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ABSTRACT
Previous work reports about SXSI, a fast XPath engine which ex-
ecutes tree automata over compressed XML indexes. Here, rea-
sons are investigated why SXSI is so fast. It is shown that tree au-
tomata can be used as a general framework for fine grained XML
query optimization. We define the “relevant nodes” of a query as
those nodes that a minimal automaton must touch in order to an-
swer the query. This notion allows to skip many subtrees during
execution, and, with the help of particular tree indexes, even al-
lows to skip internal nodes of the tree. We efficiently approximate
runs over relevant nodes by means of on-the-fly removal of alterna-
tion and non-determinism of (alternating) tree automata. We also
introduce many implementation techniques which allows us to ef-
ficiently evaluate tree automata, even in the absence of special in-
dexes. Through extensive experiments, we demonstrate the impact
of the different optimization techniques.

1. INTRODUCTION
The XPath query language plays a central role in XML process-

ing: it is deeply uprooted in almost every XML technology, starting
from query languages such as XQuery and XSLT, to access control
languages such as XACML, to JavaScript engine of popular web
browsers. Thus, efficient XPath evaluation is essential for any time-
critical XML processing. In this paper we show how tree automata
can be used as framework for fine-grained and novel types of XPath
query optimizations. The experiments with our prototype show
that, together with appropriate indexes for the XML document tree,
these optimizations give rise to unprecedented execution speed for
XPath queries, outperforming the fastest existing XPath engines.

The first breakthrough in efficient XPath execution was Koch et
al.’s seminal paper [6] (see also [7]) where it is shown that Core
XPath can be evaluated in time O(|D| · |Q|) where |D| is the size
of the document and |Q| is the size of the query. Core XPath refers
to the tree navigational fragment of XPath. Considering the time
bound of Koch’s algorithm, there are two obvious ways of reducing
this complexity in practice:
(1) reduce the number of query steps (“|Q|-optimization”) and
(2) reduce the number of nodes to consider (“|D|-optimization”).
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Extreme |Q|-Optimization: A top-down deterministic tree au-
tomaton (TDTA) processes an input tree starting in its initial state,
at the root node. It then applies a unique rule which says, for a
given state and label of a node, how to process the children of that
node. A node is selected as a result, if the unique state reached by
the automaton on that node and the label of that node are elements
of a special “set of selection pairs”. After compiling a (restricted)
XPath query into such an automaton (which takesO(|Q|) time), the
run function only requires a single look-up at each node of the input
tree (plus possibly an insertion of the current node into the result
list. Since the function visits the nodes in document order and only
once, this insertion can be performed in constant time, keeps the re-
sult sorted and duplicate-free). Thus, the evaluation runs inO(|D|)
time, giving the extreme case of |Q|-optimization to |Q| = 1. Sim-
ilar automata for XML processing have been considered [12–14].
However, implementations of such automata cannot compete with
state-of-the-art XPath engines.The reasons for this deficiency are
that (1) performance depends on the speed of firstChild and nextSi-
bling operations in the XML tree data structure, (2) the automaton
needs to visit every node of D and (3) the compilation into TDTA
only works for a very restricted subset of Core XPath.

To address (1), many implementations use in-memory pointer
structures. However, this blows up the memory requirement by a
factor of 5-10 over the size of the original XML document. Hence,
such implementations can only work over small documents. We
solve this problem by using state-of-the-art succinct trees [18], a
recent development in data structures.

Solutions to problems (2) and (3) are the main subject of this
paper. We study ways to restrict the nodes of the document which
must be visited by the run function of the automaton. This gives
rise to the notion of relevant nodes, one of our key contributions.
To address (3), we work with non-deterministic alternating tree au-
tomata and carefully develop on-the-fly determinization and alter-
nation elimination algorithms. This allows to retain most the bene-
fits of deterministic automata while increasing the expressive power
to full Core XPath. Altogether, our implementation of these solu-
tions to (1) – (3) provides XPath execution speed competitive with
the best known engines [1]. While we restrict ourselves for didactic
reasons to a fragment of Core XPath, our prototype “SXSI” imple-
ments Core XPath plus text predicates [1]; we are currently adding
other XPath 1.0 features such as number functions and aggregates.
|D|-Optimization using Relevant Nodes Consider the query

Q0 = //a//b which selects all b-descendants of a-labeled nodes.
A TDTA for this query starts at the root in a state q0. When it
encounters an a-node it changes to a state q1. Any b-node encoun-
tered in q1 is selected as result. For such an automaton we say
that a node is relevant, whenever the automaton changes state, or
selects a node. Thus, all top-most a-nodes and all their b-labeled
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descendants are relevant. Note that for this query, one could use
the staircase join [9] to restrict the set of all a-nodes to the top-
most ones, and only then select b-descendants; in this way only
the relevant b-nodes are touched (but some non-relevant a-nodes
might be touched in the first step). Here, we first give an algorithm
that executes an arbitrary TDTA so that only relevant nodes are
visited. This is achieved by executing the automaton over an index
that allows at any node to “jump” to the next σ-labeled descendant
(for any label σ) or to the next σ-labeled following node (accord-
ing to XPath), for any σ. For bottom-up deterministic tree automata
(BDTA), we can define relevant nodes in a similar way. We sketch
an algorithm for BDTAs that only touches relevant nodes, given an
index that allows access to all bottom-most nodes with a given la-
bel and allows to jump to labeled ancestors (due to space constraint
and the fact that the bottom-up algorithm has to handle more cases
than the top-down one to ensure that nodes are only visited once,
we do not give it fully in this paper).

Given a query, it is not always possible to determine which one of
the bottom-up or top-down evaluation is the most efficient (i.e. vis-
its fewer nodes). For instance, for query Q0, if the input document
has less b nodes than a nodes, a bottom-up traversal seems more
efficient. Following this idea, we extend our evaluation algorithm
to support Start Anywhere Runs: for a query such as //a//b//c, if the
global count of b-nodes is low, we can jump to these b-nodes, and
from there execute simultaneously a bottom-up run which checks
for a-nodes and a top-down run which selects c-nodes.

Non-Deterministic Automata To determine the relevant nodes
for a TDTA or BDTA, we actually first have to minimize the au-
tomaton. Intuitively, a non-minimal automaton can do many use-
less state-changes. While minimization can efficiently be done for
deterministic automata, it poses a big problem for non-deterministic
automata. Here, minimization is EXPTIME-complete, and, there
need not even exist a unique minimal automaton. Unfortunately,
for XPath we must deal with non-deterministic automata: consider
Q1 = //a[.//b]//c. If we execute it top-down and are below an a-
node, then for a c-node we cannot know whether to select it (this
depends on the presence of b-nodes which might be below). Simi-
larly, the query //a//c cannot be done in a deterministic bottom-up
way. There is an elegant way to characterize relevant nodes for non-
deterministic automata, using equivalence between sub-automata.

This notion proves too complex to implement in practice (equiv-
alence is EXPTIME-complete), but we give an on-the-fly algorithm
which soundly approximates the relevant nodes of a nondetermi-
nistic tree automaton, while evaluating the automaton on an input
tree. Our experiments show that for typical XPath queries our on-
the-fly algorithms perform well: the approximation of the set of
relevant nodes that we compute is close to the real set allowing us
to only visit a small fraction of the complete document.

Plan Section 2 gives the definitions and introduces our model
of selecting tree automata. Section 3 formally defines the concept
of relevant nodes and studies two optimal algorithms for minimal
top-down and bottom-up selecting tree automata. Section 4 intro-
duces our variant of alternating tree automata, their encoding of
XPath queries, and presents the approximating algorithm as well
as a collection of implementation techniques. The impact of these
techniques is validated by experiments given in Section 5. Some
non-crucial aspects are detailed in the Appendix.

Related Work
Skipping of complete subtrees has been considered before, in sev-
eral different contexts. For instance, the application of the staircase
join [9] can be seen as an instance of skipping: for the descen-
dant axis, only the top-most independent context nodes are consid-

ered, i.e., their subtrees are skipped; in a similar way, even ancestor
paths can be skipped by this join. Skipping of subtrees is also com-
mon practice in advanced compilers for pattern matching in pro-
gramming languages. In [11] selecting tree automata are compiled
into mutually recursive functions of an ML-style target language.
They define “loop breaker” states, intuitively, a state with transition
q, l → (q, q). This is similar to non-relevant nodes, according to
our definition, and is used there to enforce the termination of the
generated code There is a large body of work on optimizations for
evaluation of attribute grammars (see, e.g., [15]) some of which
correspond to skipping of subtrees; note that attribute grammars
can simulate selecting TDTA and BDTAs. In [5] automata are used
for tree pattern matching and subtrees are skipped according to type
information. Tree automata have been used for XPath, but mainly
in the context of streaming: Koch [10] runs BDTAs over a reversed
XML document followed by a top-down run, to evaluate XPath.
Suciu et al. [8] use automata to evaluate many queries in parallel,
over a stream. We are not aware of any work that executes automata
over tree indexes, such as we do. In fact, even for usual DFAs over
strings, there is no prior work on executing DFAs or evaluating
regular expressions over indexed strings (where the index allows
to skip regions of the string, based on labels); the closest work
is [2]. Also comparable is the idea of running DFAs on grammar-
compressed strings. The THOR system [16, 17], uses data struc-
tures that support the same jumping operations as we do. However,
they do step-wise evaluation of XPath a la Koch and therefore can-
not use these structures to restrict evaluation to only relevant nodes.

It should be noted that the presented work is an in-depth presen-
tation of the automata-based technique used in [1], where the in-
terested reader can find comprehensive experiments (against both
MonetDB and Qizx/DB) and a description of the use of automata
with custom indexes.

2. SELECTING TREE AUTOMATA
We define our notion of tree automata over binary trees. When

applying them to XML we use the well-known “first-child/next-
sibling” encoding: the first-child of a node in the XML tree be-
comes the left child in the binary tree, and the next-sibling of a
node in the XML tree becomes the right child in the binary tree.
We also do not consider text nodes or attributes (but a straightfor-
ward encoding is given in [1]). Let Σ be an alphabet, i.e., a finite
set of symbols. The set of binary trees over Σ, denoted T (Σ), is
the smallest set T such that (i) the leaf symbol # is in T and (ii) if
t1, t2 ∈ T and l ∈ Σ, then l(t1, t2) is in T . In the examples, we
will often omit # for concision. A node is a finite (possibly empty)
sequence over {1, 2}. For a given tree t ∈ T (Σ) its set of nodes,
denoted Dom(t), is the smallest finite set such that (i) the empty
sequence ε is inDom(t) and (ii) if two sequences π ·1 and π ·2 are
in Dom(t), then π ∈ Dom(t). The label of the node π in the tree t
is denoted by t(π); for t = l(t1, t2) it is defined as l if π = ε, and
as ti(π′) if π = i · π′; moreover, for t = # we have t(ε) = #. As
we can see, ε denotes the root node, and π · 1 and π · 2 denote the
left and right-child of the node π, respectively. When talking about
the followings of a node π, we mean all the nodes visited after π
during a pre-order traversal, that are not descendants of π.

Definition 2.1 A selecting tree automaton (STA) A is a 6-tuple
(Σ, Q, T ,B,S, δ) where Σ is an alphabet of input symbols, Q is a
finite set of states, T ⊆ Q is the set of top states, B ⊆ Q is the set
of bottom states, S ⊆ Q× Σ is the set of selecting configurations,
and δ is a finite set of transitions. A transition is tuple (q, L, q1, q2),
where q, q1, q2 ∈ Q and L is a non-empty subset of Σ.

From now on we let A = (Σ, Q, T ,B,S, δ) be a fixed (but
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arbitrary) automaton, unless otherwise specified. We often write
q, L→ (q1, q2) to denote that (q, L, q1, q2) ∈ δ, and similarly
q, L ⇒ (q1, q2) to denote that (q, L, q1, q2) ∈ δ and (q, l) ∈ S
for every l ∈ L. Before defining the semantics of A via runs, we
fix a few useful definitions. Let q, q1, q2 ∈ Q and l ∈ Σ. The
destination and source states, denoted δ(q, l) and δ(q1, q2, l), re-
spectively, are defined as

δ(q, l) ={(q′, q′′) | ∃L ⊆ Σ s.t. l ∈ L and (q, L, q′, q′′) ∈ δ}
δ(q1, q2, l)={q | ∃L ⊆ Σ s.t. l ∈ L and (q, L, q1, q2) ∈ δ}.

An automatonA is a top-down deterministic selecting tree automa-
ton (TDSTA) if T is a singleton and, for every q ∈ Q and l ∈ Σ,
δ(q, l) is a singleton. Similarly, A is a bottom-up deterministic se-
lecting tree automaton (BDSTA) if B is a singleton and, for every
q1, q2 ∈ Q and l ∈ Σ, δ(q1, q2, l) is a singleton. Note that if S is
empty, then a TDSTA is exactly the same as a classical determin-
istic top-down tree automaton (TDTA): the single state in T is the
initial state and the states in B are the final states; similarly, a BD-
STA is a classical deterministic bottom-up tree automaton (BDTA):
the single state in B is its initial state and the states in T are its final
states. The semantics of an STA is given by the set of trees it recog-
nizes (as for usual tree automata) and by the set of nodes it selects.
To formalize these notions, we introduce the concept of run.

Definition 2.2 (Run of an STA) Let t ∈ T (Σ). A run of A over t
is a total function R : Dom(t) → Q such that for all π ∈ Dom(t)
with t(π) ∈ Σ,

R(π) ∈ δ(R(π · 1), R(π · 2), t(π)).
The run R is accepting if and only if
• R(ε) ∈ T
• for all π ∈ Dom(t) with t(π) = #, R(π) ∈ B.

We denote by RtA the set of all accepting runs of A over t.

An STA is top-down complete, if for every q ∈ Q and l ∈ Σ,
δ(q, l) is non-empty. Similarly, an STA is bottom-up complete, if
for every q1, q2 ∈ Q and l ∈ Σ, δ(q1, q2, l) is non-empty. Top-
down complete TDSTAsA and bottom-up complete BDSTAs have
a unique run for any input tree t.

Definition 2.3 LetA be an STA. The language ofA, denotedL(A),
is the set

L(A) = {t ∈ T (Σ) | RtA 6= ∅}.
The set of selected nodes of A, denoted A(t), is the set
A(t) = {π ∈ Dom(t) | (R(π), t(π)) ∈ S and R ∈ RtA}.

We say that two STAs A and A′ are equivalent, denoted A ≡ A′,
if L(A) = L(A′) and for every t ∈ T (Σ), A(t) = A′(t).

Example 2.1 (STA for //a//b)
A//a//b = ({a, b, c}

Σ

, {q0, q1}
Q

, {q0}
T
, {q0, q1}

B
, {(q1, b)}

S
, δ)

δ =
q0, {a} →(q1, q0)
q0,Σ \ {a}→(q0, q0)

q1, {b} ⇒(q1, q1)
q1,Σ \ {b}→(q1, q1)

The TDSTA A//a//b of Example 2.1 is not deterministic bottom-up.
This is because its set B of bottom states is not a singleton. In fact,
we claim that there does not exist any BDSTA that is equivalent
to A//a//b, i.e., which selects the same nodes. Intuitively, when a
bottom-up automaton sees a b-node, it does not know whether this
node should be accepted or not (this depends on the existence of an
a-labeled ancestor). We claim similarly that there exists BDSTAs
for which there is no equivalent TDSTA. The automaton imple-
menting the query //a[.//b] is such an example (which we detail in
Appendix A). To conclude with the formal definitions, we charac-
terize several kinds of states that we use in the following sections.

Definition 2.4 LetA be an STA. A state q ∈ Q is non-changing if
and only if ∀l ∈ Σ, δ(q, l) = {(q, q)}. For a non-changing state q,
if q ∈ B, q is a top-down universal state; if q ∈ T , q is a bottom-up
universal state; if q /∈ B, q is a top-down sink state; if q /∈ T , q is
a bottom-up sink state.

Minimal Selecting Tree Automata In Appendix A.2 it is shown
that for every TDSTA (resp. BDSTA) there is a unique minimal
one, where minimal means with the smallest number of states. For
a minimal TDSTA A: (i) at most one state is top-down universal
state and (ii) at most one state is a top-down sink state. If any of
these states exist, then we denote them by q> and q⊥, respectively.
The similar properties hold for BDTAs. Another property that will
be important for us in the next section is that, in a minimal TDSTA
or BDSTA, if a state q is not in {q>, q⊥}, then there must exist a
label l such that δ(q, l) contains a pair different from (q, q). We say
that l is an essential label for q (in A).

3. RELEVANT NODES
As we have explained in the Introduction, our goal is to improve

query answering time by reducing the number of nodes that have
to be visited by the evaluation function. A common optimization
technique for tree automata (especially used in pattern-matching
and type-checking), is to avoid visiting a subtree. For instance, con-
sider the simple DTD “<!ELEMENT a ANY>” which states that
an input document must have an a-labeled root node and any well-
formed content below it. A recognizer automaton which checks the
validity of a tree against this DTD is

A = (Σ, {q0, q>, q⊥}
Q

, {q0}
T
, {q>}
B

,∅
S
, δ)

δ =
q0, {a} →(q>, q>)
q0,Σ \ {a}→(q⊥, q⊥)

q>,Σ→(q>, q>)
q⊥,Σ→(q⊥, q⊥)

Since the automaton only changes state at the root node, only this
node is “relevant”; no information is gained at any other node. A
clever evaluator may skip all non-relevant subtrees. As we can see,
whenever the automaton enters a non-changing state, we can skip
the current subtree. Of course, there are automata equivalent to the
one above which change state in the subtrees under the root node
(even though this is not “required”). How can we make sure that
our automaton only changes state when this is really necessary?
The answer is simple: we minimize the automaton. If the minimal
automaton changes state, then any other automaton for the query
does too; thus it uniquely determines the relevant nodes. More-
over, as mentioned after Definition 2.4, the minimal automaton has
at most one state q⊥ and one state q>. It is therefore easy to deter-
mine when a subtree can be skipped. Of course, in a selecting tree
automaton, all selected nodes must be relevant, because we cannot
select them without visiting them. Consequently, given a TDSTA
A and a tree t we say that node π of t is relevant if the minimal au-
tomaton Amin of A changes state at π. We now give a general def-
inition that can be used for non-deterministic automata; instead of
minimality, the definition uses equivalence between sub-automata.

Definition 3.1 (Relevant nodes) Let A be an STA. Let t ∈ T (Σ)
and R ∈ RtA. Let π ∈ Dom(t) such that π · 1 ∈ Dom(t) and
π · 2 ∈ Dom(t). The node π is relevant for the run R if and only if
either (R(π), t(π)) ∈ S or none of the following hold:
• A[R(π)] ≡ A[R(π · 1)] ≡ A[R(π · 2)];
• A[R(π)] ≡ A[R(π · 1)] andA[R(π · 2)] ≡ A>;
• A[R(π)] ≡ A[R(π · 2)] andA[R(π · 1)] ≡ A>;

where A> is such that L(A>) = T (Σ) and for all t ∈ T (Σ),
A>(t) = ∅. A[q] denotes the restriction ofA to q (i.e. where T is
replaced by {q}) and is formally defined in Appendix A.
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This definition generalizes the intuition we gave earlier. First, a se-
lected node is relevant. Then, a node can be skipped (i.e. is not
relevant) if the automaton performs the same computation on the
node and on both its children (informally the automaton “loops”
both on the left and right child). Or a node can be skipped if the
automaton loops on the left child and “ignores” the right child, i.e.
is in a state that accepts T (Σ) and does not mark any node. Sym-
metrically, a node can be skipped if the automaton loops on the
right child and ignores the left one. While Definition 3.1 gives a
proper semantic characterization of relevant nodes, we cannot use
it to derive an efficient evaluation procedure for STAs since:
(i) it requires the accepting run to be known, while we want to
deduce relevant nodes while computing the run;

(ii) it checks for equivalence of sub-STAs, an EXPTIME-complete
problem, even for recognizers.

We present two exact algorithms for particular STAs, namely min-
imal TDSTAs and minimal BDSTAs, and show how a particular
index can be used to skip not only subtrees but also internal nodes.

3.1 Deterministic Top-Down Evaluation

3.1.1 Top-down Relevance
As we have explained, testing the relevance of a node in the ac-

cepting run of an automatonA consists in checking the equivalence
of several sub-automata. It is possible to perform this check effi-
ciently for minimal TDSTAs. Indeed, in a minimal TDSTA, q rec-
ognizes T (Σ) if and only if q is a top-down universal state. More
generally, given two states q and q′ of A:

A[q] 6≡ A[q′]⇐⇒ q 6= q′.
This is a consequence of the definition of a minimal automaton.
Given a TDSTA and a run, we can easily characterize the set of
relevant nodes:

Lemma 3.1 (Top-down relevant nodes) Let A be a minimal top-
down complete TDSTA, t ∈ T (Σ), R ∈ RtA and π ∈ Dom(t) such
that π ·1 ∈ Dom(t) and π ·2 ∈ Dom(t). π is top-down relevant in
R if and only if either (R(π), t(π)) ∈ S or if none of the following
hold:
• R(π) = R(π · 1) = R(π · 2)

• R(π) = R(π · 1) and R(π · 2) = q>
• R(π) = R(π · 2) and R(π · 1) = q>

For a given run of a minimal TDSTA, the relevant nodes are either
the selected nodes or nodes for which a state-change occurs. An
important observation is that for TDSTAs, a state change is exactly
determined by the set of essential labels. For instance, in the au-
tomaton A//a//b of Example 2.1, the set of essential labels for state
q0 is {a}: the automaton changes state only if it encounters an
a-labeled node during the top-down run.

3.1.2 Top-Down Jumping Functions
Based on this observation, we define particular jumping func-

tions in a tree which extend the basic firstChild and nextSibling
moves. The implementation of such functions using state of the art
tree indexes is later discussed in Section 5.

Definition 3.2 (Top-down jumping functions) Let t be a tree in
T (Σ). We define the functions dt, ft, lt, rt as:
• dt : Dom(t)×2Σ → Dom(t)∪{Ω}where dt(π, L) returns the
first descendant π′ of π (in document-order) such that t(π′) ∈ L;

• ft : Dom(t)×2Σ×Dom(t)→ Dom(t)∪{Ω} and ft(π, L, π0)
returns the first following node π′ of π such that π′ ∈ L and π′

is a descendant of π0.

• lt : Dom(t) × 2Σ → Dom(t) ∪ {Ω} where lt(π, L) returns
the first descendant π′ of π whose label is in L and such that
π′ = π · 1 . . . · 1 (left-most path);

• rt : Dom(t) × 2Σ → Dom(t) ∪ {Ω} where rt(π, L) returns
the first descendant π′ of π whose label is in L and such that
π′ = π · 2 . . . · 2 (right-most path).

All these function returns a special error node Ω if there is no π′ ∈
Dom(t) which fits their definitions.

Using these functions, the set of top-most nodes π0, . . . , πn whose
labels are in L, in a subtree rooted at π can be computed by:
π0 = dt(π, L) and then πn+1 = ft(πn, L, π), until πn = Ω.

3.1.3 Jumping Top-Down Algorithm
We use the jumping functions defined in the previous section to

compute a partial run for a minimal TDSTA and an input tree t.
More specifically, the algorithm returns a mapping from nodes to
states. If there is no accepting run, the algorithm aborts and re-
turns an empty mapping. We describe informally the algorithm (its
pseudo code is given in Appendix B.1). The algorithm is imple-
mented by the mean of a recursive function topdown jump which
takes as argument a node π in the input tree t and a state q (ini-
tially the root node ε and the initial state q0 of the TDSTA). This
function works like the usual top-down evaluation procedure for
a TDSTA. First, if π is a leaf (a #-labeled node in our context)
then the automaton checks whether q ∈ B. If this is the case, the
function returns the mapping {π 7→ q} and fails otherwise. More
interestingly if π is not a leaf, then function computes the states
(q1, q2) = δ(q, t(π)). If either q1 or q2 is the sink state, then the
function fails (there is no accepting run). Otherwise, the function
performs a case analysis on qi to determine the set of top-most rel-
evant nodes in the subtree rooted at π · i (for i ∈ {1, 2}). The
function considers the three cases given in Lemma 3.1:
• qi, L′ → (qi, qi) and qi, L → (q′, q′′) with q′ or q′′ distinct
from qi. The function performs its recursion on all the top-most
descendants of π · i whose label is in L;

• qi, L′ → (qi, q>) and qi, L → (q′, q′′) with q′ distinct from
qi. The function is called recursively on the node lt(π · i, L) (the
automaton loops on the left-most path below the current node).

• qi, L′ → (q>, qi) and qi, L→ (q′, q′′) and q′′ distinct from qi.
The function is called recursively on the node rt(π · i, L)

If none of the above hold, π · i is relevant and the function is recur-
sively called on π · i itself. Lastly, the function returns the mapping
{π 7→ q} augmented by the mappings returned by the recursive
calls on the left and right subtrees. This function computes the op-
timal traversal with respect to relevant nodes:

Theorem 3.1 Let t ∈ T (Σ). LetA be a minimal TDSTA. Let R be
the run of A over t and R′ = topdown jump(t,A).

• if R is an accepting run, then for all π ∈ Dom(t), R′(π) =
R(π) if an only if π is top-down relevant for R;

• if R is not an accepting run, then R′ = ∅.

3.2 Deterministic Bottom-Up Evaluation
While a top-down run of an automaton can be translated into a

natural top-down tree traversal, bottom-up runs are more compli-
cated. Assuming that a parent move and access to the sequence of
leaves of an input tree are supported, we can devise a “pure bottom-
up” evaluation function, which starts from the sequence of leaves
and works its way up to the root. The pseudo code of this algorithm
is given in Appendix B.2. From the sequence (π1, q0), . . . , (πn, q0)

885



of all leaves πi and initial state q0 the algorithm proceeds to “re-
duce” them (by replacing two siblings by their parent and corre-
sponding state) until the root node is obtained. If the first two nodes
in the current list are not siblings, the algorithm first reduces re-
cursively the tail of the list, pushes back the first element on the
reduced tail (whose size decreased) and reduces the new list. For
BDSTA, relevance is once again defined in terms of state change,
but in a more complex way.

Lemma 3.2 (Bottom-up relevant nodes) LetA be a complete min-
imal bottom-up BDSTA. Let B = {q0}. Let t be a tree. Let R be
the accepting run for A and t (if it exists). Let π ∈ Dom(t) such
that π · 1 ∈ Dom(t) and π · 2 ∈ Dom(t). The node π is relevant
if and only if (R(π), t(π)) ∈ S or none the following conditions
holds:
• R(π) = q>
• R(π) = R(π · 1) = R(π · 2);
• R(π) = R(π · 1) and R(π · 2) ∈ {q0, q>};
• R(π) = R(π · 2) and R(π · 1) ∈ {q0, q>};

We do not give the proof that these conditions on states coincide
with the relevance of nodes as given by Definition 3.1, but illustrate
them by an example given in Appendix B.2.

In the same way we generalized firstChild to dt and lt and nextSi-
bling to ft and rt for the top-down case, the moves used in the
bottom-up algorithm can be generalized. The sequence of all leaves
is replaced by the sequence of bottom-most nodes with a particular
label and the parent move can be replaced by either a jump to an
ancestor with a particular label, or the restriction of this jump to the
left-most or right-most path leading to the current node. Also, test-
ing whether two nodes are siblings in generalized into getting the
common ancestor of two nodes. We dub the generalized bottom-
up jumping algorithm bottomup jump, but the many cases it han-
dles (intuitively, when trying to jump above two nodes π1 and π2

we must not jump above their common ancestor, or we could miss
some nodes) makes its presentation verbose even in the form of
pseudo-code. Second, the tree indexes that we use in our imple-
mentation do not implement the ancestor jumps efficiently (they
amount to a sequence of parent calls). We therefore limit ourselves
to state the existence of algorithm bottomup jump, and give its the-
oretical properties:

Theorem 3.2 Let t ∈ T (Σ). LetA be a minimal BDSTA. LetR be
the run of A over t and R′ = bottomup jump(t,A). (1) If R is an
accepting run, then for all π ∈ Dom(t). R′(π) = R(π) if an only
if π is bottom-up relevant for R; (2) If R is not an accepting run,
then R′ = ∅.

4. AUTOMATA FOR XPATH
We present in this section our compilation target for XPath ex-

pressions, namely alternating selecting tree automata (ASTA). We
then consider a particular fragment of XPath for which we illustrate
our compilation scheme. Afterwards we introduce a technique for
evaluating an ASTA in a jumping fashion, using a sound approxi-
mation of the sets of relevant nodes of the query. We also present
various implementation techniques to further improve the complex-
ity in practice of the evaluation of ASTAs.

4.1 Alternating Selecting Tree Automata
We introduce a compact variation of STAs which works with

Boolean formulas over states.

Definition 4.1 (Alternating Selecting Tree Automata (ASTA))
An ASTA A is a tuple (Σ,Q, T , δ), where Σ is the alphabet of
input symbols, Q is the finite set of states, T ⊆ Q is the set top

states, and δ is a set of tuples (q, L, τ, φ), called transitions, where
q ∈ Q, L ⊆ Σ, τ ∈ {→,⇒} and φ is a Boolean formula generated
by the following EBNF.
φ ::= > | ⊥ | φ ∨ φ | φ ∧ φ | ¬φ | ↓1 q | ↓2 q (q ∈ Q)

The semantics of such automata combine the rules for a classical
alternating automaton, with the rules of a selecting tree automaton.
The complete rules for the evaluation of formula and the selection
of nodes is given in Appendix C.

4.2 From XPath to Automata
The fragment of XPath we consider in this presentation is the

forward fragment of Core XPath, containing descendant and
child axes as well as arbitrarily nested predicates using or, and
and not Boolean connective over path expressions. The full EBNF
description of this fragment is given in Appendix C. We illustrate
how to compile an XPath expression of this fragment into an ASTA.

Example 4.1 (ASTA for the query //a//b[c]) Let
A//a//b[c] = (Σ, {q0, q1, q2}, {q0}, δ)

where δ is:
q0, {a}→↓1 q1
q0,Σ →↓1 q0∨ ↓2 q0

q1, {b}⇒↓1 q2
q1,Σ →↓1 q1∨ ↓2 q1

q2, {c}→>
q2,Σ →↓2 q2

It is easy to see with this example that such automata can be built
by a simple traversal of the parse tree of the XPath query. The
compilation scheme we follow associates one state for each step of
the query, and each state has at most two transitions. The first one
represents a “progress” from the current step to the next step (in the
XPath query). The second transition represents a recursion on the
first child, the second child or both. Note that non-determinism is
used here in an essential way. For instance, in A//a//b[c], in state q1,
if the current node is labelled b, then the automaton selects a node
if its first child is in state q2 and at the same time remains in state
q1 for both the first child and the second child.

While this automaton does not seem to justify the use of alterna-
tion, we give in Appendix C a query whose corresponding ASTA is
linear in size but whose STA (even non-deterministic) is exponen-
tially larger.

On this example, we observe that the particular ASTAs we con-
sider share many common traits with the minimal deterministic
TDSTAs of Section 3.1. First a state change occurs whenever the
automaton gains new knowledge toward answering the query. Sec-
ond, a top-down universal state correspond to the presence of > in
a formula (that is, (q>, q>)) or the absence of a ↓1 or ↓2 move (for
instance ↓2 q is the counterpart of (q>, q) in our previous model).
In such automata, a state change has the same meaning as in a min-
imal deterministic one.

4.3 Bottom-Up Evaluation with Top-Down
Pre-Processing and Jumping

Before discussing how to evaluate such automata using only rel-
evant nodes, we give a “non-jumping” run function for ASTAs.

Algorithm 4.1 (Evaluation of an ASTA)
Input: A = (Σ, Q, T , δ), t, π, r Output: Γ
whereA is the automaton, t the input tree, r a set of states and
Γ is a result set. Initially π = ε and r = T .

1 function eval asta (A, t, π, r) =
2 if t(π) = # then return ∅ else
3 let trans = {(q, L, τ, φ) ∈ δ | q ∈ r and t(π) ∈ L} in
4 let ri = {q |↓i q ∈ φ, ∀φ ∈ trans} in
5 let Γ1 = eval asta (A, t, π · 1, r1)
6 and Γ2 = eval asta (A, t, π · 2, r2)
7 in return eval trans(Γ1,Γ2, π, trans)
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{q0}, {a} →{q0, q1}, {q0}
{q0},Σ \ {a} →{q0}, {q0}
{q0, q1}, {b} →{q0, q1, q2}, {q0, q1}
{q0, q1},Σ \ {b} →{q0, q1}, {q0, q1}
{q0, q1, q2}, {b} →{q0, q1, q2}, {q0, q1, q2}
{q0, q1, q2}, {c} →{q0, q1}, {q0, q1}
{q0, q1, q2},Σ \ {b}→{q0, q1}, {q0, q1, q2}

Figure 1: Top-down approximation for //a//b[c] and cor-
responding jumps

The function eval asta evaluates an ASTA over an input tree t. It
returns a result set Γ which is a mapping from states to the sets
nodes selected in that state. In the usual non-selecting, algorithm,
Γ is simply the set of states which accept the current node π.

We have already described in details how node selection works
for such automata in [1], we focus on the main novelty of this work,
relevant node approximation. The interested reader can refer to
Appendix C for the complete semantics of ASTA (including node
selection) as well as a commented example. This process is ab-
stracted by the function eval trans on Line 7 which handles both
selection and evaluation of formulas.

The parameter r of the function eval asta allows one to restrict
bottom-up runs of A to only those which end-up in a top-state at
the root node. What this algorithm does is to run first a determinis-
tic top-down automaton Aapprox during the recursive descent. This
automaton is a sound approximation of A in the sense that for any
t ∈ T (Σ), t /∈ L(Aapprox) ⇒ t /∈ L(A). We can make further
use of this automaton Aapprox by only jumping to a super-set of its
relevant nodes.

Definition 4.2 (Top-down approximation) LetA = (Σ, Q, T , δ)
be an ASTA. The top-down approximation of A is the automaton
tda(A) = (Σ, 2Q, {T }, δa) where
δa = {(S, σ,→, S1, S2) | S ⊆ Q, σ ∈ Σ,

Si = {q ∈ Q | ∃q′ ∈ S, ↓i q ∈ δ(q′, σ)}}

The exponential blow-up exhibited by this construction is avoided
by computing the top-down approximation on-the-fly. The interest-
ing part is now: what relevant nodes can be computed —and there-
fore which jumps can be performed— if we consider the states in
tda(A). Figure 1 illustrates the top-down approximation for the au-
tomaton A//a//b[c] as well as the jumps that can be computed from
its non-changing states. As we can see in the figure, the top-down
approximation allows us to jump quite precisely in the tree. If the
destination state for a subtree is {q0} the automaton can jump to the
top-most a node in the subtree. If the destination state is {q0, q1},
the automaton can jump to a top-most b node in the subtree. If the
destination state is {q0, q1, q2}, no jump is possible, the automa-
ton must perform a firstChild or nextSibling move. However, once
in state {q0, q1, q2}, if the label is c then the automaton returns in
state {q0, q1} and can therefore jump to find new b nodes. Due to
space constraints, we give a more detailed description of Figure 1
in Appendix C.

Q01 /site/regions
Q02 /site/regions/europe/item/mailbox/mail/text/keyword
Q03 /site/closed auctions/closed auction/annotation/description/parlist/listitem
Q04 /site/regions/*/item
Q05 //listitem//keyword
Q06 /site/regions/*/item//keyword
Q07 /site/people/person[ address and (phone or homepage) ]
Q08 //listitem[ .//keyword and .//emph]//parlist
Q09 /site/regions/*/item[ mailbox/mail/date ]/mailbox/mail
Q10 /site[ .//keyword]
Q11 /site//keyword
Q12 /site[ .//keyword ]//keyword
Q13 /site[ .//keyword or .//keyword/emph ]//keyword
Q14 /site[ .//keyword//emph ]/descendant::keyword
Q15 /site[ .//*//* ]//keyword

Figure 2: Tree queries used in the experiments

4.4 Implementation Techniques
Hybrid Evaluation The main drawback of the top-down approx-
imation of relevant nodes is to force a “top-down view” of the
query. For instance for query //a//b[c], if a document contains a
lot of a-nodes and few b nodes, the former ones will be needlessly
visited since they are part of the top-down approximation of the
relevant nodes. To alleviate this problem, we propose an alterna-
tive evaluation strategy dubbed hybrid evaluation. The idea is to
start anywhere in the query and the document. In the case of query
//a//b[c], this means starting evaluation at all b-nodes in the doc-
ument, and check in a recursive top-down+bottom-up fashion the
filter “[c]” in their subtrees and the path “//a” in their upward con-
text. Such strategy can be effective if the count of b-nodes is low.
Memoization If we consider Algorithm 4.1, we see that the compu-
tations performed at Line 3 (and 7) have complexity O(|δ|). They
contribute the |Q| factor to the complexityO(|Q| · |D|) of the eval-
uation function. We can memoize these computations which only
depends on r and t(π) for Line 3 and r,t(π), r1 and r2 for Line 7.
This technique amortises the |Q| factor over the whole run: except
for a few “warm-up” nodes for which the all the transitions must be
scanned, the rest of the run consists of a succession of look-ups in
a table, one for each node visited during the run.
Information Propagation During the traversal, a node is “seen”
three times by the evaluation function: (i) when reaching the node
during the top-down traversal, (ii) when returning from the evalu-
ation of the first child (iii) when returning from the evaluation of
the second child. Instead of waiting (iii) to evaluate the transitions,
we can already evaluate them in (ii) having only the knownledge
for the first child. This reduces the number of states to verify while
visiting the second child. In particular it ensures that for an XPath
predicate, only one witness is checked by the automaton, the first
one in pre-order (existential semantics). This is inspired from the
evaluation of Non-Uniform Automata of [5].
Result Sets Since the nodes are traversed in document order and
only once, result sets can be implemented as simple lists with con-
stant time concatenation for the union of two result-sets.

5. EXPERIMENTS
We use several experiments to illustrate the behaviour of the al-

gorithms we introduced and gauge precisely the impact of each
of the optimizations and implementation techniques we presented.
Due to space constraints, we do not try to give in this paper the bare
performances of our implementation. The interested reader can re-
fer to [1] where a large experimental section compares our imple-
mentation to state of the art query engines (MonetDB/XQuery and
Qizx/DB), for a richer set of queries (both tree oriented and text
oriented). Nevertheless, we provide for the sake of completeness
a comparison of our implementation with the MonetDB/XQuery
engine in Appendix D.
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Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10 Q11 Q12 Q13 Q14 Q15
(1) 1 3518 8860 22620 36511 42955 9885 5026 21851 1 73070 73070 73070 73070 73070
(2) 2 27943 42333 22628 76391 65583 66256 75727 80846 2 73071 73071 73071 73072 73074
(3) 20 353122 422060 67898 # nodes 1892764 515305 # nodes 1030955 33 # nodes # nodes # nodes # nodes # nodes
(4) 4 24 20 19 7 24 33 20 32 4 5 7 7 11 9
(5) 50 12.5 20.9 99.9 47.7 65.4 14.9 6.63 27.0 50 99.9 99.9 99.9 99.9 99.9

(1): Number of selected nodes (2): Number of visited nodes with jumping (3): Number of visited nodes without jumping
(4): Number of memoized transitions (5): Ratio of selected nodes vs. approximated top-down relevant nodes (in %) # nodes = 5673051

Figure 3: Number of selected and visited nodes (w and wo jumping), and number of memoized configurations

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
Q10

Q11
Q12

Q13
Q14

Q15

Query

1

10

100

1000

10000 time (ms)

Naive Eval.
Jumping Eval.
Memo. Eval.
Opt. Eval.

Figure 4: Impact of the jumping and memoization on query
evaluation time

Implementation Our implementation1 features a bottom-up with
top-down pre-processing evaluation function (“top-down+bottom-
up” as we refer to it in the rest of the section) which uses the jump-
ing primitives described in [1]. These indexes support jumping to
the first descendant and following nodes whose label is in a set L in
time O(|L|). As for the hybrid evaluation function, due to the lack
of upward-jumping functions in this index, it performs its upward
part using only parent moves (instead of jumping to ancestors with
particular labels). It however remains an effective strategy when
one of the labels in the query has a low count (our index provides
the global count of a label in constant time).
Documents and Queries We used the XMark [19], document gen-
erator for our tests. We report our results for a document of size
116MB. The tree oriented queries we used are given in Figure 2.
Q01 to Q09 are realistic queries for XMark documents, taken from
the XPathMark benchmark [4]. Q10 to Q15 allow us to illustrate in
more details the behaviour of our ASTAs.
Impact of Jumping and Memoization We report in Figure 4 the
query answering time of our engine for each query (note the loga-
rithmic scale for the times). The“Naive Eval.” series represents a
straightforward execution of Algorithm 4.1. As we can see, a naive
evaluation where the |Q| factor has to be paid for each node, and
which potentially visits every node in D is not satisfactory. For
queries where a “//” occurs at top-level, the full document needs
to be traversed, yielding an evaluation time from 1s to 10s. The
“Jumping Eval.” series represents a run where the evaluation func-
tion computes the top-down approximation of relevant nodes on-
the-fly and jumps only to these nodes. No memoization occurs
therefore the |Q| factor is paid for each visited node. As expected,
this is a huge improvement compared to the naive case. With this
optimization alone, all the tested queries require less than 150ms to
evaluate, an improvement of ten to hundred-folds. The “Memo.
Eval.” series represents runs where on-the-fly computations are
memoized. For these runs, the |D| factor is paid in full (unless
the automaton can skip whole subtrees as in Q01) while the |Q|

1Our implementation is written in OCaml (for ASTA/XPath query
part) and C++ (for the indexes). Our test machine is described in
Appendix D.

factor is amortized. This technique also improve query answer-
ing time considerably: a full traversal takes no more than 450ms.
The fact that only firstChild and nextSibling moves are used also
demonstrate that alternating automata are a framework of choice,
even over pointer-based data-structures. Lastly, the “Opt. Eval” se-
ries represents runs where both optimizations are enabled. We can
see that they are complementary: with the exception of Q01 and
Q12, the “Opt. Eval” time is always better (at least twice as fast)
as either optimization taken individually. Q01 and Q12 are a very
particular case where the query only touches two nodes therefore
the transitions memoized in the look-up table are never re-used and
their insertions only constitute an overhead.
Approximation of Top-Down Relevance, Automata Logic and
Memoization: the table in Figure 3 gives the number of selected
nodes (Line (1)). These numbers are to be contrasted with Line (2),
which represents the number of nodes visited by a jumping func-
tion (that is, the size of the approximated set of relevant nodes). For
realistic queries (Q01-Q09 with the exception of Q08), the number
of selected nodes is more than 10% of the number of visited nodes
(this ratio is given at Line (5)). Of particular interest is Q05. For
such a query, and while the automaton is given in an alternating
and non-deterministic way, we end up touching exactly the number
of relevant nodes (the top-most listitems and the keywords
below them). This number can be contrasted with the total num-
ber of nodes (more than 5 millions), most of which are completely
ignored by the evaluation function.

Line (3) shows also that for a non-jumping algorithm, our evalu-
ation function skips, when possible, a large number of subtrees. Of
course it is necessary to traverse the whole document as soon as a
top-level “//” is present.

The automata logic is better highlighted by looking at Line (2)
for query Q10 to Q15. Here, it is clear that predicates are effi-
ciently checked. For Q11, Q12 and Q13, the predicate check is
done together with the accumulation of keyword nodes, and no
extra relevant node is touched. For query Q14 and Q15, only a
small number of nodes (1 and 2 respectively) are touched in order
to satisfy the predicate. Of course, the predicate need not be ap-
plied to root node, such optimizations are performed for any kind
of conditions, regardless of their position in the query (it is easier
to illustrate them on the single root element).

Lastly, Line (4) represents the number of entries added to the
memoization table, or equivalently the number of nodes for which
the evaluation function paid a |Q| factor (whereas all the others
consisted of a constant-time look-up). For practical queries, the
size of such tables is very small and the speed-up they generate is
worth the small memory overhead (a few kilo-bytes at most).
Hybrid Traversal Figure 5 describes the behaviour of the hybrid
evaluation function for four particular configurations of XMark doc-
uments that we manually created.
We consider the query //listitem//keyword//emph and change
the proportion and placement of the listitem, keyword and
emph elements. For each such configurations (A to D), we re-
port the query evaluation time for a hybrid run and for a regular
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A B C D

Configurations

0
10
20
30
40
50
60
70 Time (ms) Hybrid

Regular
A B C D

(1) 4 4 65831 15074
(2) 9 11 74302 33041
(3) 70028 134247 74302 35045

(1) number of selected nodes
number of nodes visited by:
(2) a hybrid run
(3) a top-down+bottom-up run

A : 75021 listitem, 3 keyword below listitems (3 in total) and
4 emphs below those 3 keywords;

B : 75021 listitem, 60234 keyword below listitems (60234 in
total) and 4 emphs below those keywords;

C : 9083 listitem, one keyword below listitems (40493 in total)
and 65831 emphs below one of the keyword below a listitem;

D : 20304 listitem, 10209 keyword below one listitem (10209
in total) and 15074 emphs below one of those keyword.

Figure 5: Selected and visited nodes for the hy-
brid and top-down evaluation procedures, for query
//listitem//keyword//emph

top-down+bottom-up run. We also report the number of nodes se-
lected by the query and the number of nodes visited by both strate-
gies. Configuration A and B represent the best cases for the hy-
brid traversal: one of the label in the query has a very low global
count. In A, the count of keyword nodes is small, the evalua-
tion starts at these nodes, checks in a pure bottom-up fashion that
they have a listitem ancestor and collect their emph descen-
dants. For configuration B, the hybrid run actually performs a pure
bottom-up run of the query, starting at emph nodes. Both visit very
few nodes compared to the relevant nodes approximated by the top-
down+bottom-up evaluation (Line (3)). Configuration C represents
a case where the hybrid behaves like the top-down+bottom-up run,
since the global count of keyword elements is low. Lastly, Con-
figuration D is the worst-case scenario, where keyword as the
lowest global count, but which is close to the number of listitem
elements. Even though the top-down+bottom-up visits more nodes,
it is twice as fast thanks to its use of jumping primitives. While this
particular experiment seems artificial, configuration A and B ac-
tually simulate the behaviour of text-oriented queries, where the
text predicate is often very selective. Such queries where investi-
gated in [1], where the same hybrid procedures yields significant
improvement over state of the art text-aware XPath engines.

6. CONCLUSION
We have presented an effective way to reduce the number of

nodes traversed during the evaluation of a navigational XPath query,
using the novel notion of relevant nodes for an automaton. We have
shown that this notion, coupled with a wide range of implementa-
tion techniques made alternating selecting tree automata a compi-
lation target of choice for XPath queries, yielding execution speed
on par with the best XPath engines available. While we have only
focused our presentation on forward Core XPath, our prototype ac-
tually implements backward axes (by adding “up-moves” to formu-
las of the ASTA which are rewritten into down moves on-the-fly)
and XPath 1.0 functions. Unfortunately “up-moves” are not part of
the theory and present two problems. The first one is that we do
not have yet a sound approximation of relevant nodes in the pres-
ence of up-move (therefore we cannot jump). The second, more
troublesome one is that with the presence of up-moves, a single
top-down followed by a bottom-up pass is not sufficient in general,
one needs an extra top-down pass (as observed by Koch in [10]),

or require more book-keeping operations in the result sets. XPath
1.0 functions are naively treated as black-boxes which are called
during formula evaluation. This defeats some of the automata op-
timizations since a query “//a[ count(.//b) ]//c” gets compiled into
three separate automata.

As future work, we plan to generalizes the top-down approxima-
tion to backward axes (it seems possible since ASTAs are known
to not gain any expressive power with the addition of up-moves),
extend the work in [1] to not only handle efficiently text predi-
cates but also numeral predicates, context dependent functions (e.g.
“position()”) and data joins.
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APPENDIX
A. SELECTING TREE AUTOMATA

We consider an example of a BDSTA for which there is no equiv-
alent top-down deterministic STA.

Example A.1 LetA//a[.//b] = (Σ, Q, T ,B,S, δ) where Σ = {a, b,
c}, Q = {q0, q1}, T = {q0, q1}, B = {q0}, S = {(q1, a)},
and δ consists of the following eight transitions. We now write a
transition (q, x, q′, q′′) ∈ δ as q ← x, (q′, q′′). Let denote any
state in {q0, q1}.

q1← {b}, (q0, )
q0←Σ \ {b}, (q0, )

q1⇐ {a}, (q1, )
q1←Σ \ {a}, (q1, )

The automatonA//a[.//b] accepts the set of all trees: L(A//a[.//b]) =
T (Σ). Moreover, A//a[.//b] is a bottom-up complete BDSTA. It se-
lects all the a-nodes that have a b-node in their left subtree. In
terms of XML, this automaton realizes the XPath query //a[.//b].
We claim that there is no top-down deterministic STA equivalent to
A//a[.//b] of Example 2.1. Intuitively, the top-down automaton does
not know whether or not to select an a-node, because this depends
on the left subtree of that node, which has not yet been processed
by the automaton.

Definition A.1 (Reachable state) If a state q′ appears in the right-
hand side of a rule with q in its left-hand side, then we say that
q one-step reaches q′, denoted by q →A q′. We denote by →∗A
the reflexive transitive closure of→A, and say that q reaches q′ if
q →∗A q′.

Definition A.2 (Restriction of STA to a set of state) Let A =
(Σ, Q, T ,B,S, δ) and {q1, . . . , qn} ⊆ Q, the restriction of A to
{q1, . . . , qk} is the STA

A[q1, . . . , qn] = (Σ, Q′, T ′,B′,S ′, δ′)
where T ′ = {q1, . . . , qn}, Q′ is the set of the states reachable
from T ′, i.e., Q′ = {q′ ∈ Q | ∃q ∈ T ′, q →∗A q′}, and
B′, S ′, and δ′ are the restrictions to the states in Q′ of B, S,
and δ, i.e., B′ = B ∩ Q′, S ′ = {(q, l) ∈ S | q ∈ Q′}, and
δ′ = {(q, L, q1, q2) ∈ δ | q ∈ Q′}.

A.1 Relating STAs to Ordinary Tree Automata
It is well-known that for every ordinary deterministic tree au-

tomaton (TA) there is an equivalent unique minimal one, and that it
can be computed in quadratic time. Instead of inventing and prov-
ing a new minimization procedure for STAs we prefer to encode
them into ordinary tree automata in such a way that the encoding
allows us to obtain a minimal STA from the minimal encoded au-
tomaton. Thus, we reduce minimization for STAs to minimization
for ordinary tree automata.

We require that the STAA is either top-down or bottom-up com-
plete. To encode an STA into a TA, we simply encode the se-
lection of a node through special labels. We define the alphabet
Σ̂ = {σ̂ | σ ∈ Σ}. Now, if A selects a node in a given tree (with
label l), then the TA Â associated to A accepts a tree that has the
label l̂ at that node. Formally,

Â = (Σ ∪ Σ̂, Q, T ,B,∅, δ̂)

where δ̂ is defined as follows. Every transition (q, L, q1, q2) ∈ δ
such that there exists an l ∈ L with (q, l) ∈ S is changed into the
new transition (q, L′, q1, q2) of Â where L′ = {l ∈ L | (q, l) 6∈
S} (if L′ = ∅ then the transition is removed), and additionally
we add the new transition (q, L̂, q1, q2) to δ̂ where L̂ = {L̂ | l ∈
L, (q, l) ∈ S}. Finally, we make the automaton obtained so far
complete: for every q ∈ Q let L(q) = {σ ∈ Σ ∪ Σ̂ | δ̂(q) 6= ∅}

and, ifL(q) 6= ∅ then add the transition (q, L(q), q⊥, q⊥) to δ̂. For
the new sink state q⊥ we add the transition (q̂⊥,Σ ∪ Σ̂, q̂⊥, q̂⊥) to
δ̂. It should be clear that

(1) for every t ∈ L(A) there exists a tree t′ ∈ Â which is ob-
tained from t by changing the label of every π ∈ A(t) into l̂,
where l = t(π).

(2) for every t′ ∈ L(Â) there exists a tree t ∈ Â obtained by
removing all hats, and, every node π in t′ that has a hat, π is
in A(t)

If (1) and (2) hold for two automataA and Â then we say that they
are equivalent, denoted by A ≡ Â.

Example A.2 The recognizer associated with the STA defined in
Example 2.1 is:

Â = (Σ ∪ Σ̂, {q̂0, q̂1, q̂⊥}, {q̂0}, {q̂0, q̂1},∅, δ̂)
where δ̂ is defined as:

q̂0, {a} →(q̂1, q̂0)
q̂0,Σ \ {a}→(q̂0, q̂0)

q̂0, Σ̂ →(q̂⊥, q̂⊥)

q̂1, {b̂} ∪ Σ \ {b}→(q̂1, q̂1)

q̂1, {b} ∪ Σ̂ \ {b̂}→(q̂⊥, q̂⊥)

q̂⊥,Σ ∪ Σ̂ →(q̂⊥, q̂⊥)

The connection between an STA and its associated recognizer is
quite strong, as we state in the following lemma.

Lemma A.1 Let A and A′ be two STAs, defined over the same
alphabet Σ. Then A ≡ A′ if and only if L(Â) = L(Â′).

We have seen how to translate an STA into an ordinary tree au-
tomaton. It should be clear that this translation preserves deter-
minism. The translation is invertible: for any Â automaton, one
can build an equivalent (in the sense of Lemma A.1) ordinary tree
automaton A. However, this inverse translation does not preserve
determinism. Indeed, while both formalisms are equally expres-
sive, they do not have the same behaviour. The automaton Â only
needs to verify that a tree in T (Σ ∪ Σ̂) is in its language. This can
always be done in a bottom-up deterministic way (it is folklore that
bottom-up tree automata can be determinized, see [3]).

For our purpose, it is enough to observe that if a determinis-
tic automaton Â is “selecting-unambiguous”, then it can be trans-
formed into a deterministic SA. Formally, the tree automaton A =

(Σ ∪ Σ̂, Q, T ,B,∅, δ) is selecting-unambiguous if and only if for
every q ∈ Q, and for every t ∈ L(A[q]):

• if t(ε) = σ ∈ Σ, then t[ε← σ̂] /∈ L(A[q])

• if t(ε) = σ̂ ∈ Σ̂, then t[ε← σ] /∈ L(A[q])

Lemma A.2 Let A be a complete TA. Then the automaton Â is
selecting-unambiguous.

Lemma A.3 Let A′ be a complete selecting-unambiguous TDTA
(resp. BDTA). There exists a complete TDSTA (resp. BDSTA) A
such that Â ≡ A′.

PROOF. (sketch) The proof builds the automaton A as such.
For each transition (q, L, q1, q2) ∈ δ′. We split the transition in
two, (q, L′, q1, q2) ∈ δ′ and (q, L′′, q1, q2) ∈ δ′ where L′ =

L ∩ Σ and L′′ = L ∩ Σ̂ (if L′ or L′′ is empty, we just skip
it). Since A′ is marking-unambiguous, if σ ∈ L′, then σ̂ /∈ L′′

(and vice versa). If neither q1 nor q2 is a sink state, then we add
(q, L′, q1, q2) ∈ δ′ as a transition to δ and if L′′ = {σ̂1, . . . , σ̂k}
we add (q, {σ1, . . . , σk}, q1, q2) to δ and (q, σi) to S. Once this
is done for all transitions, we remove all unreachable states and we
obtain A.
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A.2 Minimization
As mentioned before, minimal here means, the smallest num-

ber of states. Given a BDTA A = (Σ, Q, T ,B, δ), the standard
algorithm for minimization (see, e.g., [3]) builds the set of equiv-
alence classes for every state in Q. Two states q and q′ are in
the same equivalence class if and only if L(A[q]) = L(A[q′]).
The algorithm initializes the set of equivalence classes with E0 =
{Q \ T , T }. The intuition is that final and non-final states are not
in the same equivalence classes (indeed, if q is a final state and q′

not a final state, thenA[q] accepts the null tree # whileA[q′] does
not, hence L(A[q]) 6= L(A[q′])). The algorithm proceeds then to
refine the equivalence relation. We note q En q′ the fact that q and
q′ are equivalent in the equivalence relation En, that is there exists
S ∈ En such that q ∈ S and q′ ∈ S. From En the algorithm
computes a finer equivalence relation En+1 such that q En+1 q

′ if:
• q En q′;
• ∀σ ∈ Σ,∀q1, q2 ∈ Q: δ(q1, q, l) = δ(q1, q′, l) and
δ(q, q2, l) = δ(q′, q2, l).

The procedures stops when En = En+1. The case of TDTA is
similar.

Of course we would like, given a selecting automatonA, to com-
pute is associated recognizer Â, minimize it using the standard pro-
cedure and translate it back into a selecting automaton. However,
as we have seen, translating a recognizer into a selecting automaton
does not always preserve determinism. Fortunately, we can show
that the property of selecting unambiguousness is preserved by the
minimization procedure.

Lemma A.4 Let Â be a complete TDTA (resp. BDTA) over the
alphabet Σ ∪ Σ̂. Let Âmin be the minimal automaton such that
L(Âmin) = L(Â). If Â is selecting-unambiguous, then so is Âmin.

PROOF. Since Â is selecting-unambiguous it holds that ∀q ∈
Q̂, ∀t ∈ L(Â[q]), if t(ε) = σ ∈ Σ then t[ε ← σ̂] /∈ L(Â[q]) and
if t(ε) = σ̂ ∈ Σ̂ then t[ε← σ] /∈ L(Â[q]).

Now suppose that there are two states q1, q2 ∈ Q̂ such that
∃σ(t1, t2) ∈ L(Â[q1]) and ∃σ̂(t1, t2) ∈ L(Â[q2]). It holds that
Âmin is selecting-unambiguous if and only if q1 and q2 are not in the
same equivalence class (if they where, then there would be a state
in q′ ∈ Qmin for which the selecting-unambiguous property do not
hold, the state representing the equivalence class of q1 and q2). We
must therefore show that L(Â[q1]) 6= L(Â[q2]) This is immediate:
sinceA is selecting unambiguous, and since σ(t1, t2) ∈ L(Â[q1]),
then σ̂(t1, t2) /∈ L(Â[q1]). However σ̂(t1, t2) ∈ L(Â[q2]) and
therefore L(Â[q1]) 6= L(Â[q2]).

Using this lemma, we can state the existence of a minimal se-
lecting tree automaton.

Theorem A.1 Let A be a complete TDSTA (resp. BDSTA). There
exists a complete TDSTA (resp. BDSTA) Amin which is equivalent
toA and no other equivalent TDSTA (resp. BDSTA) has less states
than Amin.
Theorem A.1 states the existence of a minimal selecting automa-
ton and also give a way to compute it. Indeed, it is sufficient to
translate a selecting automaton into a recognizer, minimize the lat-
ter and transform it back into a selecting automaton. However, the
proof of Lemma A.4 hints us toward a more direct method. Indeed
in a recognizer, if a state q̂1 accepts some tree σ(t1, t2) and a state
q̂2 accepts the tree σ̂(t1, t2), then q̂1 and q̂2 are in different equiv-
alence classes. In the transformation from recognizer to selecting
automaton, q2, σ becomes a selecting configuration. Therefore, if
two states q1 and q2 are such that q1, σ /∈ S and q2, σ ∈ S then

these two states are not in the same equivalence class. Minimiz-
ing an selecting automaton can therefore be achieved by using the
standard algorithm, but where the initial relation E0 is:

E0 =
{{q ∈ Q | q ∈ F , q ∈ S}, {q ∈ Q | q ∈ F , q /∈ S},
{q ∈ Q | q /∈ F , q ∈ S}, {q ∈ Q | q /∈ F , q ∈ S}}.

Here F stands for the set of final states, that is T for BDTAs and
B for TDTAs.

B. RELEVANCE

B.1 Top-Down Relevance

Algorithm B.1 (Top-down traversal with jumping)
Input: Minimal TDTAA = (Σ, Q,F , I,S, δ) and a tree t

Output: (possibly empty) Mapping from nodes of t to states ofA.

1 let following(π, L, π0)=
2 if π = Ω then return ∅
3 else return {π}∪ following(ft(π, L, π0),L,π0);
4
5 let relevant nodes (t, π, q) =
6 if ∃L ⊂ Σ, (q, L, q, q) ∈ δ and ¬is marking(q)
7 then { L′ := Σ \ L;
8 if t(π) ∈ L′ then return {π};
9 π′ := dt(π, L′);

10 return {π′}∪ follow(π′,L′, π)
11 } else
12 if ∃L ⊂ Σ, (q, L, q, q>) ∈ δ
13 and is universal (q>) and ¬is marking(q)
14 then { L′ := Σ \ L;
15 if t(π) ∈ L′ then return {π};
16 π′ := lt(π, L′);
17 if π′ = Ω then return ∅ else return {π′}
18 } else
19 if ∃L ⊂ Σ, (q, L, q>, q) ∈ δ
20 and is universal (q>) and ¬is marking(q)
21 then { L′ := Σ \ L;
22 if t(π) ∈ L′ then return {π};
23 π′ := lt(π, L′);
24 if π′ = Ω then return ∅ else return {π′}
25 } else
26 return {π};
27
28 let td jump rec (π, q) =
29 l: = t(π);
30 if l = # then
31 if q ∈ B then return {π 7→ q}
32 else throw Failure
33 else {
34 {q1, q2} := δ(q, l);
35 if is sink (q1) or is sink(q2) then throw Failure;
36 lnodes := relevant nodes (t, π · 1, q1);
37 rnodes := relevant nodes (t, π · 2, q2);

38 return {π 7→ q} ∪
⋃

π1∈lnodes

topdown jump rec(π1, q1)

39 ∪
⋃

π2∈rnodes

topdown jump rec(π2, q2);

40 }
41
42 let topdown jump(t,(Σ, Q,F , {q},S, δ)) =
43 try {
44 nodes := relevant nodes (t, ε, q);

45 return
⋃

π∈nodes

topdown jump rec(π, q);

46 } catch (Failure) { return ∅ }
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Figure 6: Bottom-up run of automaton A from Example B.1

B.2 Bottom-Up Relevance
Algorithm B.2 (Bottom-up evaluation)
Input : A BDTAA = {Σ, Q, T , {q0},S, δ} a tree t a sequence

S0 = (π0, q0), (π1, q0), . . ., (πn, q0)

where the πi are the leaves of t in pre-order.

Output : A mapping from nodes of t to states ofA

1 let bottom up rec (S, t, R) =
2 switch S {
3 case (π, q):
4 if π = ε and q ∈ T
5 then return {ε 7→ q} ∪R,();
6 else throw Failure;
7
8 case (π1, q1),(π2, q2),S′:
9 if siblings (π1, π2)

10 then {
11 π := parent π1;
12 {q} := δ(q1, q2, t(π));
13 return bottom up rec(((π, q), S′), t, {π 7→ q} ∪R)
14 } else {
15 R′,S′′ := bottom up rec(((π2, q2), S′), t, R);
16 return bottom up rec (((π1, q1), S′′), t, R′);
17 case ():
18 return R,();
19 }
20
21 let bottom up (t, S0,A) =
22 try {
23 R, := bottom up rec(S0, t, {π 7→ q | (π, q) ∈ S0});
24 return R;
25 } catch (Failure)
26 return ∅;

A//a[.//b] = ({a,b,c}
Σ

, {q0, q1}
Q

, {q0}
T
, {q0, q1}

B
, {(q1,a)}

S
, δ)

Example B.1 A transition (q, L, q′, q′′) ∈ δ is written in the form
q ← L(q′, q′′) and the wildcard denotes any state in {q0, q1}. δ
is defined by:

q1← {b}, (q0, )
q0←Σ \ {b}, (q0, )

q1⇐ {a}, (q1, )
q1←Σ \ {a}, (q1, )

A run of this automaton on an input tree is given in Figure 6.
This automaton selects all the a-labelled node which are above a
b-labelled node. The selected nodes are circled and the relevant
nodes are underlined. As in the general case and the TDSTA case,
selected nodes are relevant. Otherwise, we can remark that any
subtree whose root is in state q0 contain only non relevant nodes.
In the case of minimal BDSTAs, the state q0 allows to skip sub-
trees (as q> for TDSTAs). Indeed in a minimal BDSTA, q0 is the
only state which accepts a null-tree #. But conversely, any subtree
which is recognized in q0 could be replaced by a null-tree without

changing the semantics of the query. Thus, skipped subtrees are
those whose root is in state q0. For skipping nodes along a path,
the same conditions as previously apply: either the automaton re-
mains in the same state for a node and both its children, or the root
and one of its children are in the same state and the other children
can be skipped, that is, is in state q0.

C. AUTOMATA FOR XPATH

Definition C.1 (XPath fragment) An XPath expression is a finite
production of the following grammar, with start symbol Core:

Core ::= LocationPath | ‘/’ LocationPath
LocationPath ::= LocationStep (‘/’ LocationStep)*
LocationStep ::= Axis ‘::’ NodeTest

| Axis ‘::’ NodeTest ‘[’ Pred ‘]’
Pred ::= Pred ‘and’ Pred | Pred ‘or’ Pred

| ‘not’ ‘(’ Pred ‘)’ | Core | ‘(’ Pred ‘)’
Axis ::= descendant | child

| following-sibling | attribute
NodeTest ::= tag | * | node() | text()

The following example clearly shows why using normal STAs would
cause an exponential blow-up:

Example C.1 Consider the XPath query:
//x[ (a1 or a2) and ... and (a2n−1 or a2n) ]

where the ai are pairwise distinct labels. The ASTA for this query
is:

qx, {x} ⇒(↓1 qa1∨ ↓1 qa2 ) ∧ . . . ∧ (↓1 qa2n−1∨ ↓1 qa2n )
qx,Σ →↓1 qx∨ ↓2 qx
qai , {qai}→>
qai ,Σ →↓2 qai

This ASTA has: 2 ·n+ 1 states, 4 ·n+ 2 transitions, one of length
2 · n and the other of fixed length (less than 3). It is well known
that converting this ASTA into an STA yield an exponential blow-
up (since one has to compute the disjunctive normal form of the
formulas; for the first transition, the DNF has size 2n).
Evaluation of formulas and node selection: We define the notion
of result sets an the semantics of the evaluation of formulas, which
also handles node selection.

Definition C.2 (Result set) Let A = (Σ,Q, T , δ) be an ASTA
and t ∈ T (Σ). A result set is a mapping from states in Q to sets
of nodes in Dom(t). Given a mapping Γ, we denote by Γ(q) the
set of states associated with q (the empty set if q is not inDom(Γ))
and we define the union of two mappings as:

(Γ1 ∪ Γ2)(q) = Γ1(q) ∪ Γ2(q)

We can now define the evaluation of a set of transitions for an
automaton.

Definition C.3 (Evaluation of a set of transitions) Let
A = (Σ,Q, T , δ)

be an ASTA, t ∈ T (Σ) a tree and Trs ⊆ δ a set of transitions. The
evaluation of Trs for a node π ∈ Dom(t) is a result set given by the
function:

eval trans(Γ1,Γ2, π, Trs) =⋃
(q,L,→,φ)∈Trs

{q 7→ S | Γ1,Γ2 `A φ = (>, S)}

∪
⋃

(q,L,⇒,φ)∈Trs

{q 7→ {π} ∪ S | Γ1,Γ2 `A φ = (>, S)}

where Γ1 and Γ2 are result sets, and Γ1,Γ2 `A φ = (b, S) is the
judgement derived by the rules in Figure 7.

These rules are pretty straightforward and combine the rules for
a classical alternating automaton, with the rules of a marking au-
tomaton. Rule (or) and (and) implements the Boolean connective
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Γ1,Γ2 `A > = (>, ∅)
(true) Γ1,Γ2 `A φ = (b, R)

Γ1,Γ2 `A ¬φ = (b, ∅)
(not)

Γ1,Γ2 `A φ1 = (b1,Γ
′
1)

Γ1,Γ2 `A φ2 = (b2,Γ
′
2)

Γ1,Γ2 `A φ1 ∨ φ2 = (b1,Γ
′
1) 6 (b2,Γ

′
2)

(or)

Γ1,Γ2 `A φ1 = (b1,Γ
′
1)

Γ1,Γ2 `A φ2 = (b2,Γ
′
2)

Γ1,Γ2 `A φ1 ∧ φ2 = (b1,Γ
′
1) 7 (b2,Γ

′
2)

(and)

q ∈ Dom(Γi)
Γ1,Γ2 `A↓i q = (>,Γ(q))

for i ∈ {1, 2} (left,right)

when no other rule applies
Γ1,Γ2 `A φ = (⊥, ∅)

where:
> = ⊥ ⊥ = >

(b1,Γ1) > (b2,Γ2) =


>,Γ1 if b1 = >, b2 = ⊥
>,Γ2 if b2 = >, b1 = ⊥

>,Γ1 ∪ Γ2 if b1 = >, b2 = >
⊥, ∅ otherwise

(b1,Γ1) ? (b2,Γ2) =

{ >,Γ1 ∪ Γ2 if b1 = >, b2 = >
⊥, ∅ otherwise

Figure 7: Inference rules defining the evaluation of a formula

of the formula and collect the marking found in their true sub-
formulas. Rules (left) and (right) (written as a rule schema for
concision) evaluate to true if the state q is in the corresponding set.
Intuitively, states in Γ1 (resp. Γ2) are those accepted in the left
(resp. right) subtree of the input tree. To handle selection, we pro-
ceed as follows. Assuming the left subtree returned a result set Γ1

and the right subtree a result set Γ2:
(1) For each q, L⇒ φ such that φ evaluates to > (↓i q′ evaluates
to > if q′ ∈ Dom(Γi)), add the mapping q 7→ {π} to Γ;

(2) For each q, L → φ or q, L ⇒ φ, for which φ evaluates to >,
if ↓i q′ ∈ φ evaluates to >, add the mapping q 7→ Γi(q

′) to Γ.
This is done by the function eval trans Informally we remem-
ber each node which was selected by a particular transition (1) and
for each selected node in state q′ we propagate it to q if it con-
tributes to the truth of a formula proving q. The selected nodes
which gets propagated to a state in T are therefore part of an ac-
cepting run and constitute the result of the query. If we take the
example run given in Figure 1 of Section 4, node selection is per-
formed as follows. Consider the rightmost c node in the figure
(?). This node was entered in state {q0, q1, q2}, therefore the ac-
tive transitions for it are:
{q0,Σ→↓1 q0∨ ↓2 q0; q1,Σ→↓1 q1∨ ↓2 q1; q2, {c} → >;

q2,Σ→↓2 q2}
and the result sets for its left and right subtrees are ∅ (since the
calls to both left and right move failed). In this environment only
the third transition is satisfied, the result set returned is therefore
Γ1 = {q2 7→ ∅}. Returning from the recursive calls, we arrive on
the b node above it, for which the active transitions are:
{q0,Σ→↓1 q0∨ ↓2 q0; q1, {b} ⇒↓1 q2; q1,Σ→↓1 q1∨ ↓2 q1; }
Evaluated under the results (Γ1,∅) for the left and right subtrees,
only the second transition is satisfied. Furthermore, this transition
is a selecting one, it therefore returns result set Γ2 = {q1 7→ {πb}}
where πb is the identifier of this node. The parent of this b node
is again a b node where the same transitions are active. However
the result sets for the left and right subtrees are (∅,Γ2). Under
these hypothesis only the third transition can be satisfied (and it is
a not a selecting one). The current b node is therefore not selected,
but the result set is Γ3 = {q1 7→ Γ2(q1)} (since ↓2 q1 evalu-
ated to > during the evaluation of the third transition). We have
Γ3 = {q1 7→ {πb}}. We now move onto the a parent of this b
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Q10 Q11 Q12 Q13 Q14 Q15
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Figure 8: Query answering time for the SXSI and MonetDB

node, where the active transitions are:
{q0, {a} →↓1 q1; q0,Σ→↓1 q0∨ ↓2 q0; }

evaluated under the assumptions (Γ3,∅). Here the first formula
evaluates to >, yielding the result set Γ4 = {q0 7→ Γ3(q1)} =
{q0 7→ {πb}}. We now see that the node {πb} has been “pro-
moted” to state q0. Using this technique we can ensure that nodes
selected non-deterministically during the bottom-up run are kept
only if they propagate up to the starting state q0, in which case
they are part of the result. We illustrate how these rules work by
explaining the evaluation of the automaton in Figure 1.
Detailed explanation of Figure 1: With respect to node selection,
consider the rightmost c node in the figure (?). This node was en-
tered in state {q0, q1, q2}, therefore the active transitions for it are:
{q0,Σ→↓1 q0∨ ↓2 q0; q1,Σ→↓1 q1∨ ↓2 q1; q2, {c} → >;

q2,Σ→↓2 q2}
and the result sets for its left and right subtrees are ∅ (since the
calls to both left and right move failed). In this environment only
the third transition is satisfied, the result set returned for this node
is therefore Γ1 = {q2 7→ ∅}. Returning from the recursive calls,
we arrive on the b node above it, for which the active transitions
are:
{q0,Σ→↓1 q0∨ ↓2 q0; q1, {b} ⇒↓1 q2; q1,Σ→↓1 q1∨ ↓2 q1; }
Evaluated under the results (Γ1,∅) for the left and right subtrees,
only the second transition is satisfied. Furthermore, this transition
is a selecting one, it therefore returns result set Γ2 = {q1 7→ {πb}}
where πb is the identifier of this node. The parent of this b node
is again a b node where the same transitions are active. However
the result sets for the left and right subtrees are (∅,Γ2). Under
these hypothesis only the third transition can be satisfied (and it is
a not a selecting one). The current b node is therefore not selected,
but the result set is Γ3 = {q1 7→ Γ2(q1)} (since ↓2 q1 evalu-
ated to > during the evaluation of the third transition). We have
Γ3 = {q1 7→ {πb}}. We now move onto the a parent of this b
node, where the active transitions are:

{q0, {a} →↓1 q1; q0,Σ→↓1 q0∨ ↓2 q0; }
evaluated under the assumptions (Γ3,∅). Here the first formula
evaluates to >, yielding the result set Γ4 = {q0 7→ Γ3(q1)} =
{q0 7→ {πb}}. We now see that the node {πb} has been “pro-
moted” to state q0. Using this technique we can ensure that nodes
selected non-deterministically during the bottom-up run are kept
only if they propagate up to the starting state q0, in which case they
are part of the result.

D. EXPERIMENTS
Experimental Setup tests were executed on an Intel Xeon Core
2 Duo, 3 Ghz, with 4GB of RAM. We used Ubuntu Linux 9.10
distribution, with kernel 2.6.32 and 64 bits userland. Our imple-
mentation was compiled using g++ 4.4.1 and OCaml 3.11.1. We
used version v4.34.0 of the MonetDB Server, with 32 bits OIDs.
Experimental results for query Q01 to Q15 are given in Figure 8.
For both engines, the results was materialized in memory but not
serialized. We took the best of 5 consecutive runs for each query.
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