
Destabilizers and Independence of XML Updates

Michael Benedikt
Computing Laboratory, Oxford University

James Cheney
LFCS, University of Edinburgh

ABSTRACT
Independence analysis is the problem of determining whether an
update affects the result of a query, e.g. a constraint or materialized
view. We develop a new, modular framework for static indepen-
dence analysis that decomposes the problem into two orthogonal
subproblems: approximating the destabilizer, that is, a finite rep-
resentation of the set of updates that can change the result of the
query, and testing whether the update and destabilizer overlap via
an intersection analysis. Focusing on XML queries as the view lan-
guage and the XQuery Update Facility as the update language, we
present a syntactic query rewriting algorithm for translating queries
to destabilizers, and show that intersection checking can be reduced
to satisfiability problems for which efficient checkers already exist.
We present an implementation based on an expressive tree satisfia-
bility checker and a Satisfiability Modulo Order package, and give
experiments confirming that the resulting analysis is both fast and
effective.

1. INTRODUCTION
View maintenance – that is, recomputing integrity constraints or

derived data as base data is updated – is a classical and well-studied
problem for relational databases. It is much less well-understood
for other data models, particularly XML databases. View mainte-
nance is just as important for XML as for relational databases and
is an active area of study [2, 27, 26, 7, 12].

View recomputation is avoidable if the query and update are
statically independent, that is, there is no possible source data for
which the update can affect the result of the query. In this common
case, full or incremental recomputation might require time propor-
tional to the size of the data just to determine that no work needs to
be done. Query and update expressions are usually fairly small, so
even a relatively expensive static analysis may be competitive with
full recomputation or incremental techniques if it offers the hope of
avoiding dynamic recomputation cost proportional to data size.

Static independence analysis of queries and updates has been
explored both in the context of relational databases [8, 23] and
XML [2, 27, 26]. For SQL, a crude independence analysis often
suffices, checking whether the relation and field names in the up-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

doc

C

D

7

8

doc

A A C

B B D

2

1

4 7

3 5 8

D

6

A

D

Q1

A

D

Q1U1

Figure 1: Document, view and an independent update

date are disjoint from those in the query. For XML there is no
such “obvious analysis” – queries and updates generally run over
the same document tree, and variables may not have a syntactically
transparent scope. Prior techniques either require a schema [2] or
apply only to downward fragments of XPath [27, 26].

We develop a new, modular framework for static independence
analysis that decomposes the problem into two orthogonal subprob-
lems: (1) identifying a destabilizer, that is, a finite representation of
a set of run-time updates that includes all updates that could change
the result of the query, and (2) statically determining whether the
destabilizer and the update are disjoint. Destabilizers are a general-
ization of ideas such as statically approximating the set of accessed
nodes found in some prior work [24, 6, 18]. However, the destabi-
lizer framework provides increased flexibility and modularity, eas-
ing exploration of the tradeoff between precision and performance.
Our approach, in principle, is applicable to independence analysis
in any data model and query/update language; here, we apply it to
XQuery/XQuery Updates.

To illustrate our approach, consider the following examples:
Example 1. Consider the situation depicted in Figure 1, where

we have a view

Q1 = for $x ∈ $doc/C return 〈A〉$x/D〈/A〉 .

Consider the set of all atomic update sequences that could affect
the result of Q1. Any set containing this collection of sequences
is called a subtree value destabilizer for Q1. In this example, the
set of all update sequences that include an update to {1, 2, 4, 7, 8}
is a value destabilizer. We can be even more precise and say that
for an update sequence to change the value of Q1 it must contain
either a deletion or replace on one of {1, 7, 8}, a rename on one of
{2, 4, 7, 8}, or an insert into one of {1, 7, 8}, etc. Our analysis can
determine that the update expression U1 = delete $doc/A can
never perform any of the updates above, so it is statically indepen-
dent of Q1, as suggested in Figure 1. 3

Example 2. Consider the XPath query Q2 = $doc/A/B where
variable $doc again refers to the root of the tree shown in Figure 1.

906

We view Q2 as a Boolean constraint asserting that there must al-
ways be a node matching path /A/B. To ensure the constraint is
maintained, we would like to statically determine whether an up-
date can change the result of Q2 from nonempty (true) to empty
(false). A negative Boolean destabilizer is a set including all up-
date sequences that can invalidateQ2. In this example, the set of all
sequences containing updates to one of {1, 2, 3, 4, 5} is a negative
Boolean destabilizer. If we take the update operation into account,
then for an update sequence to change Q2 to false, it must con-
tain a delete or replace to one of {1, 2, 3, 4, 5} or a rename to one
of {2, 3, 4, 5}: insert operations can never play a role in making
the result of Q2 empty. Our analysis can determine that update
U2 = insert 〈A〉〈/A〉 into $doc can never invalidate Q2, since
it can only perform inserts. 3

Example 3. Consider a query and update

Q3 = if $doc/A then 〈E〉〈/E〉 else ()

U3 = if $doc/A then () else delete $doc/C

Clearly, for the example document in Figure 1,Q3 and U3 are inde-
pendent; in fact they are independent for any input, since U3 cannot
change the Boolean value of the test $doc/child :: A. Our analy-
sis can determine this by describing a destabilizer and then showing
that the updates generated by U3 can not intersect the destabilizer
via reduction to a decidable tree logic. 3

The destabilizer framework thus works in several steps: we sym-
bolically describe the sequences of updates that can change the
query result, and also represent the sequences that can be gener-
ated by the update expression, and then use satisfiability testing to
see that they cannot overlap. Though this is a clean and deceptively
simple approach, there are nontrivial obstacles that must be over-
come to turn it into a working, useful analysis. Calculating exact
(static or dynamic) destabilizers is not feasible for our core XML
query language; instead, we present a query-rewriting technique
that provides a useful, sound approximation. Given an approximate
destabilizer, it then suffices to establish that none of the updates
that U can perform are in Q’s destabilizer. This can be reduced
to solving intersection problems for XPath or XQuery expressions,
but again, this is nontrivial in practice: for example, intersection
testing for even simple path expressions is NP-hard [21].

Contributions. The main contributions of this work are:
• We introduce a framework for independence analysis based

on the notion of destabilizer, which is, in principle, applica-
ble to any data model and query/update language.
• We introduce two varieties of destabilizer for XQuery, called

generic and operation(op) -sensitive. We provide algorithms
that efficiently rewrite queries to approximate destabilizers.
• We develop novel techniques for efficiently solving the dis-

jointness problems that arise through destabilizers, using a
combination of heuristics and reduction to SMT solvers.
• We present experiments showing that independence analysis

using destabilizers is fast and effective.
Organization: We begin in Section 2 by reviewing the XML

query and update languages considered here. In Section 3 we give
our destabilizer representations and algorithms. In Section 4 we
apply these to independence analysis. Section 5 presents our ex-
periments. Section 6 reviews related work, and Section 7 Proofs
and many routine details are omitted or placed in appendices.

2. PRELIMINARIES
As is conventional in most work on XML databases (e.g. [24, 6,

26, 11, 16, 2, 18, 27]) we employ a simplified XML data model and
query language, focusing on tree structure and ignoring attributes

and some other features. Generalizing to handle these features is
straightforward. Throughout this paper, we use the symbol = for
mathematical equality, not one of XQuery’s equality operations.

A store σ (sometimes called an instance, document or database)
is an ordered labeled forest, whose nodes l, l′, m (also referred to
as locations) are either element nodes or text nodes. An element
node has a label, while a text node has an associated string; text
nodes have no children. In addition to its label or string, each node
has an identifier, which is assumed to be unique within a store. We
often write location sequences as L, L′, L′′.

Queries. We will use a simple XQuery-like core language, de-
noted XQ:

q ::= s | () | q, q′ | 〈a〉q〈/a〉 | $x | $x/step
| if q then q1 else q2 | for $x ∈ q return q

′

step ::= ax :: φ φ ::= a | ∗ | text()

ax ::= self | child | parent | foll sib | prec sib

| desc | desc or self | anc | anc or self

XQuery expressions include variables $x, $y, $z, . . . ∈ Var . The
expression s is a test literal (constructing a text node from a string),
expression () denotes the empty sequence; the expression 〈a〉q〈/a〉
builds an XML tree with root a and content q; and q, q′ concate-
nates sequences of XML values. Conditionals if q then q1 else q2
branch depending on whether their first argument is nonempty. The
iteration expression for $x ∈ q return q′ evaluates q, and for
each node l in the result evaluates q′ with $x bound to l, con-
catenating the results in order. Without loss of generality, we omit
XQuery’s let-binding construct; since we consider a recursion-
free language, all occurrences of let can be inlined.

The expression $x/ax ::φ performs an XPath step starting from
$x, where ax is one of the standard XPath axes and φ is an XPath
node test. The XPath axes allow navigation in the document tree.
The self axis is the identity, and the child and parent axes link
nodes to their parents and children. The desc and anc axes are the
transitive closures of child and parent, and the desc or self

and anc or self are their reflexive, transitive closures. The axes
foll sib and prec sib select the following or preceding siblings
of a node, respectively; other axes, such as following, can be built
up from these using composition. The semantics of XPath axes is
standard; see for example [17, 13]. The expressions $x/child :: φ
and $x/desc or self :: ∗/child :: φ are often abbreviated $x/φ
and $x//φ, respectively.

Updates. The W3C XQuery Update proposal [9] defines atomic
updates that describe concrete changes to XML trees::

ι ::= ins(L, d, l) | del(l) | repl(l, L) | ren(l, a)

d ::= ← | → | ↓ | ↙ | ↘

Here, the symbols d stand for the qualifiers on inserts (before, after,
into, as first into and as last into, respectively). Atomic updates
describe concrete changes to the tree using node identifiers; for
example delete(n) or ins(L, ↓, n) where n is a target node and
L is a node sequence addressing data that will be inserted into the
child list of a target node. Atomic updates can be classified by the
following operations:

op ::= insert(d) | delete | replace | rename

where the insert, delete, replace and rename operations match the
corresponding atomic updates in the obvious way.

The W3C proposal also defines high-level updating expressions
u that declaratively describe updates without referring to node iden-
tifiers. Update expressions include forms such as delete q0 and

907

insert q into q0 that evaluate to sequences of atomic updates.
In our implementation, we handle a core language for XQuery Up-
dates similar to that formalized in [3]. Due to space limits, in the
body of the paper we discuss only updates targeting XPath queries.
More details are presented in Appendix A.

Semantics. Due to space limits, we cannot give the full formal
semantics of queries and updates. We outline a simplified seman-
tics that illustrates the basic ideas. Our results hold for the full
query and update language described in Appendix A. The seman-
tics of a query is given by a relation σ, γ |= q ⇒ σ′, L where σ is
an input store, γ is an environment mapping variables to nodes in σ,
σ′ is an output store, and L is a list of nodes. Our semantics explic-
itly models nondeterministic creation of element nodes. Node con-
struction queries allocate new trees in the store, whereas all other
query constructs leave the contents of the store alone; hence, σ is
always a subforest of σ′.

The semantics of atomic updates to XML trees is formalized in
several places, e.g. [3], and we include a formalization in Ap-
pendix A. One subtlety relevant to our work is that we model a
delete operation as detaching a node from its parent, creating a dis-
connected store; downward axis steps from the detached node can
be evaluated as usual after the deletion occurs. We can easily mod-
ify our algorithms to account for alternative semantics for deletion.

We assume (purely for convenience) that each store has a distin-
guished root root(σ), and we define a document query or document
update to be a query or update with a single distinguished free vari-
able $doc which is bound to the root of the store.

We also define a sublanguage of XQ called SelXQ, consisting
of selection queries that exclude the element node construction op-
eration 〈a〉q〈/a〉. This restriction implies that queries always return
nodes already present in the input and never construct new nodes.
We can interpret document selection queries as maps from stores to
sets of nodes as follows:

SelJqKσ = {l ∈ L | σ, [$doc := root(σ)] |= q⇒ σ, L}

Equivalence. As discussed in the introduction, we are interested
in several different interpretations of the results of a query, includ-
ing Boolean, node, and subtree equivalence. We capture these no-
tions precisely in the following definitions.

DEFINITION 1 (QUERY OUTPUT EQUIVALENCES). Given a
document query q and stores σ, σ̂, let σ1, L1 be the result of evalu-
ating q on σ and σ2, L2 be the result of evaluating q on σ̂. Then we
say that σ1, L1 and σ2, L2 are Boolean equivalent ((σ1, L1) ∼=bool

(σ2, L2)) if either both L1 and L2 are empty or both are nonempty.
Similarly, we say that σ1, L1 and σ2, L2 are subtree value equiva-
lent (σ1, L1 ∼=ns σ2, L2) if L1 and L2 are isomorphic (as hedges,
that is, sequences of trees).

Finally, we say that σ1, L1 and σ2, L2 are node equivalent if L1 =
l1, . . . , ln L2 = n̂1, . . . , n̂n such that
• for every i ≤ n if li is in σ or n̂i is in σ̂ then li = n̂i
• for every i ≤ n if li is not in σ then the isomorphism type

of li within its connected component in σ1 is the same as
the isomorphism type of n̂i within its connected component
in σ2.

We write σ1, L1 ∼=node σ2, L2 in this case, although the equiva-
lence depends on the original stores σ, σ̂ as well.

In the above definition, node equivalence says that the resulting
lists return exactly the same nodes in the original store, and the new
nodes that are created via node construction are isomorphic. It is
easy to see that if σ1, L1 ∼=node σ2, L2, then the same holds for any
other L′1 that can result from q on σ, since these will only vary on

the identities of nodes outside of the input store. The term “iso-
morphism type” is used above with its standard meaning in model
theory, regarding the store as a finite structure.

Independence. Informally, independence means that an update
cannot change the result of a query. However, since both queries
and updates can be nondeterministic, we need to define this care-
fully. We formalize this as follows.

DEFINITION 2. Let ≡ be one of ∼=ns,∼=node,∼=bool. Given an
update u and a query q, we say q is independent of u (modulo ≡)
on input σ1 provided that for all σ2 that can result from applying u

to σ1, the possible behaviors of q on σ1 are the same as those on
σ2 (modulo≡). If q and u are independent on all input stores, then
we say they are statically independent.

3. DESTABILIZERS FOR XML QUERIES
As discussed in the previous section, we can view the result of a

query in a number of ways. We may only care about the Boolean
value of a query, for example, if the query is only used as a Boolean
test in a conditional, or as a constraint. We may care about the
sequence of nodes produced (up to isomorphism). Or we may care
about the complete XML tree values produced.

DEFINITION 3. A destabilizer is a collection of update sequences
containing all those sequences that change the result of a query in
one of the above senses. More specifically, a Boolean destabilizer
for q on σ is a collection of atomic update sequences that includes
every update sequence that changes the result of q on σ modulo
∼=bool. A positive (negative) destabilizer is a collection containing
every update sequence changing the result from false to true (re-
spectively from true to false). A node destabilizer is a collection of
update sequences containing every sequence changing the result of
q on σ modulo ∼=node , while a subtree value destabilizer contains
every sequence changing the result modulo ∼=ns.

In this paper we will be most concerned with value destabilizers,
but Boolean and node destabilizers are also of practical interest.
Moreover, to calculate useful value destabilizers we will need to
calculate positive, negative and node destabilizers as well.

3.1 Statically approximating destabilizers
For a given update sequence ω and input σ it is possible to de-

termine dynamically whether ω destabilizes q on σ, by applying
ω and rerunning q. However, this cost is exactly what we wish to
avoid by a static independence analysis. It is not feasible to deal
with destabilizers statically as concrete sets of sequences. Instead,
we want to work with destabilizers indirectly, at a symbolic level.

Selection queries are a natural way to represent sets of nodes
statically; a set of nodes S in turn can be considered as a repre-
sentation of the collection of update sequences that modify a node
in S. For a set of nodes S, let SeqTargets(S) be the set of up-
date sequences that contain some update with target in S. A static
value destabilizer for q is a selection query δ such that for each
σ, SeqTargets(SelJδKσ) is a value destabilizer, and analogously
define positive (respectively negative, node, Boolean) static desta-
bilizers. Unwinding the definition, this says that the query returns
a set of nodes S such that every update sequence that destabilizes
q on σ modifies a node in S.

The generic static destabilizer defined above is frequently a sig-
nificant over-approximation of the runtime destabilizer. For exam-
ple, a query may be sensitive to update sequences that can only
affect a node via a particular update operation. Precision can be in-
creased substantially using finer-grained representations of collec-
tions of update sequences. We exhibit one such refinement, using

908

∆(()) = ()
∆($x) = ∆($x/self :: ∗)

∆(q, q′) = ∆(q),∆(q′)
∆b+(〈A〉q〈/A〉) = ()
∆b−(〈A〉q〈/A〉) = ()

∆n(〈A〉q〈/A〉) = ∆v(q)
∆v(〈A〉q〈/A〉) = ∆v(q)

∆(if q then q′ else q′′) = if q then (∆b−(q),∆(q′))
else (∆b+(q),∆(q′′))

∆b+(for $x ∈ q return q′) = ∆for(q, $x, if ¬q′ then ∆b+(q′))
∆b−(for $x ∈ q return q′) = ∆for(q, $x, if q′ then ∆b−(q′))

∆n(for $x ∈ q return q′) = ∆for(q, $x,∆n(q′))
∆v(for $x ∈ q return q′) = ∆for(q, $x,∆v(q′))

∆for(q, $x, q′) = ∆n(q), for $x ∈ q return q′

Figure 2: Query rewriting for destabilizers (non-axis steps)

operations to classify updates (as defined in Section 2). We then
statically represent the update sequences that include an update
with a particular target and a particular operation. For a set of nodes
S, let SeqTargetsop(S) be the set of update sequences that con-
tain some update with operation op and a target in S. An indexed
family of queries (δop)op∈Ops is a static value op-destabilizer if for
each σ,

⋃
op SeqTargetsop(SelJδKσ) is a value destabilizer, and

we define positive, negative, node, and Boolean op-destabilizers
analogously. Equivalently, every update sequence that destabilizes
q on σ must contain an update of operation op that modifies a node
returned by δop .

In developing a static destabilizer, we have a trade-off between
the precision (how close it is to the dynamic analog) and the com-
plexity of analyzing the resulting query. Ideally, one would cal-
culate a query that always returns the best possible approximation
of the runtime destabilizer. Formally, a pointwise minimal static
destabilizer (or respectively op-destabilizer) is a query that returns
on any document a minimal collection of nodes having the property
that every update sequence that changes the query result contains
an update (respectively an update of operation op) with the given
node as target. However, the following result shows that minimal
static boolean destabilizers can not be calculated efficiently. The
proof is in Appendix B.

THEOREM 1. There is no elementary time algorithm for con-
structing a pointwise minimal static destabilizer.

On the other extreme, there is always a trivial, non-minimal desta-
bilizer including all update sequences to the store σ. Of course,
this is useless for static independence analysis.

Our approach is to compute a static destabilizer by a simple in-
ductive rewriting algorithm. This is algorithmically feasible, while
providing high precision in practice. We define four functions ∆b+,
∆b−, ∆n and ∆v simultaneously by mutual recursion on the struc-
ture of expressions, which will return static positive, negative, node,
and value destabilizers. We also define functions ∆b+

op , ∆b−
op , ∆n

op

and ∆v
op for each update operation op; the vector of queries over

each op will give a op-destabilizer.
Figure 2 shows the definitions of ∆b+, ∆b−, ∆n and ∆v for

all query constructs except for $x/step. We use ∆ to denote any
one of ∆b+, ∆b−, ∆n and ∆v. In the case of these query con-
structs, the very same rules can be used for each element of the
static op-destabilizer (e.g. for every op ∈ Ops, ∆b+

op (q, q′) =
∆b+

op (q),∆b+
op (q′), and similarly for the other complex constructs).

We now discuss the rules in Figure 2 starting from the top. The
case for () is obvious: no update sequence can destabilize the query
(). Variables $x are treated the same as $x/self :: ∗ steps. For

∆b+
∗ ($x/self :: ∗) = ()

∆b+
∗ ($x/self :: A) = $x

∆b+
∗ ($x/child :: φ) = ($x, $x/child :: ∗)

∆b+
∗ ($x/parent :: φ) = ($x, $x/parent :: ∗)
∆b+
∗ ($x/desc :: φ) = ($x/desc or self :: ∗)

∆b+
∗ ($x/anc :: φ) = ($x/anc :: ∗)

∆b+
∗ ($x/foll sib :: φ) = ($x, $x/parent :: ∗, $x/foll sib :: ∗)

∆b−
∗ ($x/self :: ∗) = ()

∆b−
∗ ($x/self :: A) = $x

∆b−
∗ ($x/child :: φ) = ($x, $x/child :: φ)

∆b−
∗ ($x/parent :: φ) = ($x, $x/parent :: φ)

∆b−
∗ ($x/desc :: φ) = ($x/desc or self :: ∗)

∆b−
∗ ($x/anc :: φ) = ($x/anc or self :: ∗)

∆b−
∗ ($x/foll sib :: φ) = ($x/parent :: ∗, $x/foll sib :: φ)

∆n
∗($x/self :: ∗) = ()

∆n
∗($x/self :: A) = $x

∆n
∗($x/child :: φ) = ($x, $x/child :: ∗)

∆n
∗($x/parent :: φ) = ($x, $x/parent :: ∗)
∆n
∗($x/desc :: φ) = ($x/desc or self :: ∗)

∆n
∗($x/anc :: φ) = ($x/anc or self :: ∗)

∆n
∗($x/foll sib :: φ) = ($x, $x/parent :: ∗, $x/foll sib :: ∗)
∆v
∗($x/ax :: text()) = ∆n

∗($x/ax :: text())
∆v
∗($x/step) = ∆n

∗($x/step)/desc or self :: ∗

Figure 3: Generic destabilizers for axis steps. We omit the cases
for desc or self, anc or self, and prec sib.

sequential composition, the translation is straightforward. In the
output of the destabilizer, order is unimportant, since we will only
be considering its node selection semantics. This step could thus
be read as saying that we over-approximate the update sequences
destabilizing q, q′ as those that destabilize either q or q′.

Now consider the static destabilizers for node construction queries
on lines 4–7 of Figure 2. The rules for the Boolean cases reflect
that no updates can change the Boolean result of this query. For
node and value equivalence, we conservatively assume that any
change that could affect the subtree value of the subquery q could
also affect the result. Note that it would not be sound to trans-
late ∆n(〈A〉q〈/A〉) to () instead. For example, in a query such as
for $y ∈ 〈A〉$x〈/A〉 return $y, we would thereby lose track of
the fact that changes to $x can affect the result (modulo ∼=ns). For
conditional queries if q then q′ else q′′, we mimic the structure
of q. If q is nonempty, then an update sequence that destabilizes q
must either change q to be empty, or destabilize q′. Dually, if q is
empty, then to destabilize q, the update must either change q to be
nonempty, or destabilize q′′.

For iteration queries for $x ∈ q1 return q2, we introduce
a helper function ∆for(q, $x, q′) that conservatively includes any
updates that destabilize the node sequence returned by q, and ad-
ditionally returns any updates satisfying for $x ∈ q return q′.
For the positive destabilizer, the return sequence can also change
from empty to nonempty if some update changes the value returned
in some iteration from empty to nonempty. Thus, in this case the
third argument to ∆for returns all updates that can positively desta-
bilize an empty result from some iteration. (In Figure 2, we use
if ¬q then q′ as shorthand for if q then () else q′.) The nega-
tive destabilizer is symmetric. For node and value destabilizers, we
return all nodes that may destabilize the node sequence or the value
returned by some iteration of the body of the loop, respectively.

We now turn to the static destabilizer functions for axis steps
$x/step. We give only the generic versions in Figure 3; we em-

909

∆b+
delete($x/ax :: φ) = ()

∆b+
insert(↓)($x/child :: φ) = $x

∆b+
op ($x/step) = ∆b+

∗ ($x/step)

∆b−
delete($x/child :: φ) = $x/child :: φ

∆b−
insert(↓)($x/child :: φ) = ()

∆b−
op ($x/step) = ∆b−

∗ ($x/step)

∆n
delete($x/child :: φ) = $x/child :: φ

∆n
insert(↓)($x/child :: φ) = $x

∆n
op($x/step) = ∆n

∗($x/step)

∆v
op($x/ax :: text()) = ∆n

op($x/ax :: text())
∆v

op($x/step) = ∆n
op($x/step)/desc or self :: ∗

Figure 4: Kind-sensitive destabilizers for axis steps

phasize this by using notation ∆b+
∗ , ∆b−

∗ , ∆n
∗ and ∆v

∗, the ∗ mean-
ing “generic operation”. We will not discuss these rules in detail,
but each case is easy to verify. Note that for the negative destabi-
lizer rules, we do often take the node label φ into account, while
for other rules we cannot do this. For example, only updates to
nodes matching $x/child :: A can negatively destabilize (change
from true to false) a step $x/child :: A, while replacing or re-
naming any child of $x could positively destabilize (change from
false to true) this step. This is one reason it is helpful to distinguish
between positive and negative Boolean destabilizers.

The rules for these functions are highly conservative because we
must handle all update operations, as the previous example illus-
trates. Similarly, the destabilizers for irreflexive steps such as desc
need to be made reflexive since an insertion targeting $x would af-
fect the results. Using the op-destabilizer we can improve accuracy,
since we are computing different queries for different classes of up-
dates. Figure 4 shows how to do this for insert(↓) and delete

operations (additional op-specific rules are in Appendix C). For
deletes, we can take advantage of the fact that the result of a child
step can only be affected by deleting one of the selected children,
and that there is no way to positively destabilize an XPath step
by deleting. Analogously, for inserts into the child sequence of
a query, we take advantage of the fact that such updates can only
destabilize a child step $x/child :: φ by inserting into $x, and
that no insert can negatively destabilize such a query. We also give
rules for handling desc steps. Similar reasoning can be applied
to the other axes and other update operators, but we will restrict
attention to these common cases.

Note that the algorithm can produce large expressions — in prin-
ciple, there can be an exponential blowup resulting from the rewrit-
ing steps in Figure 2, due to duplication of expressions in condi-
tionals and for-expressions. However, this is not a problem for the
typical queries in our benchmarks.

We state correctness for op-destabilizers; the statement of cor-
rectness for generic destabilizers is similar.

THEOREM 2. For any query q and any update operation op ∈
Ops:

1. (∆b+
op (q))op∈Ops is a static positive op-destabilizer for q;

2. (∆b−
op (q))op∈Ops is a static negative op-destabilizer for q;

3. (∆n
op(q))op∈Ops is a static node op-destabilizer for q; and

4. (∆v
op(q))op∈Ops is a static value op-destabilizer for q.

Finally, recalling examples 1–3 from the introduction, we note
that the dynamic destabilizers discussed there are obtained by eval-
uating the static destabilizers in this section on the example data
shown in Fig. 1. For example, the (simplified) subtree-value delete-

destabilizer ofQ1 is ($doc, $doc/C, $doc/C/D/desc or self ::
∗), which returns nodes {1, 7, 8}when run on the document in Fig-
ure 1.

4. INDEPENDENCE ANALYSIS
In this section, we show how to use destabilizers for static inde-

pendence analysis, by reducing the problem to disjointness analy-
sis, or the problem of determining whether two selection queries
can ever select a node in common.

DEFINITION 4. Let q1 and q2 be selection queries. We say q1
and q2 overlap if there exists an input store σ such that q1 and q2
select a node in common when evaluated on σ. Conversely, q1 and
q2 are disjoint if they do not overlap.

We employ the notation Targop(u) to denote the selection query
that identifies all targets of atomic updates of operation op that can
be produced by u. We also write Targ∗(u) for the query selecting
all targets of any kind of update performed by u. The (routine) def-
inition of this function is in Appendix C. We state the main correct-
ness result for our independence analysis for arbitrary operations;
the correctness property of the generic analysis is similar:

THEOREM 3. Query q and update expression u are statically
independent

1. modulo ∼=bool if for each op ∈ Ops, the queries Targop(u)

and ∆b+
k (q),∆b−

k (q) are disjoint.
2. modulo ∼=node if for each op ∈ Ops, the queries Targop(u)

and ∆n
op(q) are disjoint.

3. modulo ∼=ns if for each op ∈ Ops, the queries Targop(u)
and ∆v

op(q) are disjoint.

4.1 Disjointness Analysis
Selection queries can be translated to first-order formulas over

the child, descendant and sibling relations in a standard way (see
e.g. [5]). Thus, disjointness analysis for SelXQ reduces to sat-
isfiability for first-order formulas over trees FO(Tree), involving
the child, descendant, sibling and node test predicates. However
it follows from results of [29] that there is a non-elementary lower
bound on the complexity of satisfiability.

We investigated a number of practical ways to solve the over-
lap problems arising in typical XPath or XQuery queries, including
both exact algorithms and approximate heuristics that offer better
performance on typical examples. Here, we present general tech-
niques that can prove static disjointness for arbitrary pairs of selec-
tion queries. Additional heuristic techniques and further details are
presented in Appendix C. We should stress here that in our imple-
mentation, we use the fast, approximate techniques first, and only
if these fail try progressively stronger but more expensive methods.

Exact approaches. The most direct, and expensive, approaches
we considered employ off-the-shelf techniques for checking satisfi-
ability of tree logics. We experimented with solving these problems
by translation to monadic second order logic over trees (MSO(Tree)),
which can be solved by the mona tool [16, 22]. This approach
can decide satisfiability for arbitrary first-order formulas over trees,
thus can exactly determine whether two selection queries overlap.
We also experimented with an XPath solver based on µ-calculus by
Genevès et al. [17].

Reduction to SMT solving. We developed a novel approach that
worked particularly well: a translation from existential first-order
logic over trees (EFO(Tree)) to satisfiability modulo the theory
of linear order. Concretely, we can take the linear order to be
(N, <), a subtheory of linear arithmetic. Satisfiability modulo the-
ories (SMT) solvers such as yices [14], z3 [10], and cvc3 [1]

910

have been developed that can solve such linear arithmetic satisfia-
bility problems very quickly; we obtained the best results with the
yices and z3 solvers.

This approach requires that we first approximate selection queries
by positive EFO(Tree) formulas. We consider two such approxi-
mations: The existential first-order abstraction replaces condition-
als if q then q1 else q2 by the monotone overapproximation
(if q then q1), q2 and then applies the translation to FO(Tree)
from [5]. The simple path abstraction approximates a query by
overapproximating it with a set of simple path expressions, that is,
plain sequences of XPath axis steps. Both of these abstractions are
defined and verified in Appendix C.

Once we have approximated the destabilizer and target queries
by EFO(Tree) formulas, we translate the satisfiability question
to one concerning sentences about a linear order. The translation
is based on the well-known interval encoding [11] of XML doc-
uments, widely-used for indexing. We represent a tree node by a
triple (pre, post , tag) of numbers, representing the starting posi-
tion, ending position, and tag of x respectively. We constrain each
node x to satisfy 0 < x.pre ≤ x.post and each pair of nodes x, y
must satisfy:

(well nesting) y.pre < x.pre < y.post ⇒ x.post < y.post
(uniqueness) x.pre = y.pre ⇐⇒ x.post = y.post
(tags unique) x.pre = y.pre ⇒ x.tag = y.tag

Then, given a formula φ over child , desc and sibling , whose
free variables are drawn from a finite set X , we can define:

follows(x, y) = x.post < y.pre

desc(x, y) = x.pre < y.pre ∧ y.post < x.post

btwn(x, y, z) = desc(x, y) ∧ desc(y, z)

child(x, y) = desc(x, y) ∧
∧
z∈X

¬(btwn(x, z, y))

sibling(x, y) = ∃z.child(z, x) ∧ child(z, y) ∧ follows(x, y)

Node tests are represented using constraints x.tag = i, where i is
an integer index surrogate for the actual element tag. We constrain
text nodes to be leaves, i.e. x.pre = x.post, and to have a special
tag not used for any element tag, such as −1. Note that in the
definition of child(x, y), we check that none of the nodes described
by the variables of the formula φ are between x and y. This is
correct because it suffices to restrict attention to these nodes when
considering satisfiability (we omit a full proof but the details are
similar to the satisfiability proofs in [21]).

Additional heuristics. Calling an external SMT solver is ex-
pensive, and often we can avoid this cost using heuristics to solve
easy common cases of disjointness problems. For downward-only
paths, overlap is exactly decidable in quadratic time [20], and we
use this algorithm as well as other heuristics, described further in
Appendix C.

5. EXPERIMENTS

5.1 Experimental Setup
We have implemented a static independence analyzer in OCaml

based on destabilizers. The analysis takes a query and update ex-
pression and attempts to determine their independence, first using
heuristics, and then optionally by calling an external solver.

We evaluated several analyses of varying degrees of complexity:
1. L1: Solving via simple path approximations, using only heuris-

tics and an exact algorithm for downward-only paths [20].
2. L2: Solving via simple path approximations using yices.
3. L3: Solving XQuery disjointness directly using mona. We

permit mona at most one second to find a solution.

4. SCH : For comparison, using the schema-based analysis from
our earlier work [2].

Each of the above levels Li is cumulative, and stops as soon as
a definite answer is obtained: e.g. L2 involves first trying the
heuristics and Hammerschmidt et al.’s algorithm [20], then trying
yices. We also evaluated several other translations and external
solvers in place of yices, in step L2.

All external solvers were called as separate processes, and each
such call is expensive; this represents an opportunity for improve-
ment. Some of the solvers (yices, mona, cvc3) are available as
libraries or in source code form, but others (z3, Genevès et al.’s
XPath solver [17]) are not. We therefore chose not to try to inte-
grate our implementation more closely with any external solvers in
order to permit fair comparisons among the different solvers.

We used queries and updates derived from two standard sets of
benchmark queries: twenty XQuery queries comprising the XMark
benchmark [28], and sixteen queries from the XPathMark bench-
mark [15]. Our simplified forms of these queries exercise many
aspects of XQuery and were used to evaluate previous work on
schema-based independence analysis (e.g. [2]). The XMark queries
were all translated to the more-restrictive core language accepted
by our system, and we automatically generated rename, delete and
insert updates based on each XPathMark query. We refer to these
as UA1–UA8 and UB1–UB8. See Appendix E for further details
of the queries and updates. Experiments were conducted on an In-
tel Pentium D (3.0 Ghz) running Ubuntu Linux 8.10, with 2GB of
main memory.

5.2 Experimental Results
Running Time. For each update, we measured the total time

taken to analyze its independence with respect to all queries. For
each pair, we recorded system time elapsed between the start of
execution and the time when the independence result is produced,
including all time taken by external solvers and system overhead.
We report times for the op-insensitive analysis only; the running
times for op-sensitive analysis were similar. Figure 5 shows the
total time taken by each analysis for each update to analyze all 36
benchmark queries. We also show the time for the schema-based
analysis SCH from [2].

For comparison, we also evaluated the performance of our ap-
proach using Genevès et al.’s XPath solver, and using z3 and cvc3
(both via the interval encoding). The running times obtained using
z3 were similar to those using yices, while cvc3 and Genevès
et al.’s solver were not competitive. (We used a preliminary, unop-
timized version of Genevès et al.’s solver; a more efficient version
is under development but has not yet been released.)

Analysis Results. We summarize the results of the analysis by
giving the percentages of queries that each level of the analysis
was able to prove independent of each update, in Figure 6. These
results are for the generic version of the analysis, so the operation
of the update (insert, delete or rename) was irrelevant; the results
are grouped by update numbers UAi and UBi. We also report the
results of the schema-based analysis SCH and the combination of
L3 and SCH (labeled L3 + SCH).

We also compare the generic analysis with the op-sensitive anal-
ysis. These results are summarized in Figure 7, where we show the
total number of problems proved independent by the schema-based
analysis SCH , destabilizer-based analyses L1–L3, and combined
analyses L3 + SCH .

Maintenance time. Finally, to evaluate the overall effectiveness
of the approach, we measured the savings in view recomputation
time for analyses SCH ,L1–L3, andL2+SCH . We summarize the
results in Table 1 by presenting the total analysis overhead time and

911

UA1 UA2 UA3 UA4 UA5 UA6 UA7 UA8 UB1 UB2 UB3 UB4 UB5 UB6 UB7 UB8 AVG

SCH

L1

L2

L3

102.503 135.682 121.635 104.589 107.137 103.182 121.402 105.223 105.292 131.585 104.321 110.51 104.19 103.177 125.913 103.448 111.8618125

9.758 9.761 9.728 10.218 10.233 10.445 10.348 10.878 10.334 9.764 10.09 10.179 10.133 10.122 10.289 10.314 10.162125

397.739 238.815 925.8 789.946 672.398 813.323 745.561 756.389 139.672 1071.002 451.983 479.857 142.631 129.321 218.988 462.035 527.21625

13012.961 23575.159 12337.034 16748.462 13665.729 20206.822 19030.23 21329.11 9647.256 31410.015 12597.817 12930.763 7939.425 7895.627 28539.292 14301.424 16572.945375

UA1 UA2 UA3 UA4 UA5 UA6 UA7 UA8 UB1 UB2 UB3 UB4 UB5 UB6 UB7 UB8 ALL

SCH

L1

L2

L3

L3+SCH

0.5 0.5555555556 0.5555555556 0.25 0.25 0.3055555556 0.3055555556 0.3055555556 0.3055555556 0.5555555556 0.4166666667 0.4166666667 0.3055555556 0.3055555556 0.3055555556 0.4166666667 0.3784722222

0.5833333333 0.0833333333 0.3333333333 0.4722222222 0.4722222222 0.3611111111 0.3611111111 0.3611111111 0.6666666667 0 0.5 0.5 0.6666666667 0.6666666667 0.0833333333 0.5 0.4131944444

0.5833333333 0.1388888889 0.5555555556 0.5555555556 0.5555555556 0.4444444444 0.4444444444 0.4444444444 0.6666666667 0 0.5 0.5 0.6666666667 0.6666666667 0.1111111111 0.5 0.4583333333

0.5833333333 0.1388888889 0.5555555556 0.5555555556 0.5555555556 0.4444444444 0.4444444444 0.4444444444 0.6944444444 0.1111111111 0.5 0.5 0.6666666667 0.6666666667 0.1111111111 0.5 0.4670138889

0.6111111111 0.5555555556 0.6111111111 0.5555555556 0.5555555556 0.4444444444 0.4444444444 0.4444444444 0.6944444444 0.5555555556 0.5277777778 0.5277777778 0.6666666667 0.6666666667 0.3055555556 0.5277777778 0.5434027778

Generic Insert Delete Rename

SCH

L1

L2

L3

L3+SCH

0.3784722222 0.4201388889 0.3784722222 0.4201388889

0.4131944444 0.4722222222 0.4618055556 0.4600694444

0.4583333333 0.5052083333 0.53125 0.4930555556

0.4670138889 0.515625 0.5329861111 0.5034722222

0.5434027778 0.5868055556 0.6006944444 0.5729166667

20%

40%

60%

Generic Insert Delete Rename

Effectiveness of kinds and schemas
SCH L1 L2 L3 L3+SCH

0%

25%

50%

75%

UA1 UA2 UA3 UA4 UA5 UA6 UA7 UA8 UB1 UB2 UB3 UB4 UB5 UB6 UB7 UB8 ALL

Effectiveness of generic analyses
SCH L1 L2 L3 L3+SCH

1E+00

1E+02

1E+04

UA1 UA2 UA3 UA4 UA5 UA6 UA7 UA8 UB1 UB2 UB3 UB4 UB5 UB6 UB7 UB8 AVG

Analysis time per update (milliseconds)
SCH L1 L2 L3

Figure 5: Running times for the generic analysis, in milliseconds (logarithmic scale), broken down by update and analysis level.

UA1 UA2 UA3 UA4 UA5 UA6 UA7 UA8 UB1 UB2 UB3 UB4 UB5 UB6 UB7 UB8 AVG

SCH

L1

L2

L3

102.503 135.682 121.635 104.589 107.137 103.182 121.402 105.223 105.292 131.585 104.321 110.51 104.19 103.177 125.913 103.448 111.8618125

9.758 9.761 9.728 10.218 10.233 10.445 10.348 10.878 10.334 9.764 10.09 10.179 10.133 10.122 10.289 10.314 10.162125

397.739 238.815 925.8 789.946 672.398 813.323 745.561 756.389 139.672 1071.002 451.983 479.857 142.631 129.321 218.988 462.035 527.21625

13012.961 23575.159 12337.034 16748.462 13665.729 20206.822 19030.23 21329.11 9647.256 31410.015 12597.817 12930.763 7939.425 7895.627 28539.292 14301.424 16572.945375

UA1 UA2 UA3 UA4 UA5 UA6 UA7 UA8 UB1 UB2 UB3 UB4 UB5 UB6 UB7 UB8 ALL

SCH

L1

L2

L3

L3+SCH

0.5 0.5555555556 0.5555555556 0.25 0.25 0.3055555556 0.3055555556 0.3055555556 0.3055555556 0.5555555556 0.4166666667 0.4166666667 0.3055555556 0.3055555556 0.3055555556 0.4166666667 0.3784722222

0.5833333333 0.0833333333 0.3333333333 0.4722222222 0.4722222222 0.3611111111 0.3611111111 0.3611111111 0.6666666667 0 0.5 0.5 0.6666666667 0.6666666667 0.0833333333 0.5 0.4131944444

0.5833333333 0.1388888889 0.5555555556 0.5555555556 0.5555555556 0.4444444444 0.4444444444 0.4444444444 0.6666666667 0 0.5 0.5 0.6666666667 0.6666666667 0.1111111111 0.5 0.4583333333

0.5833333333 0.1388888889 0.5555555556 0.5555555556 0.5555555556 0.4444444444 0.4444444444 0.4444444444 0.6944444444 0.1111111111 0.5 0.5 0.6666666667 0.6666666667 0.1111111111 0.5 0.4670138889

0.6111111111 0.5555555556 0.6111111111 0.5555555556 0.5555555556 0.4444444444 0.4444444444 0.4444444444 0.6944444444 0.5555555556 0.5277777778 0.5277777778 0.6666666667 0.6666666667 0.3055555556 0.5277777778 0.5434027778

Generic Insert Delete Rename

SCH

L1

L2

L3

L3+SCH

0.3784722222 0.4201388889 0.3784722222 0.4201388889

0.4131944444 0.4722222222 0.4618055556 0.4600694444

0.4583333333 0.5052083333 0.53125 0.4930555556

0.4670138889 0.515625 0.5329861111 0.5034722222

0.5434027778 0.5868055556 0.6006944444 0.5729166667

20%

40%

60%

Generic Insert Delete Rename

Effectiveness of kinds and schemas
SCH L1 L2 L3 L3+SCH

0%

25%

50%

75%

UA1 UA2 UA3 UA4 UA5 UA6 UA7 UA8 UB1 UB2 UB3 UB4 UB5 UB6 UB7 UB8 ALL

Effectiveness of generic analyses
SCH L1 L2 L3 L3+SCH

1E+00

1E+02

1E+04

UA1 UA2 UA3 UA4 UA5 UA6 UA7 UA8 UB1 UB2 UB3 UB4 UB5 UB6 UB7 UB8 AVG

Analysis time per update (milliseconds)
SCH L1 L2 L3

Figure 6: Effectiveness of the generic analysis, expressed as a percentage of query-update pairs determined independent, broken
down by update and by analysis level.

Generic Insert Delete Rename

SCH

L1

L2

L3

L3+SCH

0.3784722222 0.4201388889 0.3784722222 0.4201388889

0.4131944444 0.4722222222 0.4618055556 0.4600694444

0.4583333333 0.5052083333 0.53125 0.4930555556

0.4670138889 0.515625 0.5329861111 0.5034722222

0.5434027778 0.5868055556 0.6006944444 0.5729166667

20%

40%

60%

Generic Insert Delete Rename

Effectiveness of op-sensitive destabilizers
SCH L1 L2 L3 L3+SCH

Figure 7: Effectiveness of the generic and op-sensitive analysis,
expressed as a percentage of query-update pairs determined in-
dependent, by analysis level and update operation.

SCH L1 L2 L3 L2 + SCH
Static overhead 1.8 0.16 8.4 265 10

1.1MB 52 53 55 55 66
2.3MB 95 80 86 85 130
5.7MB 375 312 311 311 555

Table 1: Static analysis overheads and maintenance savings
across whole benchmark (seconds).

total time saved for each technique on documents of increasing size.
The documents are 1.1MB, 2.3MB and 5.7MB XMark data [28].
We used BaseX 6.1, an efficient XQuery engine that implements
the full W3C update recommendation.

5.3 Discussion
Efficiency. The running times reported in Figure 5 show that

the simple techniques used by L1 are around ten times faster than
SCH ; the difference is likely due to the need for processing and
analyzing the schema. The more sophisticated analysis level L2 is
generally slower than SCH , and L3 is generally much slower, even
with a 1 second time limit.

Effectiveness. Using the op-insensitive analysis, L1 is able to
determine independence in approximately 41% of cases. L2 im-
proves this to around 46%. However, the most sophisticated anal-
ysis, L3, is only able to find a handful of additional independent
pairs. Using op-sensitive destabilizers led to improvements of 4–
6% for each level of the analysis. This demonstrates the value of
taking the update operators into account.

We cannot easily measure the completeness of this approach, and

do not have a theoretical characterization of its (relative) complete-
ness. Informal inspection indicates that op-sensitive analysis is rea-
sonably precise. For example, we manually constructed counterex-
amples to independence for all but five of the deletion-based prob-
lems that are not proved independent by op-sensitive L3. Automat-
ing this heuristic counterexample-generation process could be an
interesting topic for future work.

Figure 6 also gives an idea of how independence of the bench-
mark update/query pairs depends on a schema. Although our ap-
proach is good at detecting schema-free independence, there are
certain pairs that can interfere in the absence of a schema but are
independent for the XMark schema — e.g. UA2, UB2, UB7 in-
volve the descendant or ancestor axes and can modify data almost
anywhere in the tree, so actually do interfere with most queries in
the absence of a schema – thus schema-based analysis does better
on these updates. Note that our approach can certainly accommo-
date schemas, simply by using schema-aware satisfiability tests –
this is another opportunity for future work.

Impact on View Maintenance. Table 1 shows that all of the
techniques save time overall on our benchmark compared to full
recomputation, and that the new techniques in this paper find sav-
ings that previous approach SCH did not. Moreover, as document
size increases, the savings-to-overhead ratio increases; already for
a 5.7MB document the cost of analysis is minuscule compared to
the time savings obtained. This is promising, but some important
caveats apply to these results: we are comparing with full recom-
putation, not incremental view maintenance, and our benchmark is
synthetic. However, dynamic view maintenance techniques do not
yet appear to be available in standard XML databases. More work
needs to be done to develop realistic view maintenance benchmarks
that can be used to evaluate the techniques.

6. RELATED WORK
Due to space limits, we discuss only directly related work. Ad-

ditional related work (including work on incremental view mainte-
nance for XML) is reviewed in Appendix D.

This work is inspired partly by work on XML projection, where
the goal is to identify nodes that can safely be deleted without af-
fecting the result of a query [24, 6]; this is similar to independence
problems involving deletion only.

Ghelli et al. [18] developed a static commutativity analysis, using
paths to represent the sets of nodes accessed and updated by an ex-

912

pression. However, their analysis is based on a different XML up-
date language proposal and does not address independence. Raghavachari
and Shmueli [26] investigated the complexity of the independence
problem for different fragments of downward XPath, while Sawires
et al. [27] implemented an independence checker for downward
XPath queries and updates, motivated by difficulties with incre-
mental view maintenance in loosely-coupled systems. Benedikt
and Cheney [2] developed a schema-based independence analysis
for core XQuery over arbitrary XPath axes.

Our approach improves on these techniques in several ways. We
handle arbitrary XPath axes and all of the essential features of
XQuery. By analyzing operations we gain accuracy over any purely
node-based approach, by using a variety of XQuery overlap tests
we can gain accuracy on path-based abstraction (as used in [18,
26, 27, 24, 6]) and we do not rely on the presence of a schema (un-
like [2]). Moreover, we have evaluated our approach on benchmark
queries and updates exercising many features of XPath/XQuery.

Beyond these advantages, the notion of destabilizer itself is a
key conceptual contribution of our work, since it factors the analy-
sis problem cleanly into the approximation of the runtime updates
by a query and an overlap test. This cleanly generalizes ideas in
previous work. It is conceptually straightforward to extend our ap-
proach to handle constraints or schemas, simply by testing disjoint-
ness with respect to such constraints. Destabilizers may be useful
in other data models, and may also be applicable to the dynamic,
incremental maintenance problem.

7. CONCLUSIONS
We have introduced the notion of destabilizer, or a representation

of the set of updates that may change the result of a given query.
The problem of determining whether a query and update are (stati-
cally) independent reduces to calculating a destabilizer and testing
whether the destabilizer and update are (statically) disjoint. This
yields a general, modular and extensible framework for reasoning
about independence.

We defined generic and kind-sensitive destabilizers via query
rewriting for XQuery queries and updates. We implemented an
independence analysis based on these destabilizers, and demon-
strated its effectiveness and efficiency. Our approach offers a range
of tradeoffs between precision and analysis cost, and can solve in-
dependence problems that no prior approach could solve. Even
for fairly small documents, the overhead of our approach is much
smaller than the savings it obtains. Combining this approach with
schema-based analysis yields further savings. Moreover, these sav-
ings increase with document size.

There are many interesting directions for future work, such as
schema-conscious disjointness analysis, counterexample generation,
and combining static and dynamic view maintenance techniques.

Acknowledgments. Benedikt is supported in part by EPSRC
EP/G004021/1 (the Engineering and Physical Sciences Research
Council, UK) and by FET FP7-ICT-233599 (European Research
Consortium). Cheney is supported by a Royal Society University
Research Fellowship.

8. REFERENCES
[1] C. Barrett and C. Tinelli. CVC3. In CAV 2007, July 2007.
[2] M. Benedikt and J. Cheney. Schema-based independence

analysis for XML updates. In VLDB, 2009.
[3] M. Benedikt and J. Cheney. Semantics, types and effects for

XML Updates. In DBPL, 2009.
[4] M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in

the presence of DTDs. In PODS, 2005.

[5] Michael Benedikt and Christoph Koch. From XQuery to
relational logics. ACM TODS, 34(4):A25, 2009.

[6] V. Benzaken, G. Castagna, D. Colazzo, and K. Nguyên.
Type-based XML projection. In VLDB, 2006.

[7] H. Björklund, W. Gelade, M. Marquardt, and W. Martens.
Incremental XPath evaluation. In ICDT, 2009.

[8] J. Blakeley, N. Coburn, and P.-Å. Larson. Updating Derived
Relations: Detecting Irrelevant and Autonomously
Computable Updates. ACM TODS, 14(3):369–400, 1989.

[9] D. Chamberlin, M. Dyck, D. Florescu, J. Melton, J. Robie,
and J. Siméon. XQuery update facility 1.0. W3C Candidate
Recommendation, August 2008.

[10] L. Mendonça de Moura and N. Bjørner. Z3: An efficient
SMT solver. In TACAS, 2008.

[11] D. DeHaan, D. Toman, M. Consens, and M. T. Özsu. A
comprehensive XQuery to SQL translation using dynamic
interval encoding. In SIGMOD, 2003.

[12] Katica Dimitrova, Maged El-Sayed, and Elke A.
Rundensteiner. Order-Sensitive View Maintenance of
Materialized XQuery Views. In ER, 2003.

[13] D. Draper, P. Fankhauser, M. Fernández, A. Malhotra,
K. Rose, M. Rys, J. Siméon, and P. Wadler. XQuery 1.0 and
XPath 2.0 formal semantics. W3C Recommendation,
January 2007.

[14] B. Dutertre and L. de Moura. The Yices SMT solver. Tool
paper at http://yices.csl.sri.com/tool-paper.pdf, August 2006.

[15] M. Franceschet. XPathMark: an XPath benchmark for
XMark generated data. In XSYM, 2005.

[16] P. Genevès and N. Layaı̈da. Deciding XPath containment
with MSO. Data Knowl. Eng., 63(1):108–136, 2007.

[17] P. Genevès, N. Layaı̈da, and A. Schmitt. Efficient static
analysis of XML paths and types. In PLDI, 2007.

[18] G. Ghelli, K. Rose, and J. Siméon. Commutativity analysis
for XML updates. ACM TODS, 33(4):1–47, 2008.

[19] T. Griffin, L. Libkin, and H. Trickey. An improved algorithm
for the incremental recomputation of active relational
expressions. IEEE TKDE, 9(3):508–511, 1997.

[20] B. Hammerschmidt, M. Kempa, and V. Linnemann. On the
Intersection of XPath Expressions. In IDEAS, 2005.

[21] J. Hidders. Satisfiability of XPath expressions. In DBPL,
2003.

[22] N. Klarlund and A. Møller. Mona v. 1.4 user manual.
Technical Report BRICS NS-01-1, U. Aarhus, 2001.

[23] A. Levy and Y. Sagiv. Queries Independent of Updates. In
VLDB, 1993.

[24] A. Marian and J. Siméon. Projecting XML documents. In
VLDB, 2003.

[25] X. Qian and G. Wiederhold. Incremental Recomputation of
Active Relational Expressions. IEEE TKDE, 3(3):337–341,
1991.

[26] M. Raghavachari and O. Shmueli. Conflicting XML updates.
In EDBT, 2006.

[27] A. Sawires, J. Tatemura, O. Po, D. Agrawal, A. El Abbadi,
and K. Candan. Maintaining XPath Views In Loosely
Coupled Systems. In VLDB, 2006.

[28] A. Schmidt, F. Waas, M. Kersten, M. Carey, I. Manolescu,
and R. Busse. XMark: A Benchmark for XML Data
Management. In VLDB, 2002.

[29] Sergei G. Vorobyov. An improved lower bound for the
elementary theories of trees. In CADE, 1996.

913

σ(l) = text[s] l′ 6∈ dom(σ)

σ, l
copy7→ σ[l′ := text[s]], l′

σ(l) = a[L] σ, L
copy7→ σ′, L′ l′ 6∈ dom(σ′)

σ, l
copy7→ σ′[l′ := a[L′]], l′

σ, ()
copy7→ σ, ()

σ, L1
copy7→ σ′, L′1 σ′, L2

copy7→ σ′′, L′2

σ, L1 · L2
copy7→ σ′′, L′1 · L′2

Figure 8: Copying rules

APPENDIX
A. SEMANTICS OF QUERIES AND UPDATES

A.1 Query semantics
A store is modeled as a mapping σ : Loc → Σ×Loc∗]String,

where Σ is the set of element tags; we often write σ(l) = a[L] or
text[s], instead of σ(l) = (a, L) or s, respectively.

An environment is modeled as a mapping γ : Var → Loc∗ from
variables to lists of nodes.

We define the semantics of queries using the following judg-
ments:

• σ, L copy7→ σ′, L′ — takes a store and a list of nodes in the store
and copies the subtrees below the nodes, yielding a new store
and a new list of nodes pointing to the roots of the new trees.

• σ, γ |= q⇒ σ′, L — takes a store and environment and eval-
uates a query to a new store and a list of nodes.

• σ, γ |= q
copy⇒ σ′, L — an abbreviation for evaluating q and

then making a copy of the result.

• σ, γ, x ∈ L |=? q ⇒ σ′, L — takes a store, environment,
variable x, and list of nodes L, and evaluates the query with x
bound to each node in L, concatenating the results in order.

• σ |= L/ax ::φ
step⇒ L′ —given a store and list of nodes, eval-

uates XPath axis step ax :: φ to produce a new list of nodes.
This judgment is standard and we omit its definition.

A.2 Update semantics
Atomic updates. We consider atomic updates of the form:

ι ::= ins(L, d, l) | del(l) | repl(l, L) | ren(l, a)

d ::= ← | → | ↓ | ↙ | ↘

Here, the direction d indicates whether to insert before (←), after
(→), or into the child list in first (↙), last (↘) or arbitrary position
(↓). We define the target of an atomic update ι to be the distin-
guished node L; for example Targ(ins(L, d, l)) = l.

Our basic update model will be sequences of atomic updates.
We will let ω range over sequences with the empty sequence writ-
ten ε and concatenation written ω;ω′. Formally, we can define the
semantics of atomic updates as a relation σ |= ι σ′; for the
precise definition, see Figure 10. We will refer to this relation as
EvalUpd. Our semantics is a formalization of that given by the
W3C’s candidate recommendation for updates, see [9].

Updating expressions. The W3C XQuery Update proposal de-
fines high-level updating expressions that can be used to generate
atomic updates that are to be performed [9]. We use the following

σ, γ |= $x⇒ σ, γ(x)

σ, γ |= ()⇒ σ, ()

σ, γ |= q1 ⇒ σ2, L1 σ2, γ |= q2 ⇒ σ3, L2

σ, γ |= q1, q2 ⇒ σ3, L1 · L2
σ, γ |= q

copy⇒ σ2, L l 6∈ dom(σ2)

σ, γ |= 〈a〉q〈/a〉 ⇒ σ2[l := a[L]], l

σ, γ |= q⇒ σ2, l · L σ2, γ |= q1 ⇒ σ3, L1

σ, γ |= if q then q1 else q2 ⇒ σ3, L1

σ, γ |= q⇒ σ2, () σ2, γ |= q2 ⇒ σ3, L2

σ, γ |= if q then q1 else q2 ⇒ σ3, L2

σ, γ |= q1 ⇒ σ2, L σ2, γ, x ∈ L |=? q2 ⇒ σ3, L
′

σ, γ |= for $x ∈ q1 return q2 ⇒ σ3, L
′

σ |= γ(x)/ax ::φ
step⇒ L

σ, γ |= x/ax :: φ⇒ σ, L

σ, γ |= q⇒ σ0, L0 σ0, L0
copy7→ σ′, L

σ, γ |= q
copy⇒ σ′, L

σ, γ, x ∈ () |=? q⇒ σ, ()

σ, γ[x := l] |= q⇒ σ2, L1 σ, γ, x ∈ L |=? q⇒ σ3, L2

σ, γ, x ∈ l · L |=? q⇒ σ3, L1 · L2

Figure 9: Query evaluation rules

core language for update expressions:

u ::= () | u, u′ | insert q d q0 | delete q0
| rename q0 as a | replace q0 with q
| if q then u1 else u2 | for $x ∈ q return u

The XQuery Update proposal re-uses existing query syntax for up-
dates. The () expression does nothing, while u, u′ is sequential
composition, and XQuery conditionals and for-loops can also be
used. There are four atomic update expressions: insertion insert q d q0,
which says to insert a copy of the value of q in position d relative to
node q0; deletion delete q0, which says to delete the node q0, dis-
connecting it from its parent; renaming rename q0 as a, which says
to rename the node q0 to a and replacement replace q0 with q,
which says to replace the value of node q0 with a copy of q. In each
case, the target expression q0 is required to be a selection query and
expected to evaluate to a single node; if not, evaluation fails. Again,
we omit let-binding without loss of generality.

Semantics of updates. Updates have a multi-phase semantics.
First, the updating expression is evaluated, resulting in a pending
update list ω. We model this phase using an update evaluation
judgement σ, γ |= u ⇒ σ′, ω, defined in Figure 11 (and based on
a semantics developed elsewhere [3]). Note that, as for queries, the
store may grow as a result of allocation, but trees already in σ do
not change while the update expression is being evaluated. Next,
ω is validated to avoid pathological problems such as renaming a
node in two different ways. We do not model this validation phase
explicitly here. Finally, the pending updates are applied to the store
in some order. The W3C semantics mandates reordering the update
list so that insertions and renamings are applied first, then replace-
ments, and finally deletions. We will conservatively assume that
atomic updates in the pending update list might be performed in
any order. A static analysis that is sound with respect to this se-

914

σ(l′) = a[L1 · l · L2]

σ |= ins(L,←, l) σ[l′ := a[L1 · L · l · L2]]

σ(l) = a[L′]

σ |= ins(L,↙, l) σ[l := a[L · L′]]
σ(l′) = a[L1 · l · L2]

σ |= ins(L,→, l) σ[l′ := a[L1 · l · L · L2]]

σ(l) = a[L′]

σ |= ins(L,↘, l) σ[l := a[L′ · L]]

σ(l) = a[L1 · L2]

σ |= ins(L, ↓, l) σ[l := a[L1 · L · L2]]

σ(l) = a[L]

σ |= ren(l, b) σ[l := b[L]]

σ(l′) = a[L1 · l · L2]

σ |= repl(l, L) σ[l′ := a[L1 · L · L2]]

σ(l′) = a[L1 · l · L2]

σ |= del(l) σ[l′ := a[L1 · L2]]

σ |= ε σ

σ |= ω1 σ′ σ′ |= ω2 σ′′

σ |= ω1, ω2 σ′′

σ, γ |= u⇒ σ′, ω ω′ any permutation of ω σ′ |= ω′ σ′′

σ, γ |= u σ′′

Figure 10: Update application

mantics will also be sound with respect to any implementation of
the W3C semantics.

To summarize, the semantics of updates is defined using the fol-
lowing judgments in Figure 10 and Figure 11.

• σ |= ι σ′— given a store σ and an atomic update, produce
a store resulting from applying ι to σ. (This, and all later
judgments, can be nondeterministic because of node copying
and because insert-into operations are nondeterministic.)

• σ |= ω σ′ — given a store σ and an atomic update se-
quence, perform the atomic updates in order.

• σ, γ |= u ⇒ σ′, ω — given a store σ and variable environ-
ment γ, evaluate u to a new store and atomic update list ω.

• σ, γ, x ∈ L |=? u ⇒ σ′, ω — given a store σ, variable en-
vironment γ, variable x and node list L, evaluate update u

with x bound to each element of L in turn, concatenating the
resulting update sequences in order.

• σ, γ |= u σ′— given input store and variable environment
γ, evaluate u and apply the resulting atomic updates in any
order, yielding σ′.

B. PROOFS

B.1 Proof of Theorem 1
Recall the statement of the result: There is no elementary algo-

rithm for constructing a pointwise minimal static destabilizer.
For the first part, recall that the satisfiability problem for first-

order logic on labeled trees can not be resolved in elementary time
[29]. From the results of [5] it follows that the satisfiability problem
for SelXQ is non-elementary. Now consider the document Σ0

σ, γ |= ()⇒ σ, ε

σ1, γ |= u1 ⇒ σ2, ω1 σ2, γ |= u2 ⇒ σ3, ω2

σ1, γ |= u1, u2 ⇒ σ3, ω1;ω2

σ1, γ |= q⇒ σ2, l · L σ2, γ |= u1 ⇒ σ3, ω1

σ1, γ |= if q then u1 else u2 ⇒ σ3, ω1

σ1, γ |= q⇒ σ2, () σ2, γ |= u2 ⇒ σ3, ω2

σ1, γ |= if q then u1 else u2 ⇒ σ3, ω2

σ1, γ |= q⇒ L, σ2 σ, γ, x ∈ L |=? u⇒ σ3, ω

σ1, γ |= for $x ∈ q return u⇒ σ3, ω

σ1, γ |= q1
copy⇒ σ2, L1 σ2, γ |= q2 ⇒ σ3, l2

σ1, γ |= insert q1 d q2 ⇒ σ3, ins(L1, d, l2)

σ1, γ |= q⇒ σ2, l

σ1, γ |= delete q⇒ σ2, del(l)

σ1, γ |= q1 ⇒ σ2, l1 σ2, γ |= q2
copy⇒ σ3, L2

σ1, γ |= replace q1 with q2 ⇒ σ3, repl(l1, L2)

σ1, γ |= q⇒ σ2, l

σ1, γ |= rename q as a⇒ σ2, ren(l, a)

σ, γ, x ∈ () |=? u⇒ σ, ε

σ1, γ[x := l] |= u⇒ σ2, ω1 σ2, γ, x ∈ L |=? u⇒ σ3, ω2

σ1, γ, x ∈ l · L |=? u⇒ σ3, ω1;ω2

Figure 11: Update expression evaluation

consisting only of a single node, and a boolean query Q. If Q
is unsatisfiable, then the empty set is a minimal set of nodes of Σ0

having the property that every update sequence makingQ turn from
false to true on Σ0 contains a node in the set. If Q is satisfiable
but does not hold on Σ0, then the empty set is not such a set of
nodes, since we could replace the root of Σ0 by some document
satisfying Q. Hence we can determine whether Q is satisfiable by
first running Q on d0 and then running an exact destabilizer for Q
on d0 and checking if the result is empty. Since evaluation of a
SelXQ query is polynomial time (e.g. [5]) this would provide a
contradiction.

C. DETAILS OF INDEPENDENCE ANALY-
SIS

C.1 Additional destabilizer rules
In Figure 12 we show additional rules for rename, insert before,

and insert after destabilizers.
For renames, note that a rename operation can only affect the la-

bel of an element node, not the tree structure. Hence, for positive
boolean and node destabilizers, rename operations that do not in-
volve element label tests have empty destabilizers, no matter what
axis is used. Furthermore, for negative boolean destabilizers, the
only way to destabilize a step involving a node test ax :: a is to
rename a node already labeled a to something else, so in this case
we can improve precision slightly.

The insert-before and insert-after axes are symmetric; we dis-
cuss only the former case. For positive boolean destabilizers, we
can never make a child :: ∗ step nonempty by inserting before a
node, since since if a node has no children we cannot add a child by
inserting before a node, while if a node has children already then
inserting before one of them does not change the Boolean value of

915

∆b+
rename($x/ax :: a) = $x/ax :: ∗

∆b+
rename($x/ax :: φ) = () (φ ∈ {∗, text()})

∆b+
insert(←)

($x/child :: ∗) = ()

∆b+
insert(←)

($x/child :: φ) = $x/child :: ∗ (φ 6= ∗)
∆b+

insert(←)
($x/foll sib :: φ) = ($x/foll sib :: ∗)

∆b+
insert(←)

($x/prec sib :: φ) = ($x, $x/prec sib :: ∗)
∆b+

insert(→)
($x/child :: ∗) = ()

∆b+
insert(→)

($x/child :: φ) = $x/child :: ∗ (φ 6= ∗)
∆b+

insert(→)
($x/foll sib :: φ) = ($x, $x/foll sib :: ∗)

∆b+
insert(→)

($x/prec sib :: φ) = ($x/prec sib :: ∗)

∆b−
rename($x/ax :: a) = $x/ax :: a

∆b−
rename($x/ax :: φ) = () (φ ∈ {∗, text()})

∆b−
insert(←)

($x/ax :: φ) = ()

∆b−
insert(→)

($x/ax :: φ) = ()

∆n
rename($x/ax :: a) = $x/ax :: ∗

∆n
rename($x/ax :: φ) = () (φ ∈ {∗, text()})

∆n
insert(←)

($x/child :: φ) = $x/child :: ∗
∆n

insert(←)
($x/foll sib :: φ) = ($x/foll sib :: ∗)

∆n
insert(←)

($x/prec sib :: φ) = ($x, $x/prec sib :: ∗)
∆n

insert(→)
($x/child :: φ) = $x/child :: ∗

∆n
insert(→)

($x/foll sib :: φ) = ($x, $x/foll sib :: ∗)
∆n

insert(→)
($x/prec sib :: φ) = ($x/prec sib :: ∗)

Figure 12: Additional op-sensitive destabilizer rules

this step. Of course, for a node-test destabilizer child :: φ where
φ is not ∗, we can make the result go from empty to nonempty by
inserting a node matching φ before an already-present node. For
negative destabilizers, there is no way an insert-before operation
can make the result of a child step empty. Finally, for node desta-
bilizers, we conservatively assume that any insert-before to a child
list of a node can destabilize the node list returned by the child step.
Other axes such as descendant can be handled similarly to the child
axis. For the preceding and following axes, however, we can lever-
age the order behavior of the insert-before operation. Specifically,
for the following sibling axis, only inserts before some following
sibling can affect the result of this step, while inserts before both
the node and its preceding siblings can affect the preceding-sibling
step.

C.2 Update target queries
We define update target queries Targop(u) as shown in Fig-

ure 13, where op ∈ Ops. Note that Targop(u) is a selection query.
Its key correctness property is:

LEMMA 1. Suppose σ is a store and (σ′, ω) ∈ UpdJuKσ. Then
for any ι ∈ ω, if ι : op and Targ(ι) ∈ σ then

Targ(ι) ∈ Sel
q
Targop(u)

y
σ .

C.3 Query translations
We employ three translations from selection queries to other rep-

resentations:

• The first-order abstraction translates a selection query to a
first-order formula over the basic axis predicates.

• The existential first-order abstraction translates a selection
query to a positive existential first-order formula (that is, one
with no negation or universal quantifiers).

Targop(()) = ()
Targop(u1, u2) = Targop(u1), Targop(u2)

Targop(if q then u1 else u2) = if q then Targop(u1)
else Targop(u2)

Targop(for $x ∈ q return u) = for $x ∈ q return Targop(u)
Targop(insert q d q′) = q′ (insert(d) : op)

Targop(delete q′) = q′ (delete : op)
Targop(rename q′ as a) = q′ (rename : op)

Targop(replace q with q′) = q′ (replace : op)
Targop(u) = () (otherwise)

Figure 13: Target query of an update (with respect to update
operator op)

FOy(()) = ⊥
FOy($x) = x = y

FOy($x/axis :: ∗) = Axis(x, y)
FOy($x/axis :: text()) = Axis(x, y) ∧ text(y)

FOy($x/axis :: A) = Axis(x, y) ∧A(y)
FOy((q1, q2)) = FOy(q1) ∨ FOy(q2)

FOy(if q then q1 else q2) = (∃z.FOz(q) ∧ FOy(q1))
∨ (¬(∃z.FOz(q)) ∧ FOy(q2)

FOy(for $x ∈ q1 return q2(x)) = ∃x.FOx(q1) ∧ FOy(q2(x))

Figure 14: Translating selection queries to first-order formulas.
In each case we assume y is not free in the query.

• The path abstraction translates a selection query to a set of
paths (each of which can be viewed individually as an EFO
formula)

These translations from queries to first-order formulas or paths are
well-understood and straightforward (see e.g. [5]); we provide them
in this appendix for completeness.

First-order translation. Figure 14 defines a function FOx(q)
that maps a selection query q(y1, . . . , yn) to an equivalent first-
order formula φ(x, y1, . . . , yn), in the following sense:

PROPOSITION 1. For any document selection query q($doc),
we have SelJqKσ = {l | σ |= φ(l, root(σ))}.

Existential first-order abstraction. For some analysis tech-
niques, it is necessary to over-approximate a selection query by
a positive existential formula, that is, avoiding the use of negation
or universal quantification. In Figure 14, we can see that only one
case can involve negation, namely the case for the else-branch of a
conditional. We can safely over-approximate a selection query by

Pt(Γ, ()) = ∅
Pt(Γ, $x) = Γ(x)

Pt(Γ, $x/step) = {p/step | p ∈ Γ(x)}
Pt(Γ, (q1, q2)) = Pt(Γ, q1) ∪ Pt(Γ, q2)

Pt(Γ, if q then q1 else q2) = Pt(Γ, q1) ∪ Pt(Γ, q2)
Pt(Γ, for $x ∈ q1 return q2) = Pt(Γ[x := Pt(Γ, q1)], q2)

Pt(q) = Pt([$doc = /], q)

Figure 15: Approximating selection queries by paths. Here, Γ
is an environment mapping each variable to a set of paths.

916

rewriting each conditional in it as follows:

if q then q1 else q2 → (if q then q1), q2

and then translating the query to a first-order formula as shown in
Figure 14.

Path abstraction. Figure 15 defines a function Pt(q) that con-
structs a set of XPath paths that covers all of the nodes that might
be returned by q.

PROPOSITION 2. For any selection query q and store σ, we
have SelJqKσ ⊆

⋃
p∈Pt(q) SelJpKσ. Hence, if every pair of paths

p1 ∈ Pt(q1) and p2 ∈ Pt(q2) are disjoint then so are q1 and q2.

C.4 Heuristics for path disjointness
The SMT-based approach can be used with path abstraction, since

the paths translate into simple positive queries as described in Sec-
tion 4. In addition we employ several heuristics for either simpli-
fying or solving certain classes of path disjointness problems.

1. Suffix incompatibility. If two paths end with suffixes of child
steps that are obviously incompatible (e.g. //∗/a/b and //c//d/e
then the paths cannot overlap.

2. Displacement tests. Define the minimum displacement of a
path δmin(p) to be the smallest difference in height between
the root of the tree and the node selected by the path, if this
exists; otherwise δmin(p) = −∞. Similarly, define the maxi-
mum displacement δmax(p) to be the maximum difference in
height between the root of the tree and the node selected by
the path, if this exists; otherwise δmax(p) = +∞. For exam-
ple, the minimum and maximum displacement of /child ::
∗/desc :: a are 2 and∞, respectively. Define the displace-
ment interval δ(p) of p to be the set {n ∈ Z | δmin(p) ≤
n ≤ δmax(p)}.
Given paths p1, p2, if δmax(pi) < 0 for either p1 or p2 then
pi is unsatisfiable (starting from the root of a tree) and so p1
and p2 are trivially disjoint. Otherwise, if δ(p1) ∩ δ(p2) = ∅
then p1 and p2 are disjoint.

3. Prefix-incompatibility for downward paths. For two downward-
only paths, if the prefixes of child steps are incompatible then
the paths are disjoint. For example, /a/b/c//∗//d and /a/b/e//∗
are prefix-incompatible.
Although this is a special case that is also solvable by Ham-
merschmidt et al.’s algorithm, this check is faster than their
automaton construction and detects many common cases where
the paths are disjoint.

If the paths are downward-only and their disjointness is not re-
solved by the heuristics, we employ the automaton construction in
Hammerschmidt et al. [20]. Otherwise, we attempt the approaches
via SMT-solving described in the body of the paper.

D. ADDITIONAL RELATED AND FUTURE
WORK

Although view maintenance for XML queries has been explored
in much prior work (see for example [7, 12]) the focus there has
been the use of data structures that aid efficient recomputation when
the view must be refreshed. Fast static techniques can effectively
complement incremental techniques, especially in distributed set-
tings, as argued here and in [27, 2].

Our query-rewriting algorithms for computing destabilizers are
reminiscent of algebraic approaches to view-maintenance, e.g. those
based on finite differencing [25, 19]. However, there is no formal
connection between these problems.

Disjointness testing for XPath/XQuery is not well understood
either in theory or practice. Hidders [21] established that XPath

satisfiability is in PTIME, and intersection testing is NP-hard, but
the complexity of binary intersection of simple paths containing ar-
bitrary axes remains open. Hammerschmidt et. al. [20] showed
that it is in PTIME for downward-only paths, while Benedikt et
al. [4] show that even satisfiability (and hence binary intersection)
of downward paths is NP-hard in the presence of a schema. Genevès
and Layaı̈da [16] present a translation from XPath containment
problems to MSO(Tree). Our translation to mona is similar. Sub-
sequently, Genevès, Layaı̈da and Schmitt [17] have developed a
system for analyzing XPath expressions with respect to schemas.
Our approach to intersection testing using yices appears more
efficient than their prototype but only solves a special case of this
problem.

One of our main conceptual contributions is the idea of finitely
representing collections of updates that can change a query result.
This is motivated by prior work on XML projection [24, 6], which
concentrates on sets of nodes as a representation system. We ex-
plore a more precise representation system here via the use of op-
based destabilizers, but we intend to explore much richer systems in
the future. For example, one can gain precision by utilizing descrip-
tions that alternate conjunction and disjunction, stating a sequence
to simultaneously overlap with several sets of atomic updates. In
Example 2, a finer representation system would allow us to specify
that for an update sequence to change Q2, it must either replace
node 1, or it must both modify nodes 2 or 3 and also modify one
of nodes 4 and 5. While we use these representation systems in
conjunction with static analysis, they could also be used at runtime
– either in the context of incremental view maintenance, or simply
as a way of understanding how an anomalous query result could be
changed.

E. BENCHMARK QUERIES AND UPDATES
The XMark queries are written in plain XQuery using complex

XPath expressions and other high-level constructs, and as such need
to be translated to the core language before static analysis. We
translated them by hand following the rules in the XQuery stan-
dard. We also inlined let-binding expressions (this is not always
safe in full XQuery but appears safe for the XMark queries). Fi-
nally, XMark queries also use several features that we do not di-
rectly handle, such as built-in functions (count or equality). We
translated these queries to queries that do not use these features, but
have similar dependencies. Thus, for a query such as Q10:

for $b in $auction//site/regions
return count($b//item)

we used the simplified query:

for $b in $auction//site/regions
return $b//item

The XPathMark queries were used as the basis for updates de-
rived in a systematic way. For example, XPathMark query A2 is:

$auction//closed_auction//keyword

and from this we generated an insert:

insert nodes <foo/>
into $auction//closed_auction//keyword

917

