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ABSTRACT 
Multidimensional array database systems are suited for scientific 
and engineering applications. Data in these applications is often 
uncertain and imprecise due to errors in the instruments and 
observations, etc. There are often correlations exhibited in the 
distribution of values among the cells of an array. Typically, the 
correlation is stronger for cells that are close to each other and 
weaker for cells that are far away. We devise a novel data 
structure, called the A*-tree (multidimensional Array tree), 
demonstrating that by taking advantage of the predictable and 
structured correlations of multidimensional data, we can have a 
more efficient way of modeling and answering queries on large-
scale array data. An A*-tree is a unified model for storage and 
inference. The graphical model that is assumed in an A*-tree is 
essentially a Bayesian Network. We analyze and experimentally 
verify the accuracy of an A*-tree encoding of the underlying joint 
distribution. We also study the efficiency of query processing 
over A*-trees, comparing it to an alternative graphical model. 

1. INTRODUCTION 
Multidimensional array database systems are suited for 

scientific and engineering applications. Several array database 
systems have been designed and implemented, such as T2 [7], 
Titan [8], RasDaMan [2], ArrayDB [19], ASAP [24], and the 
most recent one, SciDB [27]. In this data model, each cell of a 
multidimensional array is a tuple (potentially multiple attributes, 
e.g., temperature, humidity, etc.). If we consider each cell’s array 
index at each dimension as an additional attribute of the cell tuple, 
a multi-dimensional array is logically equivalent to a (one-
dimensional) relational table. That is to say, a multidimensional 
array is logically equivalent to a table with schema (A1, A2, …, Ak 

, D1, D2, …, Dd), where each cell originally only has k attributes 
A1 to Ak , and D1 to Dd are the d dimensions of the array. Thus, an 
array system still follows a relational model. 

Data in these applications is often uncertain and imprecise due 
to errors in the instruments and observations, etc. There are often 
correlations in the distributions of an uncertain attribute among 
cells of an array. For example, a temperature attribute can be 
correlated with other array cells (one random variable per cell). 
By the nature of the data that arrays model, the correlations are 
generally stronger for cells that are close to each other and weaker 
otherwise. Consider the following example. 

Example 1. Environment monitoring in an open field often 
produces sensor readings over time. However, resource 
constraints (e.g., sensor power and network capability) often 
prevent sensors from sending readings at every point in time. At a 
given time, we may only have an outdated reading for each sensor 
in the network. The actual current reading is from a distribution 
in a range around the outdated one [9]. All sensors (which can be 
either real sensors or interpolated readings [15]) in the network 
form a two-dimensional array with the dimensions being sensor 
location. The uncertain attribute is correlated with neighboring 
cells. 

We provide two additional examples in Appendix A. In many 
such applications, the representation of the uncertain data needs to 
encode the value correlation among tuples for the result to be 
correct. Ignoring the correlation and making an over-simplified 
tuple independence assumption often renders the query results 
wrong and useless. We illustrate this in the experiment section. 

However, modeling attribute correlation among cell tuples is 
not an easy task, simply due to the large number of cells in many 
arrays and the arbitrary correlations among them. In this work, we 
argue that by taking advantage of predictable and structured 
correlations of multidimensional data, we can provide a more 
efficient way of modeling and answering queries on large-scale 
array data. We propose a new data structure, called the A*-tree 
(multidimensional Array tree). The A*-tree approach is based on 
the following observation: data in a multidimensional array is 
usually correlated along some dimensions and the correlation is 
largely local. Thus, if we have to sacrifice precision by allowing 
approximate models, we should focus on local correlation. An 
A*-tree uses this fact and organize data in a hierarchical manner. 
Within the hierarchical structure, the joint distributions are 
smaller and can be modeled more efficiently. 

There is a simple mapping from the graph structure of an A*-
tree (i.e., the storage model of an array) to its probabilistic 
graphical model. We show that the graphical model of an A*-tree 
is a Bayesian Network (BN). Physically, only the leaves of the 
tree-structured BN exist. The nodes (i.e., random variables) at 
upper levels are derived from the leaves. Thus, the construction of 
an A*-tree is bottom-up, yet the probabilistic inference (which is 
needed for processing queries [22, 25]) is top-down. 

Because A*-tree integrates both the probabilistic graphical 
model and the physical storage model, probabilistic inference is 
very efficient. It requires traversing the A*-tree and following a 
logarithmic-length path directly to the needed cells of the array. 
We study query processing techniques for both general queries 
and specifically COUNT, AVG, and SUM queries which permit 
optimizations using A*-trees. We also compare A*-trees with an 
alternative graphical model. To summarize, the paper’s 
contributions are: 
 We propose a novel data structure, A*-tree, suited to modeling 

the correlation in a multidimensional array (Sec. 2). 
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Figure 1.  Example of a k-ary tree with k = 4 

 We analyze how A*-trees balance the accuracy of modeling 
correlation and the efficiency of query processing (Sec. 3). 

 We study query processing techniques, demonstrating the 
advantage of efficient inference with A*-trees (Sec. 4). 

 We conduct a systematic experimental study on a real dataset 
as well as a synthetic dataset (Sec. 5). 

2. A*-TREE STRUCTURE 
In this section, we describe the A*-tree structure and how it 

encodes the joint distribution of array cells. 
 

 

 

 

 

2.1 Basic A*-tree Structure 
An A*-tree is a k-ary tree [11] (e.g., Figure 1, where dotted 

branches indicate which children are missing) with the degree k 
being 2d, where d is the number of dimensions in which the 
uncertain value is correlated. Note that d is typically small (most 
often 1, 2, or 3). Thus, it is a binary tree when d = 1 and a 4-ary 
tree when d = 2, and so on. Figure 2 shows an example partition 
for d = 2. Throughout this section, we use d = 2. This can be 
easily extended to other dimensionalities. Similar to quadtrees 
[16], we recursively divide an array in half along each dimension. 
In Figure 2, the first partition (thick dotted lines) divides the array 
space into four (k = 22) subspaces. The whole array maps to the 
root of the 4-ary tree in Figure 1, and the four subspaces map to 
its four children in some fixed order (e.g., 1st child is the north-
west subspace, 2nd child is the south-west one, etc.). Then 
recursively, we again partition each of the four subspaces into 
four, which map to the four children of each node at the level 
below the root in Figure 1. Thus, a recursive partition of the array 
space corresponds to a top-down traversal of the k-ary A*-tree 
from one level to the next. Eventually, at the leaf level, each leaf 
corresponds to four neighboring cell values of the array. In Figure 
2, array cells A, B, C, and D together form a leaf. 
 

 

 

 

 
 

 

For now, for simplicity of exposition, in the case of d > 1, we 
assume that each of the dimensions has the same size. We also 
assume this size is 2n (for some integer n). It is easy to generalize 
it to an arbitrary size (as shown in Appendix D.1). The black 
blocks in Figure 2 indicate the empty regions (NULL values) of 
the array that do not have values in the A*-tree and, thus, 
correspond to “missing” children in this 4-ary A*-tree. Thus, 
arrays of arbitrary sparsity can be accommodated.  Here is how a 
joint distribution is encoded in an A*-tree: 
 Each leaf in an A*-tree contains the joint distribution of four 

neighboring cells of the array. This joint distribution is a 

conditional one, conditioned on the four cell’s average value. 
In the example in Fig. 2, there are four cell random variables 
A, B, C, and D. Define a random variable X = (A+B+C+D)/4. 
Then there is a leaf in the A*-tree that contains the joint 
distribution of A, B, C and D conditioned on X. 

 Recursively, in a bottom-up manner, an internal node of the 
A*-tree encodes the joint distribution of its four children 
conditioned on their average. A child node is a random 
variable that is the average of all cells of the array covered 
under its subtree. 

 In addition to this joint distribution, the root node also holds 
the distribution of the average value of the whole array. 

Note that the average of children is weighted. For example, in 
the A*-tree of Figure 1, node N contains the joint distribution of 
its three children (one child node is missing), A, B, and C, 
conditioned on their average value (nA·A+nB·B+nC·C) / 
(nA+nB+nC), where nA is the number of non-empty cells (i.e., not 
NULL) in the subtree rooted at A; similarly for nB and nC. 

The key idea of A*-trees is that we model the joint distribution 
of cells in a manageable way that is relatively compact and 
automatically structured. The automatic structure is based on the 
principle of the locality of data correlation: closer cells are more 
likely correlated. We organize cells into hierarchical clusters 
according to proximity, each of which contains a small number of 
random variables so that we can encode their joint distribution 
compactly. 

An interesting aspect of the A*-tree approach is that if we 
simply trim the leaves of an A*-tree, the remaining A*-tree 
represents the distribution of an array with a coarser grain. This 
enables a fast approximation of the data and may be meaningful 
for many applications that demand rapid results (e.g., real-time 
processing or on-line computation). For the example of image and 
sound, object or pattern recognition algorithms can work in the 
coarser level. In a real-time network system, quick decisions at a 
higher level can be crucial for meeting real-time constraints. 

Finally, we note that A*-trees partition the space in an array 
similar to the way quadtrees [16] do (for two dimensions).  Our 
main contribution in this work, however, is about using this 
partition scheme to succinctly model the correlations and joint 
distribution of the array cells.  We show that this is a natural 
unification of both the storage model and the probabilistic 
graphical model (Section 3). 

2.2 Extensions of the Basic A*-tree Structure 
2.2.1 Basic Uncertainty Blocks of Arbitrary Shapes 

We define a basic uncertainty block of an array as a box (e.g., a 
rectangle for two-dimensional arrays) in the array inside which 
cells have the same distribution. In the basic A*-tree of Section 
2.1, each array cell is a basic uncertainty block. This is the 
smallest basic block size possible. However, in many 
applications, this granularity is not necessary and the basic block 
size can be much larger. Having a larger basic block size makes 
the representation more succinct and query processing more 
efficient. 

For example, astronomers take photo images of objects in the 
universe. Due to precision limits, pixels of an image, treated as 
cells of a two-dimensional array, exhibit correlated uncertainty in 
their values. A block of neighboring pixels, due to their 
proximity, is likely to have the same error distribution. Thus, a 
basic uncertainty block can be, say, 50 by 50 cells in size. Now 
each basic block is treated as a “single cell” in an A*-tree, which 
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Figure 2. Illustrating recursive partitioning of a two-dimensional array. 
The joint distribution of the uncertain attribute is encoded in a 4-ary tree. 
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Fig. 3  Illustrating the initial partition of an array into nine regions. 
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Fig. 5  Illustrating cluster distance in a binary A*-tree 

only records a single distribution. Each basic block will also store 
a 50 by 50 block containing the “deterministic” parts of the pixel 
values. Combining the deterministic and the random parts 
together gives a true pixel value. 

2.2.2 Initial Partition of an Array 
The best initial partition of an array is application specific and a 

knowledgeable user can define the initial partitions. In the 
astronomy’s image example, different regions of the image may 
have different levels of uncertainty. Some parts of the image (e.g., 
towards the center) are clearer and have less uncertainty, while 
some parts (e.g., towards the borders) are blurrier and have more 
uncertainty. Thus, one may want to first partition the array into 
rectangular regions and assign different basic block sizes for 
different regions: regions towards the image center have larger 
basic uncertainty blocks and the distributions there have smaller 
variances, while regions at the borders need finer basic blocks. 
This is illustrated in Figure 3. 
 

 

 

 

 
 

Since correlation among regions may be very weak, an 
application program can either declare region summaries (i.e., 
average values) to be independent or let the system manage the 
joint distribution of the regions as the upper levels of the A*-tree. 
When regions are independent, each of them is a separate A*-tree. 

We provide additional details of A*-trees in Appendix D, such 
as the joint distributions at nodes and their layout on disk. 

3. ANALYSIS 
3.1 A*-tree’s Probabilistic Graphical Model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
An A*-tree is a unified structure for both the storage model and 

the probabilistic graphical model. Some background knowledge 
on graphical models is presented in Appendix B. An A*-tree is a 
special form of Baysian Network (BN) on the array cell values, as 

illustrated in Figure 4. There is a natural mapping from the 
storage model of an A*-tree (Figure 4a) to its graphical model 
(Figure 4b). In a nutshell, we need to collapse the multiple 
children of an internal node (e.g., N2 to N5 in Figure 4a) into one 
composite node in the graphical model (denoted as N2,5); 
corresponding edges are also merged. This is needed because an 
A*-tree encode P(N2,5|N1), but not P(N2|N1), etc. Recall that given 
a value at N1, an A*-tree gives us the joint distribution of nodes 
N2, N3, N4, and N5. Likewise, each edge in Figure 4b corresponds 
to a joint distribution in a node of the A*-tree. Note that a node in 
the graphical model of an A*-tree can be composite, denoting 
several nodes of the A*-tree. 

The unconventional aspect of this BN is that originally only the 
leaf level exists and represents real random variables (each leaf 
maps to some cells of the array). All internal nodes (random 
variables) are artifacts of our construction. They are derived 
random variables. Because the internal nodes are completely 
determined by the values of the leaves (i.e., they are averages at 
different levels), the distribution encoded by the whole BN is 
equivalent to the joint distribution of the array cell values. 

3.2 Expressiveness of Neighbor Correlation 
An A*-tree expresses neighboring correlations in the joint 

distributions at different levels of the tree. Clearly, the correlation 
between two cells is easier to encode when this level is lower. We 
demonstrate that, from the perspective of any random query, the 
average level where cell correlation is encoded is low. 

Definition 1 (neighboring cells and cluster distance):  Two 
neighboring cells of an array are two cells that are next to each 
other in one dimension and have the same dimension values in 
other dimensions. Starting from the cell level (leaves) as level 0, 
the cluster distance (CD) between two neighboring cells is the 
level in the A*-tree at which a joint distribution between their 
cluster summaries exists.                                                      

 
 
 

 

 

 
 
 

Figure 5 shows an example of pairs of neighboring cells with 
CD 0, 1, 2, and 3, respectively. We can see that the CD between 
two cells is determined by the level below their lowest common 
ancestors. When CD is 0, the correlation between two cells is 
directly modeled; when CD gets bigger, their correlation is 
embodied in the summaries of bigger clusters they are in. We next 
quantify the average as well as the maximum CD in the set of 
cells that an arbitrary query accesses. 

Lemma 1:  For d=1, we label every left branch of a binary A*-
tree with 0 and every right branch with 1. We then label each cell 
of the array with the concatenation of labels on the path from root 
to the cell. Then the CD between a cell and its right neighbor is 
simply the number of trailing 1’s in its label. 

Theorem 1:  Consider a binary A*-tree (d = 1) of height h. 
Suppose a query references a random part of the array that has q 
pairs of neighboring cells (either in a contiguous range or 
scattered in the array). Then the expected average CD is 

N1

N2 N3 N4 N5

N6 N7 N8
N9 N10 N11 N12

N1

N2,5

N6,8 N9,12

(a) Storage model

(b) Probabilistic 
graphical model

N1

N2 N3 N4 N5

N6 N7 N8
N9 N10 N11 N12

N1

N2 N3 N4 N5

N6 N7 N8
N9 N10 N11 N12

N1

N2,5

N6,8 N9,12

N1

N2,5

N6,8 N9,12

(a) Storage model

(b) Probabilistic 
graphical model

Fig. 4  An A*-tree encodes a unified storage model (a) and 
probabilistic graphical model (b). There is a natural conversion from 
(a) to (b). The root node (N1) stays unchanged. Shrink its children (N2 
to N5) into one node, indicated by the dotted ellipse in (a) and N2,5 in 
(b). The four edges connecting N1 with N2 … N5 in (a) are shrunk into 
one directed edge in (b). The similar procedure applies to other nodes 
and we get a Bayesian Network in (b). 

A region 
that has 
larger basic 
blocks

A region 
that has 
smaller 
basic 
blocks

A region 
that has 
larger basic 
blocks

A region 
that has 
smaller 
basic 
blocks
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Fig. 6  (a) “single flip” and (b) “double flip” in A*-trees 

Fig. 7  An algorithm to get samples for a set of array cells. 

1+(h+1)/2h and the expected maximum CD of the q pairs is 
1log 1 / 2hq q   . For d =2 (4-ary A*-tree), the expected average 

CD is the same and the expected maximum CD is 
1 1

1 2
1 2 2

1 1 1 1
log ( )

2 3 4

h h
q q

q q q
q q

                 
           where q1 and q2 are 

the number of neighboring pairs along the two dimensions and q 
= max(q1, q2). 

The proofs of all theorems in the paper are in Appendix C. In 
the same vein, we can obtain the CD’s for larger d values. 
Theorem 1 implies that, from the perspective of any random 
incoming query, the expected average cluster distance of 
neighboring cells is very close to 1 for any reasonable size array 
in practice. For instance, for a 1024 × 1024 array, h = 10, the 
expected average CD is about 1.01. We next show the underlying 
intuition for why this result indicates that neighboring correlations 
are well modeled in practical array data. 
 

 
 

 
 

The correlation between two neighboring cells, if any, is either 
positive or negative. Consider a sequence of pair-wise 
correlations along one dimension, as shown in Figure 6a. This is a 
piece of an A*-tree. The bottom level corresponds to array cell 
values. “+” denotes a positive correlation between two 
neighboring random variables while “−” denotes a negative 
correlation. Two or more consecutive negative correlations in an 
array (between A and B then between B and C in Figure 6b) is 
called a double flip (a negative correlation is analogous to a 
“flip”: when one value increases, the other one decreases). In 
general, positive correlations are much more common and 
negative correlations which we call a single flip (between B and C 
in Figure 6a), if present, are usually isolated. 

In Figure 6b, the second level nodes E and F may not exhibit 
negative correlation: when F and C increases, B tends to decrease 
and A tends to increase which implies that E (the average of A 
and B) could change in either direction or stay unchanged.  Thus, 
in this case, the negative correlation between B and C cannot be 
modeled accurately in the second level of the A*-tree. However, 
we observe that for most array data in practice (e.g., image data or 
environmental properties such as temperatures), a double-flip is 
very rare. Even if it were not rare, we could easily locate any 
double flips by a single pass of the array (with a cost O(dn), 
where d is the dimensionality and n is the number of cells of the 
array). For a double flip, the solution is to model it separately 
with a joint distribution on A, B, and C as a basic uncertainty 
block as discussed in Section 2.2.  One can verify that this is not 
an issue with Fig. 6a, where a negative correlation can either be 
expressed in the first or the second level. 

This observation, combined with the result of Theorem 1 that 
the expected average CD is very close to 1 (i.e., correlations are 
expressed in low levels), explains why the loss of the modeling 
accuracy for correlation is generally not a serious issue in 
practice, which we also experimentally verify in Section 5. Our 
gain from this tradeoff is the efficiency and simplicity in 
modeling and query processing, as we demonstrate throughout the 
paper. 

4. QUERY PROCESSING 
In this section we discuss techniques of doing query processing 

on multidimensional arrays with uncertain attributes represented 
as A*-trees. We first look at processing general queries and then 
consider optimizations for COUNT, AVG, and SUM queries. 

4.1 Queries in General 
Scientific applications are often computationally intensive and 

tend to use a different set of operators (e.g., dot products, matrix 
multiplications). The design of an array database system must 
take these operators into consideration [24, 19, 2, 7]. The complex 
nature of the query operators complicates the task of probabilistic 
inference with graphical models. Consequently, often the most 
viable method of probabilistic inference is through Monte Carlo 
(MC) algorithms [5]. Query processing through MC involves 
multiple rounds. In each round we obtain one sample for each 
probability distribution. Then any classical database system can 
run the query over these samples. Finally, we “assemble” the 
query results from these multiple rounds together and form the  
result distributions. A significant advantage of using MC for 
query processing is that it can essentially process any type of 
query on uncertain data [17, 18] under possible world semantics. 
All four types of probabilistic queries as classified in [9] can be 
answered. Specifically, a distribution in the result of a value-
based query is learned from the result values of multi-rounds of 
MC, while a tuple probability in the result of an entity-based 
query is based on the frequency of the tuple appearing in the 
results of multi-rounds. Thus, we first describe the sampling 
algorithm from an A*-tree given an incoming query (so that we 
can use MC for any type of query). We then demonstrate its 
efficiency by comparing with the alternative MRF (Markov 
Random Fields) models. 

4.1.1 Sampling 
Sampling from an A*-tree is an efficient top-down traversal 

(logarithmic-length path), shown in Figure 7. It is an application 
of the ancestral sampling technique [5] on the Bayesian Network 
in Figure 4(b). The tree structure allows us to limit the sampling 
to the path from the root to the target cells Q, and nothing else. 
Note that from the recursive partition of the array dimensions 
during A*-tree construction, it is easy to determine the range of 
dimension values associated with each node. Step (6) in the 
algorithm uses such information to determine if there is an 
overlap between the coverage of a node and the set Q. 
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(b)

Input: An A*-tree T, a set of cells Q accessed by a query. 
Output: A set of samples S, one value for each cell in Q, from the 
joint distribution of T. 
(1) At the root of T, from the distribution of the average value of 

the whole array, get a sample for the root. 
(2) Initialize node set N = {root} (one node). 
(3) For each node n N , 
(4) Sample from the joint distribution at n, get sample values 

(v1, v2, v3, v4) for its four children, based on the sample at 
node n. 

(5) If n is a leaf of T, then vi (1≤ i ≤4) is for a cell c. If c Q , 

then vi is the final sample for c. 
(6) Else for each child ci (1≤ i ≤4), if the range of dimension 

values covered by ci intersects Q, then add ci to N. 
(7) End for 
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Fig. 9  Illustrating minimum cover and minimum cover with subtraction 

As an example, consider the following astronomy query: 
Q1:  SELECT AVG(brightness) FROM Space_image 
        WHERE DISTANCE(x, y, z, 322, 108, 251) < 50 
Q1 asks for the average brightness within a certain distance 

(50) of an object at location (322, 108, 251). Space_image is an 
array with three dimensions x, y, and z indicating locations of 
objects. An A*-tree is built on the brightness attribute. 
DISTANCE is a built-in function that calculates the distance 
between two locations. The most effective known method of 
probabilistic inference for such a query on a graphical model is 
based on MC algorithms [5]. Our system optimizer will compute 
a minimum bounding box that contains the sphere selected by the 
WHERE clause. The bounding box is a first approximation of the 
set of cells Q, as input to the sampling algorithm in Figure 7. The 
algorithm starts from the root and traverses down the tree, 
targeting only the bounding box Q, which is eventually refined to 
the actual sphere required by the WHERE clause. Note that our 
optimizer will obtain all the samples of a cell needed by MC (say, 
100 samples) at the same time because they are independent. 
Thus, we only need to traverse down the tree once, thereby saving 
I/O costs. This is in contrast to sampling from MRF (Section 
4.1.2), in which we cannot use this optimization because sample 
rounds are correlated and must occur in sequential order. 

4.1.2 Comparison with an MRF model 
We give some background on MRF in Appendix B. One may 

wonder what would result if we just model a multi-dimensional 
array with a simple lattice structure MRF to capture the 
neighborhood correlation, as shown in Figure 8(a). However, the 
problem here is the high computational cost. How big is the MRF 
model? Ideally, it should span the whole array so that all the local 
correlations between all pairs of neighboring cells are captured by 
the model. However, the computation cost of sampling a big MRF 
is high, as we illustrate next. 

The corresponding inference algorithm for an MRF is Markov 
Chain Monte Carlo (MCMC) [5]. Gibbs sampling [5] is often 
used with MCMC on an MRF. Each node is sampled from its 
distribution conditioned on its neighbors. Each sampling round 
updates the samples of all nodes. It has to iterate though all the 
nodes in a model to create one sample, even though the query 
may only need to access a tiny fraction of the cells of the whole 
array. Gibbs sampling uses a so-called visitation schedule to 
update the samples of each node in the graph to obtain one sample 
from their joint distribution. This is because all nodes are either 
directly or indirectly connected, and thus the sample value of each 
node is needed to produce the next round of samples. Therefore, 
the sampling is rather wasteful for answering a query. 
 

 

 

 

 

 

 

 
Now suppose we do not use an MRF model for the whole array 

A. Instead, we have an MRF model built over a small region M 
(of any shape) inside A and M contains Q, the set of cells 

accessed by the query. This is illustrated in Figure 8(b). We could 
use the model over M to give an approximate answer to the query. 
However, the area Q accessed by some incoming query can be 
arbitrary, and it would be impractical to dynamically build (learn) 
a model on the fly at execution time or to have a sufficient 
number of pre-built models. 

By contrast, our A*-tree sampling algorithm is based on 
ancestral sampling [5] over Bayesian Networks (which is 
basically sampling in the order specified by the directed edges, 
i.e., always sample parents before any children). As described in 
the sampling algorithm in Figure 7, our sampling procedure only 
follows a logrithmic path from the root of an A*-tree to the set of 
leaves used by a query. 

Furthermore, the ancestral sampling of A*-trees is much more 
efficient than MCMC sampling for MRF. MCMC requires a 
mixing time before its samples can be used (i.e., the Markov chain 
needs to get to a stationary distribution first; a.k.a. “burn in 
period”) [5]. Rigorous justification of inference results would 
require a theoretical bound on mixing time, and many interesting 
practical cases have resisted such theoretical analysis [5]. A 
Markov chain may converge very slowly to its stationary 
distribution, requiring a long mixing time. In Section 5, we further 
experimentally study the impact of the mixing time of MRFs on 
result accuracy and speed. 

Finally, MCMC sampling requires the samples to be correlated 
(forming a Markov chain) and in a serial order. As a result, we 
cannot use the optimization of performing all sampling rounds 
concurrently to save I/O costs as we did for A*-trees (see end of 
Section 4.1.1). For example, in answering Q1 (Sec 4.1.1), the 
system needs to follow the site visitation schedule and perform 
sample rounds one by one (each round obtains one sample for 
each cell in the bounding box Q). 

4.2 COUNT, AVG, and SUM Queries 
For sparse arrays, applications often query the COUNT, AVG, 

or SUM of “non-empty” cells (i.e., with a value in the A*-tree) 
that fall within in a bounding box (i.e., a range in each 
dimension). It turns out that we can answer these queries very 
efficiently using the A*-tree data structure. 

We add an integer value (cell_count) to each internal node of 
an A*-tree, recording how many non-empty cells there are in the 
subtree rooted at the node. The cell_count of all nodes can be 
easily obtained in a bottom-up manner during the construction of 
the A*-tree. Next we introduce a definition. 

Definition 2 (minimum cover):  A minimum cover of a set of cells 
of an array is a set of nodes in an A*-tree whose subtrees contain 
exactly the set of cells (no more and no less). Further, there does 
not exist another set of nodes that has this property but with fewer 
nodes in it.                                                    

 

 

 

 

 

For example, in Figure 9, the minimum cover of the query 
bounding box Q (last seven leaves, or cells in the array) has three 
nodes: A, B, and C. Clearly, once we have the minimum cover of 
cells in a bounding box, adding up the cell_count in all nodes in 
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Fig. 8  Illustrating MRF construction for a two dimensional array. (a) 
indicates a simple grid structure. (b) illustrates a box Q actually needed 
for answering a query inside array A. An MRF over an arbitrary region 
M that contains Q is used. 
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                     Fig. 10  Q1 & Q2’s results.                      Fig. 11 Q1’s results with the synthetic dataset.          Fig. 12 Q3’s results for various methods 

the minimum cover gives us the COUNT of non-empty cells. This 
means that during query processing we can stop early at the 
minimum cover without going further down the tree. Nonetheless, 
one might wonder if this is the best we can do. In Figure 9, for 
example, we could also use nodes D and E (cell_count in D minus 
that in E), which uses one fewer node. As we increase the tree 
height, the difference gets bigger. We call such a node set a 
minimum cover with subtraction. However, the following theorem 
shows that it does not really reduce the access cost. 

Theorem 2:  In an A*-tree stored on disk in level-order ([4], also 
Appendix D.3), for a group of sibling nodes, assume that 
accessing any non-empty subset of them incurs the same I/O cost 
(since they are stored contiguously). Then accessing a minimum 
cover has the same I/O cost as accessing the corresponding 
minimum cover with subtraction. 

For an A*-tree, we can easily find out, for each node, the range 
in each dimension of the array that it covers. Thus, the algorithm 
to compute the minimum cover MC for a set of cells Q is quite 
simple: Starting from the root, we check if the node covers only 
cells in Q. If so, we add this node to MC; otherwise we 
recursively check each of its children that has an overlap with Q. 

For a COUNT of non-empty cells, we simply add up the 
cell_count in the nodes of MC and do not need to do anything 
extra. For AVG and SUM queries, however, we need to combine 
with the sampling technique described in Section 4.1.1. In Monte 
Carlo query processing, the sampling would be done together 
with our top-down procedure above to get an MC.  Then we stop 
early at nodes in MC without sampling further down the tree. Let 
the sample value and cell_count at each node in MC be ai and ci, 
respectively (1 ≤ i ≤ t, where t is the cardinality of MC). Then the 

SUM and AVG for this sampling round are 1

t

i i
i

c a



 and 

1 1

( )
t t

i i i
i i

c a c
 
 

. Thus, for queries over large-scale datasets, many 
nodes in MC are at high levels and our optimization can 
significantly improve the performance. 

5. EXPERIMENTS 
5.1 Accuracy of Modeling the Underlying 
Joint Distribution 

We describe the datasets and the setup of experiments in 
Appendix E. The Intel Lab dataset contains sensor readings that 
span about 65,535 epochs. We use the temperature readings from 
that dataset. An epoch is a monotonically increasing sequence 
number from each sensor. Two readings from the same epoch 
number were produced from different sensors at the same time. 

Temperature readings at missing time instances can be inferred 
and are uncertain. We use A*-trees to model the inferred readings 
at missing time points. This uncertain data forms a three-
dimensional array with the first two dimentions being the location 
in the lab and the third dimension being time. At each missing 
time instance, we have a grid of temperature values, some of 
which are missing. Using linear interpolation [15] from 
neighboring cells we can add more temperature values. 

The joint distribution at each node of an A*-tree is learned from 
a short period of time (100 epochs). In order to test if the A*-trees 
model correlations correctly, we first query the existing dataset 
and find three groups of sensors that have a relatively high 
frequency, during all 65,535 epochs, of temperature readings 
within a range of one degree. Each group has four sensors. The 
first group has sensors at locations (2, 27), (11, 24), (6, 32), (6, 
33) in the grid and the second group has sensors at (60, 2), (60, 3), 
(61, 2), (61, 3), etc. The x and y coordinates of sensors are in 
meters relative to the upper right corner of the lab space. We then 
arbitrarily pick an A*-tree and query the probability that a group 
of sensors has close temperature readings (within one degree): 

Q1:  SELECT close_values (temperature, 1) 
        FROM lab_array 
        WHERE (x = 2 AND y = 27) OR (x = 11 AND y = 24) 
                      OR (x = 6 AND y = 32) OR (x = 6 AND y = 33) 
Q1 is on the first group of sensors. close_values is a user-

defined aggregate that takes a set of temperature attribute values 
as the first parameter, and returns 1 if the set of values are all 
within a distance range of each other (1 degree in the above 
query). Thus, using Monte Carlo query processing, we can 
compute the probability that the result is 1, which is the estimated 
probability that the group of four sensors have close values. 

We show Q1’s results for the three groups of sensors at epoch 
800 in Figure 10 (Q1.1, Q1.2 and Q1.3). We retrieve 50 samples 
from the A*-tree and compute the resulting probability. We 
execute the query for each sensor group. To compare with the 
result from an alternative graphical model of a lattice structured 
MRF, we build an MRF for each of the four sensor groups, as 
illustrated in Figure 8. Using Gibbs sampling and MCMC [5], we 
compute the results of the four queries. As discussed in Section 
4.1.2, MRF is impractical if we do not know the queries in 
advance. Thus, here we assume that the system does know what 
queries will be asked ahead of time and builds suitable MRF 
models over small regions of the array ahead of time. Note that a 
salient advantage of A*-trees is that we do not need such an 
assumption; the system just builds one structure and accesses 
different parts of it according to various queries. 

For comparison, we also use the first 50 samples of MRF, as in 
A*-trees. As discussed in Sec. 4.1.2, due to the mixing time of 
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MRF sampling, the initial samples are not from the stationary 
distribution and thus are not of good quality. Therefore, we also 
experiment with 100, 150, and 200 samples respectively, but only 
use the final 50 samples to compute the result. We omit the initial 
samples in order to pass the mixing time, and always use the last 
50 samples for comparisons. We also compute the result under the 
independence assumption (the second bar). Finally, we also 
compare these results with the statistics collected over all epochs 
in the dataset (the last bar), which serve as an indication of the 
underlying true joint distribution (i.e., the true query result). 

From Figure 10, we can clearly see that A*-trees model the 
underlying joint distribution very well in terms of the accuracy of 
inference results.  On the other hand, the approach based on the 
independence assumption produces a very small probability result 
because it does not model the correlation among the sensors and 
thus, the probability that all four independent sensor samples are 
close to each other is small.  The fact that we arrive at the correct 
results with A*-trees verifies the well-structured correlation of the 
data.  For the Markov chain sampling from MRF’s, we can see 
that because of the mixing time, it slowly converge to a stationary 
distribution.  For the same number of sampling rounds, A*-trees 
give much better results.  MRF can catch up with more rounds, 
but that takes much longer time (as we show in Section 5.2). We 
next repeat this experiment with the synthetic dataset.  Again we 
use three groups of sensors at different locations.  The result is 
shown in Figure 11 (which shares the same legend as Figure 10).  
This dataset again verifies our observations earlier. 

We use two other queries (Q2 & Q3) to further verify our 
arguments. Q2 and Q3 access a larger and different part of the 
array than Q1. In the Intel Lab, there is a “server” room. Imagine 
that the lab administrator would like to be sure that various 
locations in the server room maintain a constant temperature for 
the benefit of the machines. In the dataset, the server room’s 
location is approximately at the rectangle from the upper-right 
position (12.5, 18) to the lower-left position (19, 25.5).  She could 
arbitrarily pick three random points in the server room and ask 
this query: 

Q2: SELECT 1 FROM lab_array 
       WHERE x=14.5 AND y=24 AND  
                      temperature BETWEEN (18, 19) 
       INTERSECT 
       SELECT 1 FROM lab_array 
       WHERE x=17.5 AND y=19.5 AND  
                      temperature BETWEEN (18, 19) 
       INTERSECT 
       SELECT 1 FROM lab_array 
       WHERE x=16 AND y=22 AND  
                      temperature BETWEEN (18, 19) 
Q2 essentially asks for the probability that three random 

locations in the room (14.5, 24), (17.5, 19.5), and (16, 22) all have 

temperatures between 18 and 19 degrees Celsius. The dummy 
constant tuple “1” is in the result with some probability and our 
system that manages uncertain data returns this probability (result 
tuple uncertainty). The result of Q2 is shown in the final group of 
bars in Figure 10. The result and reasons are similar to Q1’s.  We 
then issue the following query: 

Q3: SELECT variance (temperature) 
       FROM lab_array 
       WHERE x BETWEEN (12.5, 19) AND  
                       y BETWEEN (18, 25.5) 

The user-defined aggregate “variance”  takes a set of temperature 
attribute values as parameters, and returns their variance. When 
the temperature is relatively constant across various locations of 
the room, this variance should be small. We vary the variance 
parameter in the uncertain data which we specified earlier and 
execute the query. The results are shown in Figure 12.  When 
each temperature point is modeled independently, because the 
expected values of the temperature variables across the room are 
very close, the variance returned by the query is close to each 
individual point’s variance.  However, the temperature variables 
are actually correlated.  Thus, the correct result of Q3 should have 
a very small value as indicated by the statistics collected over all 
epochs (which is a constant).  The results of Q2 and Q3 once 
again confirm our findings that show that A*-trees produce much 
better results than using the independence assumption or using 
MRF with the same number of rounds.  MRF with 200 rounds has 
almost comparable result accuracy with A*-trees, but, as we show 
in the next subsection, it is much slower, in addition to the fact 
that MRF requires the assumption that query workloads are 
known in advance. 

5.2 Execution Time 
We now examine the execution time for answering the queries 

in Section 5.1. The result of answering Q1 on the lab dataset is 
shown in Figure 13 (Q2 and Q3 show similar comparisons). We 
measure the execution time of answering the query by generating 
50 samples from the A*-tree. We also measure the execution time 
by generating 50, 100, 150, and 200 samples from MRF’s. We 
can see that using MRF’s is significantly slower than using A*-
trees in order to provide a result that has about the same accuracy. 

5.3 Aggregate Queries 
We now examine the performance improvement of the 

optimization using the minimum cover for COUNT, AVG, and 
SUM queries presented in Section 4.2. To arbitrarily control the 
data size, we use the synthetic dataset whose schema is the same 
as the Intel Lab dataset. We can programmatically control both 
the size of the array and the fraction of empty cells in the array. 
The array size is 32K by 64K (i.e., 2G cells) with half of them 
empty. We issue an aggregate query of the following form: 
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             Fig. 13 Execution time comparison.           Fig. 14 Execution time of an aggregate query.        Fig. 15  Examining A*-tree size. 
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Q4: SELECT AVG(temperature) 
       FROM synthetic_array 
       WHERE x BETWEEN ? AND ? 
                     AND y BETWEEN ? AND ? 
By controlling the parameters, we run Q4 over different 

numbers of non-empty cells. We compare the running times with 
and without the optimization presented in Section 4.2. In both 
cases, we perform 300 concurrent rounds of sampling whenever 
we get to a node of the A*-tree. This avoids going back to the 
node again and saves I/O costs. Figure 14 shows the comparison. 
We use a log scale on the y-axis of Figure 14 in order to show 
both lines clearly. The optimization is about two orders of 
magnitude faster because it only accesses the A*-tree nodes on 
the path from the root down to the minimum cover, instead of 
accessing nodes all the way down to the leaves (as is the case 
without the optimization).  

5.4 Space Consumption 
Using the generated synthetic dataset, we examine the space 

costs of A*-trees. Figure 15 shows the details. The x-axis 
indicates the number of non-empty cells of two-dimensional 
arrays with different sizes in which about half of the cells are 
empty. We compare the sizes of the A*-trees with an obvious 
lower bound in which the data has no uncertainty at all. Figure 15 
shows that the A*-tree sizes are a little more than twice the lower 
bound. We also compare with a naive approach in which an array 
stores one distribution per non-empty cell. This does not model 
the correlation between cells, and the sizes of the resulting arrays 
are significantly bigger than A*-trees. Note that a lattice-structure 
MRF model for the whole array, which is too costly for query 
processing, would have a similar size because we need to store, at 
each cell, the conditional distribution of the cell on its neighbors 
for sampling. We also note that the space consumption for A*-
trees can be further reduced when the basic uncertainty blocks are 
bigger than single cells, as discussed in Section 2.2. 

6. RELATED WORK 
Uncertain data management has not been studied in previous 

array systems, although uncertainty is common in scientific data. 
There has been extensive work on managing uncertainty in 
traditional databases, e.g., [12, 3, 9, 1, 23]. Probabilistic graphical 
models have been used in databases to model correlation. For 
example, Sen and Deshpande [22] are among the earliest. Wang et 
al. [25] propose a declarative relational extension of BN models 
to capture correlations at various levels of granularity.  Our work, 
however, takes advantage of the predictable and structured 
correlations present in multidimensional data. We can provide a 
more efficient way of representing uncertainty in large-scale array 
data and of answering queries over this data. 

Note that several techniques in our work have similarity to 
other work in different contexts. The space partitioning scheme in 
A*-tree has been used before. For example, Dasu et al. [13] use it 
for the task of change detection. Dealing with averages in a tree is 
similar in spirit to multi-resolution synopsis structures like Haar 
wavelets [6]. The machine learning community has studied ways 
to simplify a general model for efficient inference (e.g., [10, 14]). 
However, our techniques are fundamentally different in that (1) 
we use “auxiliary variables” – all internal nodes of an A*-tree 
represent functions (i.e., averages) of the leaves; and (2) we take 
advantage of the array structure. Finally, there has been recent 
interest in applying Monte Carlo algorithms for managing 
uncertain data (e.g., [21, 17, 18]). 

7. CONCLUSIONS AND FUTURE WORK 
Correlations are common in array data and they are structured 

along dimensions. Based on this observation, we develop a novel 
data structure, called A*-tree, which is a unified model for storage 
and modeling of such data. We demonstrate that compared to 
alternative approaches, an A*-tree can not only perform inference 
much more efficiently, but it also models the underlying joint 
distribution accurately. A systematic empirical study is conducted 
on both real and synthetic datasets. As future work, we plan to 
evaluate A*-trees in the domains of astronomy or biology, where 
datasets tend to be larger, or where scenarios such as time-varying 
data or hardly-correlated data may arise. 
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APPENDIX 
A. Additional Examples of Array Data 
Correlation 
Example A.1. Quantization techniques in image or sound 
processing constrain some attribute from a continuous set of 
values (such as the real numbers) to a discrete set (such as the 
integers). It is a form of lossy compression. Once quantization has 
been done, the stored values become uncertain and the 
correlation is largely local. 

Example A.2. A large network (e.g., the Internet) consists of 
nodes, each of which is a router. Consider the traffic at each node 
(e.g, the number of packets it needs to forward) at any point in 
time during a day. This traffic follows some distribution, and the 
distributions of neighboring nodes are correlated. All nodes form 
a two-dimensional array. A query may ask about routing 
decisions using knowledge of the network traffic distribution. 

B. Background on Bayesian Networks and 
Markov Random Fields 

A probabilistic graphical model (PGM) is a diagrammatic 
representation of a probability distribution [5]. In a PGM, each 
node represents a random variable and edges express probabilistic 
relationships between these variables. There are two major classes 
of PGM’s: Bayesian Networks (BN) and Markov Random Fields 
(MRF). BN’s edges are directed, while MRF’s edges are 
undirected. Directed graphs are useful for expressing causal 
relationships between random variables, whereas undirected 
graphs are better suited to expressing soft constraints between 
random variables. Figure 4(b) shows an example of BN. BN’s 
joint probability density function can be written as a product of 
the individual density functions at node variables, conditioned on 
their parent variables. 

Unlike BN, MRF uses undirected graphs to model random 
variables and their dependencies. Nodes in an MRF satisfies the 
“Markov property” which essentially says that all nodes are 
conditionally independent of the rest of the graph given their 
neighbors. The Hammersley-Clifford theorem [5] states that this 
is equivalent to the Gibbs property: the joint distribution of all 
nodes in the graph can be expressed as a product of multiple 
factors, each of which corresponds to a clique (i.e., a complete 
subgraph) and is a function of only random variables (nodes) 
within that clique. 

 

C. Proofs of Theorems 
Proof of Theorem 1:  For d = 1, first of all, Lemma 1 is a simple 
property of a binary tree and is illustrated in Figure 5. The first 
cell from the left has label 0000, the second has 0001, and so on. 
Figure 5 shows the cases that CD = 0 to 3. Simply from the labels 
of the cells marked black we can determine its CD with its right 
neighbor. 

Now consider the expected average CD. The label of a random 
cell comes from a random walk from the root to a leaf. Thus, 
Pr[zero trailing 1’s] = ½, Pr[one trailing 1’s] = ¼, etc. Let 
random variable A denote the average CD of the random q pairs. 
Then, from the linearity of expectation and Lemma 1, we have 
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We next compute the expected maximum CD. Let random 
variable X denote the maximum CD of q random pairs. Then we 
have,  
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The first equality is due to the fact that X is nonnegative 
(intuitively, for i from 1 upwards, cumulatively, Pr[X ≥ i] is the 
probability that we add 1 to the expectation) [20]. q(½)i is the 
probability that any of the q pairs (hence the maximum) has CD at 
least i. This is effectively 1 for the first logq terms, hence the 
second equality in the equation above. 

Next we consider the case of d = 2. Labeling a 4-ary tree is 
similar. Each edge is now associated with a 2-bit label, indicating 
the “left or right” decision for the two dimensions respectively. 
Thus, four children of a node have labels 00, 01, 10, and 11. To 
think about it another way, as a random walk is performed from 
the root to a leaf, we are in fact doing a random walk on two 
binary trees with the same height, one for each dimension. For a 
pair of neighboring cells along one dimension of the original 4-
ary tree, they are next to each other in the binary tree of that 
dimension and are on the same leaf cell in the binary tree of the 
other dimension. From (1) we know that the expected average CD 
only depends on the height of the trees, but not q1 or q2. Thus, it is 
the same as in d = 1. 

Let random variable Z denote the maximum CD; let random 
variables X and Y denote the maximum CD of the q1 pairs along 
one dimension and that of the q2 pairs along the other dimension, 
respectively. Thus, Z = max (X, Y). Similar to the reasoning in (2), 
we have 
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This completes the proof of Theorem 1.                     

Proof of Theorem 2:  Consider each node C in a minimum cover. 
First we claim that if a minimum cover with subtraction does not 
include C, it must include a node (say, E) in the subtree of at least 
one of C’s siblings (say, C’). This is because at least one of C’s 
siblings covers a cell not in the target set of cells, otherwise C and 
its siblings all cover cells in the target and their parent node 
would be in the minimum cover, but not C. The minimum cover 
with subtraction must include E in order to subtract that cell. For 
example, in Figure 9, for node C in the minimum cover, the 
minimum cover with subtraction must contain a node (E) in the 
subtree of node C’ (C’s sibling). The same is true with node B. 

Thus, to access the minimum cover with subtraction, one must 
access node C’ (since it is the only way to reach node E in the 
top-down access of the minimum cover as discussed earlier). In 
other words, for each node in the minimum cover, when we use 
the minimum cover with subtraction instead, we must either 
access that node, or one of its siblings. Therefore, the two 
methods incur the same I/O cost.                                         
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Fig A.3  History data (a), normalized data (b), and learned distribution (c) 

(a) 

(b) 

(c) 

Fig. A.2  An example of a joint distribution table at a node 

Fig A.1 Three combinations of final block shape and their partitions 

D. Additional Details of A*-trees 
We now look at some details of an A*-tree, in particular, the 

representation of the joint distribution in each node and the layout 
of an A*-tree on disk. 

D.1 Arbitrary Dimension Sizes 
For ease of exposition, in Section 2 we assumed that each 

dimension has size 2n (for some integer n). However, in reality, 
dimensions may have different sizes and they may not be a power 
of 2. We can partition the array in a similar fashion. Recall that 
the recursive partition of an array divides each dimension in half 
every time. We note two cases: 
 We do the same even if a dimension is not a power of 2. 

When we have to divide a dimension of an odd size 2k + 1. 
We simply divide it into pieces of size k and k + 1. 

 When two dimensions do not have the same size, the “short” 
dimension must first reach size either 2 or 3 in the recursive 
partition procedure. At this point, we stop partitioning the 
short dimension but continue dividing the long dimension in 
halves, until the long dimension also reaches size 2 or 3. 
Now we have three combinations of block shape: 2 by 2, 2 
by 3, and 3 by 3. As illustrated in Figure A.1, the first case is 
the same as the basic A*-tree; a final partition for the second 
case gives us a 1 by 2 and a 2 by 2 block; a final partition for 
the third case gives us 1 by 2, 1 by 3 and 2 by 2 blocks. Then 
the final joint distributions are on these blocks. 

Note that each node of an A*-tree now keeps track of its 
bounding box (i.e., ranges that it covers at all dimensions). This 
will prove useful in Section 4 when query processing is discussed. 
 

 

 

 

 

D.2 Joint Distribution at a Node 
In Section 2.1, we stated that a node encodes the joint 

distribution of its four children, relative to their average. We now 
elaborate on this and describe how to encode the joint 
distribution. Each node stands for the average of all cells in its 
subtree. Since each cell value is a random variable, so is each 
node value. Thus, we specify a joint distribution of X1, X2, X3, and 
X4, relative to a random variable Y (the average of X1 to X4), i.e., 
the joint distribution of the children (X1 to X4) given their parent’s 
value (Y). But since X4 is completely determined given Y, X1, X2, 
and X3, we only need to specify the joint distribution of X1, X2, 
and X3, relative to Y. 

Because we need to represent Xi’s relative to Y, usually this can 
be done either using a multiplicative factor or an additive term. 
Accordingly, the joint distribution relative to Y can be represented 
either (1) as a joint distribution of multiplicative factors, or (2) as 
a joint distribution of additive offsets. In the first method, we have 
Xi = Y (1 + Fi), for 1 ≤ i ≤ 3, where Fi is a multiplicative factor. 
We then simply encode the distributions of F1, F2, and F3. In the 
second method, we have Xi = Y + Oi, where Oi is an additive 
offset, and we just encode the distributions of O1, O2, and O3. We 
can use a histogram for both methods. Thus, they are similar and 
we only describe the first method. 

Each of the Fi will have a range. There is a parameter k 
indicating the number of intervals for each Fi. Suppose there are r 
entries in the distribution table and each entry uses an l-bit 
number to represent the probability. Then the joint distribution 

takes (3 log )

8

r k l     bytes. Figure A.2 shows an example in 

which k = 8, r = 8 and l = 4 (i.e., probabilities are multiples of 
1/16). Each Fi has 3 bits. The distribution table can be quite 
compact. Finally, recall that the root also holds the distribution of 
the average value of the whole array. This can either be a 
histogram or a well-known distribution (e.g., Gaussian). 

 
 

 

 

 

 

In general, obtaining a joint distribution is highly application 
specific. There are statistical methods to do this [5] and it is 
outside the scope of this paper. Having said that, we show a 
simplified example on how one might create an A*-tree. 

Recall the sensor readings example in Section 1. Suppose the 
data in the array are temperatures at different locations in the 
space. However, the readings in the array are outdated and we 
have some uncertainty about what the current values are. The 
basic idea is that we “learn from the history”. We examine logs 
for readings in the past, and figure out what correlation we can 
assume. 
 

 

 

 

 

 

 

 

 

We focus on four cells of the array. The highlighted first line in 
Figure A.3(a) indicates the data in the array. X1 to X4 are the 
values of four neighboring cells. Y and Fi’s are computed as 
described earlier. The Fi values in Fig. A.3(a) have a scale factor 
of 10-3. Our log contains readings in the past, at time t1 through 
t9. Our goal is to learn the correlation from the past. We first 
normalize the Fi’s into interval numbers (0 to 7), as in Figure 
A.3(b). There are many ways to learn the distribution. For 
example, one can compute the L1 distance between data entries in 
the past and the entry in the array (first line in Fig. A.3b) and find 
four entries that have the smallest distance. This is shown in the 
last column of Fig. A.3(b) as those four rows are highlighted. As a 
simplified illustration, we can use the Fi values in the four rows 
above them (i.e., the time instances after those entries that are 
closest to the values in the array) as entries in the joint 
distribution table and assign probability 0.25 to each (Figure 
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Fig. A.4  Illustrating a level-order storage of an A*-tree on disk 

A.3c). Likewise, we can repeat this for nodes in the A*-tree at all 
levels. 

Clearly, if we examine a constant number of log entries to learn 
each joint distribution, the overall cost of constructing this A*-
tree is O(n), where n is the number of non-empty cells of the 
array.  This is because the total number of nodes of an A*-tree is 
also a constant factor of the number of non-empty cells of the 
corresponding array. 

D.3 Layout on Disk 
Typically, scientific data (e.g., astronomical images) is rarely 

updated. The data is mostly read-only. Our goal of managing an 
A*-tree on disk is thus to make it as compact as possible and 
read-optimized. 

Succinct repersentation of k-ary trees is a well-studied problem 
in the literature. Various schemes have been proposed and 
analyzed (e.g., [4]).  We choose to linearize an A*-tree in level-
order: starting from the root level and descending one level at a 
time, nodes from left to right at each level are stored on disk in 
that order. This is one of the representations discussed in [4]. 
Figure A.4 shows an example in which we store the nodes in the 
numbered order bypassing the missing children. Note that as with 
any positional tree, we must record the information about which 
children are missing: we need that to determine cell locations. 
 

 

 

 

 
An advantage of storing nodes in level-order is that we only 

need to store the pointer to its first child at a node, as opposed to 
storing one pointer for each child. This is because other children 
must be stored immediately after the first child, likely in the same 
page. This makes the structure more compact. For example, in 
Figure A.4, node 3 only needs to store the pointer to its first child, 
node 9; other children immediately follow node 9. 

E. Datasets and Setup of Experiments 
We perform experiments on the following two datasets: 
 A real-world dataset: We use the publicly available Intel 

Lab dataset [26]. It contains traces from a sensor network 
deployment which measures various physical attributes such 
as temperature, humidity, voltage of the sensors’ batteries, 
etc. It uses the Berkeley Motes (sensor nodes) at several 
locations within the Intel Research Lab at Berkeley. 

 A synthetic dataset: We also generate a dataset that is 
similar in nature to the Intel Lab dataset but can be arbitrary 
in size and sparsity. 

We implement the A*-tree construction and query processing 
algorithms presented in the paper. All the experiments are carried 
out on a 1.6GHz AMD Turion 64 machine with 1GB physical 
memory. 
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