exactly3n+(m−n),
we claim thatz, which is the number ofi’s such thatui,j , ui,k, or
ui,ℓ appear in the MSM, must be exactlyn; in addition, for each
suchi, all ui,j , ui,k, ui,ℓ must appear in the matching. If this claim
is true, it will immediately imply the corresponding 3-setsCi’s (in
totaln of them) will cover exactlyS .

Now, it remains to prove the claim. We first show thatz = n. If
z < n, then the matching can contain at most3z edges connecting
someui,r with vr, and at mostm− z edges connecting someuCs

with vCs , so that the number of edges is at most3z + (m − z),
which is less than3n+(m−n). On the other hand, ifz > n, then
the matching can contain at most3n edges connecting someui,r

with vr (becausevr is limited), and at mostm−z edges connecting
someuCs with vCs , so that the number of edges is at most3n +
(m− z), which again is less than3n+ (m− n). Thus, if the size
of MSM is 3n+ (m− n), we must havez = n.

Given z = n, there are at mostm − n edges connectinguCs

with vCs . Thus, at least3n edges must be connecting someui,r

with vr. However, since there are onlyn values ofi with ui,j ,
ui,k, orui,ℓ appear in the MSM, the previous statement is possible
unless for each suchi, all ui,j , ui,k, ui,ℓ appear in the matching.
Thus, the proof of the claim completes, and so do the proofs of the
Proposition 1 and Corollary 2.

C.2 Proof of Lemma 1

PROOF. Sinceri andrj are contradicting, the maximum satis-
fiable matchingMij in Gij must not simultaneously contain edges
inducingri and edges inducingrj . In other words,Mij must either
be a maximum satisfiable matching inGi or in Gj , so that either
|Mij | = |Mi| or |Mij | = |Mj |. Since|Mij | is maximized, it
follows that|Mij | = max(|Mi|, |Mj |).

C.3 Proof of Lemma 2

PROOF. SinceRi ⊆ Rj , the edges ofMi are all included in the
constrained bipartite graphGj constructed fromRj , so thatMi is
a satisfiable matching inGj . On the other hand,Mj is amaximum
satisfiable matching inGj , so we must have|Mi| ≤ |Mj |.

C.4 Proof of Algorithm SI correctness

LEMMA 3. Given a CBGG, algorithmSI returns a maximum
satisfiable matching ofG correctly.

PROOF. If no pruning occurs, all relationship subsets with no
contradicting total-order relationships will be examined as in the
algorithmSI , so that the matching reported in the end (which is
the one whose size is largest among all maximum matchings) must
be a maximum satisfiable matching ofG.

C.5 Proof sketch of the optimal integration
plan problem

857

Running time breakdown of allSIs executed in part (B) SF=1.0 SF=5.0 SF=10

T1 Constructing flow networks 670s 3062s 5864s
T2 Maximum flow algorithm 0.064s 0.035s 0.092s
T3 Merging tuples & inserting them into SDBs 0.047 0.049s 0.045s
T4 Algorithmic work 14870s 14887s 14867s∑

SI
15541s 17949s 20732s

Effectiveness ofSI algorithm

E1. Total num. of nodes in all SDBs 918K 4.1M 8.2M
E2. Total num. of nodes in all flow networks 30 32 32

—the below is same for all scales—
Table customer orders district

Pruning Effectiveness E3 / E4 / E5 E3 / E4 / E5 E3 / E4 / E5
SI(D1, D2) → Da 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0
SI(Da, D12) → Db 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0
SI(Db, D4) → Dc 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0
SI(Dc, D6) → Dd 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0
SI(Dd, D13) → De 2 / 1 / 1 0 / 0 / 0 0 / 0 / 0
SI(De, D11) → Df 0 / 0 / 0 64 / 1 / 31 0 / 0 / 0
SI(Df , D14) → Dg 512 / 1 / 255 0 / 0 / 0 4 / 1 / 1
SI(D3, D10) → Dh 512 / 4 / 266 0 / 0 / 0 0 / 0 / 0
SI(Dh, D5) → Di 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0
SI(Di, D15) → Dj 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0
SI(Dj , D7) → Dk 16777216 / 2 / 8388607 0 / 0 / 0 0 / 0 / 0
SI(Dk, D9) → Dl 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0
SI(Dl, D16) → Dm 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0
SI(Dm, D8) → Dn 0 / 0 / 0 0 / 0 / 0 64 / 2 / 34

Figure 15: Details ofSI algorithm (TPC-C)

PROOFSKETCH. Given an instance of a cross product optimiza-
tion [7], we create a corresponding symbolic database such that
the matching size between two databases is always equal to the
size of the cartesian product of the databases plus the size of the
two databases. Thus, finding the maximum (satisfiable) matching
equals to finding the optimal join ordering, which isNP-hard.

D. SUPPLEMENTARY EXPERIMENTAL IN-
FORMATION

D.1 Experimental Setup
QAGen uses PostgreSQL to manage the symbolic/instantiated

database and uses Java to implement the SQP operations. For easy
interacting with QAGen’s components, we also use Java and Post-
greSQL to implement MyBenchmark. All experiments were car-
ried out on a Pentium Dual-Core 2.5GHz PC with 8GB memory
running Ubuntu. In all experiments, we set the relative error tol-
erance to be 100% for cardinalities in range [1, 1000] (e.g., the
acceptable range of cardinality 10 is [1, 20]; cardinality 0 is ex-
cluded), 10% for cardinalities in range [1001, 10000] (e.g., the ac-
ceptable range of cardinality 5000 is [4500, 5500]), and 1% for
cardinalities>10001.

D.2 Experimental Result: TPC-C Benchmark
The TPC-C benchmark models a typical OLTP environment where

users executes transactions against a database. We downloaded an
open-source implementation of TPC-C from http://db.apache.org/
derby/index.html. We refer readers to the TPC-C specification for
the details of the queries (we name the TPC-C queries according to
their appearance order in the specification). After removing IUD
and independent queries, 16 TPC-C queries remained. The ex-
pected cardinalities annotated on the operators of the queries are
specified according to the actual cardinalities obtained by running
the queries on the TPC-C data with scale factor 1.0 (they are scaled-
down to a scale factor of 0.1 during the plan search process). The
breakdown of the whole plan search process is as follows:

Item Description / Sub-item Time

A1 scale-down the input queries <1s
A2 SQP all down-scaled queries once7 50min
A3 Build a summary (graph) of MSM size 403s
A4 Suggest a planP by finding a MST from the graph 0.5s∑

A
57min

Again, the most time consuming part is running SQP on all scaled-
down input queries to generate the small SDBs (A2). The time
spent on runningSI onC16

2 pairs of SDBs (A3) is 403s.
The following table shows the experimental result about stepB,

i.e., executing the good integration plan in scale 1.0:

Item Description/Sub-item Total Time Spent

B1 SQP all queries in original scale7 3hr55min
B2 Follow P to run SI operations 4hr10min

(a) After each SI, instantiate the resulting SDB 2hr43min
(b) Pose all the queries on the resulting database to check quality 0.52s∑

B
10hr56min

The overall running time,
∑

A
+
∑

B
, is 11 hours 53 minutes. By

following the suggested plan, two databasesDg andDn were gen-
erated. When posing the original queries on the generated database,
all queries obtainexactcardinalities as annotated in the input.

Figure 15 presents the time breakdown of all executedSI oper-
ations in different scale factors (1.0, 5.0, and 10.0), using the best
plan found in partA. Most items behave the same as TPC-W work-
load. We can see that the suggested plan favors the integration of
SDBs without any common table (as their MSMs are set to be the
largest possible integer in those cases), so the first fewSI opera-
tions do not integrate anything. Slightly different from the TPC-W
experiment, the time spent on theSI algorithm (T4) dominates
the overall running time. When we look at the number of cases
(E3), we quickly find out that is related to the current implemen-
tation (not algorithmic issue) of MyBenchmark. Specifically, this
TPC-C workload has oneSI operation that needs to deal with 24
distinct relationship, leading to 16+ million cases. That should not
be an issue originally because only two CBGs (E4) were actually
processed after a large number of cases were pruned (E5). How-
ever, the current MyBenchmark implementation is implemented in

858

Num. of Queries 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16∑
A

(in seconds) 192 380 574 773 974 1179 1388 1600 1815 2033 2255 2481 2710 2942 3177 3415∑
B

(in seconds) 1497 2380 3878 5375 6873 8370 9867 1136512862 14362 15860 17358 33815 20353 21851 38996
Num. of DB 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

Figure 16: Increasing the number of TPC-C queries

Java and uses an external constraint solver called Cogent [8], which
is a C++ binary executable, to check Lemma 1. For each cross-
language Cogent call, it took about 0.3s overhead (by JNI). All to-
gether there were 49632 Cogent calls (same for all scales; because
that depends on the number of distinct relationships, not the data
size). So, those calls used a total of 14850 seconds, which almost
equals to time T4. Indeed we tried to use some constraint solvers
written in Java in our implementation and that bottleneck was gone
(the bottleneck is back to T1). However, we found that, in gen-
eral, Java constraint solvers are not very stable. As an experimental
prototype, we keep Cogent in our current implementation because
it is more stable (most constraint solvers are written in C++). We
are currently testing a more stable Java constraint solver that can
replace Cogent, and we are considering to re-implement the whole
SQP and MyBenchmark in C++ (so that it can work seamlessly
with Cogent). As a side-note, the above also explains why item
B2 becomes the bottleneck in partB. That is also due to the large
overhead spent on calling a non-Java external binary. Therefore, if
we find a stable Java constraint solver, the running time ofB can
be reduced by 4 hours.

Other than the above implementation issue, this experiment draws
similar conclusions as in the TPC-W experiments. The running
time scales linearly to the workload size. The experimental result
about varying the number of annotated queries in the input is sum-
marized in Figure 16. Overall, the running time scales roughly
linearly to the number of input queries. All the generated databases
are perfect (i.e., no error). When the 9-th query was added, one
more database was required.

Acknowledgment. We thank Byron Choi, Man Lung Yiu, Ming-
Hay Luk, Duncan Yung, and the anonymous reviewers for their
insightful comments.

859

