
A*-tree: A Structure for Storage and Modeling of Uncertain
Multidimensional Arrays

Tingjian Ge
University of Kentucky

ge@cs.uky.edu

Stan Zdonik
Brown University

sbz@cs.brown.edu

ABSTRACT
Multidimensional array database systems are suited for scientific
and engineering applications. Data in these applications is often
uncertain and imprecise due to errors in the instruments and
observations, etc. There are often correlations exhibited in the
distribution of values among the cells of an array. Typically, the
correlation is stronger for cells that are close to each other and
weaker for cells that are far away. We devise a novel data
structure, called the A*-tree (multidimensional Array tree),
demonstrating that by taking advantage of the predictable and
structured correlations of multidimensional data, we can have a
more efficient way of modeling and answering queries on large-
scale array data. An A*-tree is a unified model for storage and
inference. The graphical model that is assumed in an A*-tree is
essentially a Bayesian Network. We analyze and experimentally
verify the accuracy of an A*-tree encoding of the underlying joint
distribution. We also study the efficiency of query processing
over A*-trees, comparing it to an alternative graphical model.

1. INTRODUCTION
Multidimensional array database systems are suited for

scientific and engineering applications. Several array database
systems have been designed and implemented, such as T2 [7],
Titan [8], RasDaMan [2], ArrayDB [19], ASAP [24], and the
most recent one, SciDB [27]. In this data model, each cell of a
multidimensional array is a tuple (potentially multiple attributes,
e.g., temperature, humidity, etc.). If we consider each cell’s array
index at each dimension as an additional attribute of the cell tuple,
a multi-dimensional array is logically equivalent to a (one-
dimensional) relational table. That is to say, a multidimensional
array is logically equivalent to a table with schema (A1, A2, …, Ak

, D1, D2, …, Dd), where each cell originally only has k attributes
A1 to Ak , and D1 to Dd are the d dimensions of the array. Thus, an
array system still follows a relational model.

Data in these applications is often uncertain and imprecise due
to errors in the instruments and observations, etc. There are often
correlations in the distributions of an uncertain attribute among
cells of an array. For example, a temperature attribute can be
correlated with other array cells (one random variable per cell).
By the nature of the data that arrays model, the correlations are
generally stronger for cells that are close to each other and weaker
otherwise. Consider the following example.

Example 1. Environment monitoring in an open field often
produces sensor readings over time. However, resource
constraints (e.g., sensor power and network capability) often
prevent sensors from sending readings at every point in time. At a
given time, we may only have an outdated reading for each sensor
in the network. The actual current reading is from a distribution
in a range around the outdated one [9]. All sensors (which can be
either real sensors or interpolated readings [15]) in the network
form a two-dimensional array with the dimensions being sensor
location. The uncertain attribute is correlated with neighboring
cells.

We provide two additional examples in Appendix A. In many
such applications, the representation of the uncertain data needs to
encode the value correlation among tuples for the result to be
correct. Ignoring the correlation and making an over-simplified
tuple independence assumption often renders the query results
wrong and useless. We illustrate this in the experiment section.

However, modeling attribute correlation among cell tuples is
not an easy task, simply due to the large number of cells in many
arrays and the arbitrary correlations among them. In this work, we
argue that by taking advantage of predictable and structured
correlations of multidimensional data, we can provide a more
efficient way of modeling and answering queries on large-scale
array data. We propose a new data structure, called the A*-tree
(multidimensional Array tree). The A*-tree approach is based on
the following observation: data in a multidimensional array is
usually correlated along some dimensions and the correlation is
largely local. Thus, if we have to sacrifice precision by allowing
approximate models, we should focus on local correlation. An
A*-tree uses this fact and organize data in a hierarchical manner.
Within the hierarchical structure, the joint distributions are
smaller and can be modeled more efficiently.

There is a simple mapping from the graph structure of an A*-
tree (i.e., the storage model of an array) to its probabilistic
graphical model. We show that the graphical model of an A*-tree
is a Bayesian Network (BN). Physically, only the leaves of the
tree-structured BN exist. The nodes (i.e., random variables) at
upper levels are derived from the leaves. Thus, the construction of
an A*-tree is bottom-up, yet the probabilistic inference (which is
needed for processing queries [22, 25]) is top-down.

Because A*-tree integrates both the probabilistic graphical
model and the physical storage model, probabilistic inference is
very efficient. It requires traversing the A*-tree and following a
logarithmic-length path directly to the needed cells of the array.
We study query processing techniques for both general queries
and specifically COUNT, AVG, and SUM queries which permit
optimizations using A*-trees. We also compare A*-trees with an
alternative graphical model. To summarize, the paper’s
contributions are:
 We propose a novel data structure, A*-tree, suited to modeling

the correlation in a multidimensional array (Sec. 2).

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Articles
from this volume were presented at The 36th International Conference on
Very Large Data Bases, September 13-17, 2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
© 2010 VLDB Endowment 2150-8097/10/09... $10.00

964

Figure 1. Example of a k-ary tree with k = 4

 We analyze how A*-trees balance the accuracy of modeling
correlation and the efficiency of query processing (Sec. 3).

 We study query processing techniques, demonstrating the
advantage of efficient inference with A*-trees (Sec. 4).

 We conduct a systematic experimental study on a real dataset
as well as a synthetic dataset (Sec. 5).

2. A*-TREE STRUCTURE
In this section, we describe the A*-tree structure and how it

encodes the joint distribution of array cells.

2.1 Basic A*-tree Structure
An A*-tree is a k-ary tree [11] (e.g., Figure 1, where dotted

branches indicate which children are missing) with the degree k
being 2d, where d is the number of dimensions in which the
uncertain value is correlated. Note that d is typically small (most
often 1, 2, or 3). Thus, it is a binary tree when d = 1 and a 4-ary
tree when d = 2, and so on. Figure 2 shows an example partition
for d = 2. Throughout this section, we use d = 2. This can be
easily extended to other dimensionalities. Similar to quadtrees
[16], we recursively divide an array in half along each dimension.
In Figure 2, the first partition (thick dotted lines) divides the array
space into four (k = 22) subspaces. The whole array maps to the
root of the 4-ary tree in Figure 1, and the four subspaces map to
its four children in some fixed order (e.g., 1st child is the north-
west subspace, 2nd child is the south-west one, etc.). Then
recursively, we again partition each of the four subspaces into
four, which map to the four children of each node at the level
below the root in Figure 1. Thus, a recursive partition of the array
space corresponds to a top-down traversal of the k-ary A*-tree
from one level to the next. Eventually, at the leaf level, each leaf
corresponds to four neighboring cell values of the array. In Figure
2, array cells A, B, C, and D together form a leaf.

For now, for simplicity of exposition, in the case of d > 1, we
assume that each of the dimensions has the same size. We also
assume this size is 2n (for some integer n). It is easy to generalize
it to an arbitrary size (as shown in Appendix D.1). The black
blocks in Figure 2 indicate the empty regions (NULL values) of
the array that do not have values in the A*-tree and, thus,
correspond to “missing” children in this 4-ary A*-tree. Thus,
arrays of arbitrary sparsity can be accommodated. Here is how a
joint distribution is encoded in an A*-tree:
 Each leaf in an A*-tree contains the joint distribution of four

neighboring cells of the array. This joint distribution is a

conditional one, conditioned on the four cell’s average value.
In the example in Fig. 2, there are four cell random variables
A, B, C, and D. Define a random variable X = (A+B+C+D)/4.
Then there is a leaf in the A*-tree that contains the joint
distribution of A, B, C and D conditioned on X.

 Recursively, in a bottom-up manner, an internal node of the
A*-tree encodes the joint distribution of its four children
conditioned on their average. A child node is a random
variable that is the average of all cells of the array covered
under its subtree.

 In addition to this joint distribution, the root node also holds
the distribution of the average value of the whole array.

Note that the average of children is weighted. For example, in
the A*-tree of Figure 1, node N contains the joint distribution of
its three children (one child node is missing), A, B, and C,
conditioned on their average value (nA·A+nB·B+nC·C) /
(nA+nB+nC), where nA is the number of non-empty cells (i.e., not
NULL) in the subtree rooted at A; similarly for nB and nC.

The key idea of A*-trees is that we model the joint distribution
of cells in a manageable way that is relatively compact and
automatically structured. The automatic structure is based on the
principle of the locality of data correlation: closer cells are more
likely correlated. We organize cells into hierarchical clusters
according to proximity, each of which contains a small number of
random variables so that we can encode their joint distribution
compactly.

An interesting aspect of the A*-tree approach is that if we
simply trim the leaves of an A*-tree, the remaining A*-tree
represents the distribution of an array with a coarser grain. This
enables a fast approximation of the data and may be meaningful
for many applications that demand rapid results (e.g., real-time
processing or on-line computation). For the example of image and
sound, object or pattern recognition algorithms can work in the
coarser level. In a real-time network system, quick decisions at a
higher level can be crucial for meeting real-time constraints.

Finally, we note that A*-trees partition the space in an array
similar to the way quadtrees [16] do (for two dimensions). Our
main contribution in this work, however, is about using this
partition scheme to succinctly model the correlations and joint
distribution of the array cells. We show that this is a natural
unification of both the storage model and the probabilistic
graphical model (Section 3).

2.2 Extensions of the Basic A*-tree Structure
2.2.1 Basic Uncertainty Blocks of Arbitrary Shapes

We define a basic uncertainty block of an array as a box (e.g., a
rectangle for two-dimensional arrays) in the array inside which
cells have the same distribution. In the basic A*-tree of Section
2.1, each array cell is a basic uncertainty block. This is the
smallest basic block size possible. However, in many
applications, this granularity is not necessary and the basic block
size can be much larger. Having a larger basic block size makes
the representation more succinct and query processing more
efficient.

For example, astronomers take photo images of objects in the
universe. Due to precision limits, pixels of an image, treated as
cells of a two-dimensional array, exhibit correlated uncertainty in
their values. A block of neighboring pixels, due to their
proximity, is likely to have the same error distribution. Thus, a
basic uncertainty block can be, say, 50 by 50 cells in size. Now
each basic block is treated as a “single cell” in an A*-tree, which

N

A B C

A
B C

DA
B C

D

Figure 2. Illustrating recursive partitioning of a two-dimensional array.
The joint distribution of the uncertain attribute is encoded in a 4-ary tree.

965

Fig. 3 Illustrating the initial partition of an array into nine regions.

0

0 0

0 0 0 0

0 0 0 0 0 0 0 01 1 1 1 1 1 1 1

1 1 1 1

1 1

1

CD=0 CD=1 CD=2CD=3

0

0 0

0 0 0 0

0 0 0 0 0 0 0 01 1 1 1 1 1 1 1

1 1 1 1

1 1

1

CD=0 CD=1 CD=2CD=3

Fig. 5 Illustrating cluster distance in a binary A*-tree

only records a single distribution. Each basic block will also store
a 50 by 50 block containing the “deterministic” parts of the pixel
values. Combining the deterministic and the random parts
together gives a true pixel value.

2.2.2 Initial Partition of an Array
The best initial partition of an array is application specific and a

knowledgeable user can define the initial partitions. In the
astronomy’s image example, different regions of the image may
have different levels of uncertainty. Some parts of the image (e.g.,
towards the center) are clearer and have less uncertainty, while
some parts (e.g., towards the borders) are blurrier and have more
uncertainty. Thus, one may want to first partition the array into
rectangular regions and assign different basic block sizes for
different regions: regions towards the image center have larger
basic uncertainty blocks and the distributions there have smaller
variances, while regions at the borders need finer basic blocks.
This is illustrated in Figure 3.

Since correlation among regions may be very weak, an
application program can either declare region summaries (i.e.,
average values) to be independent or let the system manage the
joint distribution of the regions as the upper levels of the A*-tree.
When regions are independent, each of them is a separate A*-tree.

We provide additional details of A*-trees in Appendix D, such
as the joint distributions at nodes and their layout on disk.

3. ANALYSIS
3.1 A*-tree’s Probabilistic Graphical Model

An A*-tree is a unified structure for both the storage model and

the probabilistic graphical model. Some background knowledge
on graphical models is presented in Appendix B. An A*-tree is a
special form of Baysian Network (BN) on the array cell values, as

illustrated in Figure 4. There is a natural mapping from the
storage model of an A*-tree (Figure 4a) to its graphical model
(Figure 4b). In a nutshell, we need to collapse the multiple
children of an internal node (e.g., N2 to N5 in Figure 4a) into one
composite node in the graphical model (denoted as N2,5);
corresponding edges are also merged. This is needed because an
A*-tree encode P(N2,5|N1), but not P(N2|N1), etc. Recall that given
a value at N1, an A*-tree gives us the joint distribution of nodes
N2, N3, N4, and N5. Likewise, each edge in Figure 4b corresponds
to a joint distribution in a node of the A*-tree. Note that a node in
the graphical model of an A*-tree can be composite, denoting
several nodes of the A*-tree.

The unconventional aspect of this BN is that originally only the
leaf level exists and represents real random variables (each leaf
maps to some cells of the array). All internal nodes (random
variables) are artifacts of our construction. They are derived
random variables. Because the internal nodes are completely
determined by the values of the leaves (i.e., they are averages at
different levels), the distribution encoded by the whole BN is
equivalent to the joint distribution of the array cell values.

3.2 Expressiveness of Neighbor Correlation
An A*-tree expresses neighboring correlations in the joint

distributions at different levels of the tree. Clearly, the correlation
between two cells is easier to encode when this level is lower. We
demonstrate that, from the perspective of any random query, the
average level where cell correlation is encoded is low.

Definition 1 (neighboring cells and cluster distance): Two
neighboring cells of an array are two cells that are next to each
other in one dimension and have the same dimension values in
other dimensions. Starting from the cell level (leaves) as level 0,
the cluster distance (CD) between two neighboring cells is the
level in the A*-tree at which a joint distribution between their
cluster summaries exists.

Figure 5 shows an example of pairs of neighboring cells with
CD 0, 1, 2, and 3, respectively. We can see that the CD between
two cells is determined by the level below their lowest common
ancestors. When CD is 0, the correlation between two cells is
directly modeled; when CD gets bigger, their correlation is
embodied in the summaries of bigger clusters they are in. We next
quantify the average as well as the maximum CD in the set of
cells that an arbitrary query accesses.

Lemma 1: For d=1, we label every left branch of a binary A*-
tree with 0 and every right branch with 1. We then label each cell
of the array with the concatenation of labels on the path from root
to the cell. Then the CD between a cell and its right neighbor is
simply the number of trailing 1’s in its label.

Theorem 1: Consider a binary A*-tree (d = 1) of height h.
Suppose a query references a random part of the array that has q
pairs of neighboring cells (either in a contiguous range or
scattered in the array). Then the expected average CD is

N1

N2 N3 N4 N5

N6 N7 N8
N9 N10 N11 N12

N1

N2,5

N6,8 N9,12

(a) Storage model

(b) Probabilistic
graphical model

N1

N2 N3 N4 N5

N6 N7 N8
N9 N10 N11 N12

N1

N2 N3 N4 N5

N6 N7 N8
N9 N10 N11 N12

N1

N2,5

N6,8 N9,12

N1

N2,5

N6,8 N9,12

(a) Storage model

(b) Probabilistic
graphical model

Fig. 4 An A*-tree encodes a unified storage model (a) and
probabilistic graphical model (b). There is a natural conversion from
(a) to (b). The root node (N1) stays unchanged. Shrink its children (N2
to N5) into one node, indicated by the dotted ellipse in (a) and N2,5 in
(b). The four edges connecting N1 with N2 … N5 in (a) are shrunk into
one directed edge in (b). The similar procedure applies to other nodes
and we get a Bayesian Network in (b).

A region
that has
larger basic
blocks

A region
that has
smaller
basic
blocks

A region
that has
larger basic
blocks

A region
that has
smaller
basic
blocks

966

Fig. 6 (a) “single flip” and (b) “double flip” in A*-trees

Fig. 7 An algorithm to get samples for a set of array cells.

1+(h+1)/2h and the expected maximum CD of the q pairs is
1log 1 / 2hq q . For d =2 (4-ary A*-tree), the expected average

CD is the same and the expected maximum CD is
1 1

1 2
1 2 2

1 1 1 1
log ()

2 3 4

h h
q q

q q q
q q

 where q1 and q2 are

the number of neighboring pairs along the two dimensions and q
= max(q1, q2).

The proofs of all theorems in the paper are in Appendix C. In
the same vein, we can obtain the CD’s for larger d values.
Theorem 1 implies that, from the perspective of any random
incoming query, the expected average cluster distance of
neighboring cells is very close to 1 for any reasonable size array
in practice. For instance, for a 1024 × 1024 array, h = 10, the
expected average CD is about 1.01. We next show the underlying
intuition for why this result indicates that neighboring correlations
are well modeled in practical array data.

The correlation between two neighboring cells, if any, is either
positive or negative. Consider a sequence of pair-wise
correlations along one dimension, as shown in Figure 6a. This is a
piece of an A*-tree. The bottom level corresponds to array cell
values. “+” denotes a positive correlation between two
neighboring random variables while “−” denotes a negative
correlation. Two or more consecutive negative correlations in an
array (between A and B then between B and C in Figure 6b) is
called a double flip (a negative correlation is analogous to a
“flip”: when one value increases, the other one decreases). In
general, positive correlations are much more common and
negative correlations which we call a single flip (between B and C
in Figure 6a), if present, are usually isolated.

In Figure 6b, the second level nodes E and F may not exhibit
negative correlation: when F and C increases, B tends to decrease
and A tends to increase which implies that E (the average of A
and B) could change in either direction or stay unchanged. Thus,
in this case, the negative correlation between B and C cannot be
modeled accurately in the second level of the A*-tree. However,
we observe that for most array data in practice (e.g., image data or
environmental properties such as temperatures), a double-flip is
very rare. Even if it were not rare, we could easily locate any
double flips by a single pass of the array (with a cost O(dn),
where d is the dimensionality and n is the number of cells of the
array). For a double flip, the solution is to model it separately
with a joint distribution on A, B, and C as a basic uncertainty
block as discussed in Section 2.2. One can verify that this is not
an issue with Fig. 6a, where a negative correlation can either be
expressed in the first or the second level.

This observation, combined with the result of Theorem 1 that
the expected average CD is very close to 1 (i.e., correlations are
expressed in low levels), explains why the loss of the modeling
accuracy for correlation is generally not a serious issue in
practice, which we also experimentally verify in Section 5. Our
gain from this tradeoff is the efficiency and simplicity in
modeling and query processing, as we demonstrate throughout the
paper.

4. QUERY PROCESSING
In this section we discuss techniques of doing query processing

on multidimensional arrays with uncertain attributes represented
as A*-trees. We first look at processing general queries and then
consider optimizations for COUNT, AVG, and SUM queries.

4.1 Queries in General
Scientific applications are often computationally intensive and

tend to use a different set of operators (e.g., dot products, matrix
multiplications). The design of an array database system must
take these operators into consideration [24, 19, 2, 7]. The complex
nature of the query operators complicates the task of probabilistic
inference with graphical models. Consequently, often the most
viable method of probabilistic inference is through Monte Carlo
(MC) algorithms [5]. Query processing through MC involves
multiple rounds. In each round we obtain one sample for each
probability distribution. Then any classical database system can
run the query over these samples. Finally, we “assemble” the
query results from these multiple rounds together and form the
result distributions. A significant advantage of using MC for
query processing is that it can essentially process any type of
query on uncertain data [17, 18] under possible world semantics.
All four types of probabilistic queries as classified in [9] can be
answered. Specifically, a distribution in the result of a value-
based query is learned from the result values of multi-rounds of
MC, while a tuple probability in the result of an entity-based
query is based on the frequency of the tuple appearing in the
results of multi-rounds. Thus, we first describe the sampling
algorithm from an A*-tree given an incoming query (so that we
can use MC for any type of query). We then demonstrate its
efficiency by comparing with the alternative MRF (Markov
Random Fields) models.

4.1.1 Sampling
Sampling from an A*-tree is an efficient top-down traversal

(logarithmic-length path), shown in Figure 7. It is an application
of the ancestral sampling technique [5] on the Bayesian Network
in Figure 4(b). The tree structure allows us to limit the sampling
to the path from the root to the target cells Q, and nothing else.
Note that from the recursive partition of the array dimensions
during A*-tree construction, it is easy to determine the range of
dimension values associated with each node. Step (6) in the
algorithm uses such information to determine if there is an
overlap between the coverage of a node and the set Q.

+ + + + +−

−

A B C D

E F

(a)

+ + − + +−

?

A B C D

E F

(b)

+ + + + +−

−

A B C D

E F

(a)

+ + − + +−

?

A B C D

E F

(b)

Input: An A*-tree T, a set of cells Q accessed by a query.
Output: A set of samples S, one value for each cell in Q, from the
joint distribution of T.
(1) At the root of T, from the distribution of the average value of

the whole array, get a sample for the root.
(2) Initialize node set N = {root} (one node).
(3) For each node n N ,
(4) Sample from the joint distribution at n, get sample values

(v1, v2, v3, v4) for its four children, based on the sample at
node n.

(5) If n is a leaf of T, then vi (1≤ i ≤4) is for a cell c. If c Q ,

then vi is the final sample for c.
(6) Else for each child ci (1≤ i ≤4), if the range of dimension

values covered by ci intersects Q, then add ci to N.
(7) End for

967

Fig. 9 Illustrating minimum cover and minimum cover with subtraction

As an example, consider the following astronomy query:
Q1: SELECT AVG(brightness) FROM Space_image
 WHERE DISTANCE(x, y, z, 322, 108, 251) < 50
Q1 asks for the average brightness within a certain distance

(50) of an object at location (322, 108, 251). Space_image is an
array with three dimensions x, y, and z indicating locations of
objects. An A*-tree is built on the brightness attribute.
DISTANCE is a built-in function that calculates the distance
between two locations. The most effective known method of
probabilistic inference for such a query on a graphical model is
based on MC algorithms [5]. Our system optimizer will compute
a minimum bounding box that contains the sphere selected by the
WHERE clause. The bounding box is a first approximation of the
set of cells Q, as input to the sampling algorithm in Figure 7. The
algorithm starts from the root and traverses down the tree,
targeting only the bounding box Q, which is eventually refined to
the actual sphere required by the WHERE clause. Note that our
optimizer will obtain all the samples of a cell needed by MC (say,
100 samples) at the same time because they are independent.
Thus, we only need to traverse down the tree once, thereby saving
I/O costs. This is in contrast to sampling from MRF (Section
4.1.2), in which we cannot use this optimization because sample
rounds are correlated and must occur in sequential order.

4.1.2 Comparison with an MRF model
We give some background on MRF in Appendix B. One may

wonder what would result if we just model a multi-dimensional
array with a simple lattice structure MRF to capture the
neighborhood correlation, as shown in Figure 8(a). However, the
problem here is the high computational cost. How big is the MRF
model? Ideally, it should span the whole array so that all the local
correlations between all pairs of neighboring cells are captured by
the model. However, the computation cost of sampling a big MRF
is high, as we illustrate next.

The corresponding inference algorithm for an MRF is Markov
Chain Monte Carlo (MCMC) [5]. Gibbs sampling [5] is often
used with MCMC on an MRF. Each node is sampled from its
distribution conditioned on its neighbors. Each sampling round
updates the samples of all nodes. It has to iterate though all the
nodes in a model to create one sample, even though the query
may only need to access a tiny fraction of the cells of the whole
array. Gibbs sampling uses a so-called visitation schedule to
update the samples of each node in the graph to obtain one sample
from their joint distribution. This is because all nodes are either
directly or indirectly connected, and thus the sample value of each
node is needed to produce the next round of samples. Therefore,
the sampling is rather wasteful for answering a query.

Now suppose we do not use an MRF model for the whole array

A. Instead, we have an MRF model built over a small region M
(of any shape) inside A and M contains Q, the set of cells

accessed by the query. This is illustrated in Figure 8(b). We could
use the model over M to give an approximate answer to the query.
However, the area Q accessed by some incoming query can be
arbitrary, and it would be impractical to dynamically build (learn)
a model on the fly at execution time or to have a sufficient
number of pre-built models.

By contrast, our A*-tree sampling algorithm is based on
ancestral sampling [5] over Bayesian Networks (which is
basically sampling in the order specified by the directed edges,
i.e., always sample parents before any children). As described in
the sampling algorithm in Figure 7, our sampling procedure only
follows a logrithmic path from the root of an A*-tree to the set of
leaves used by a query.

Furthermore, the ancestral sampling of A*-trees is much more
efficient than MCMC sampling for MRF. MCMC requires a
mixing time before its samples can be used (i.e., the Markov chain
needs to get to a stationary distribution first; a.k.a. “burn in
period”) [5]. Rigorous justification of inference results would
require a theoretical bound on mixing time, and many interesting
practical cases have resisted such theoretical analysis [5]. A
Markov chain may converge very slowly to its stationary
distribution, requiring a long mixing time. In Section 5, we further
experimentally study the impact of the mixing time of MRFs on
result accuracy and speed.

Finally, MCMC sampling requires the samples to be correlated
(forming a Markov chain) and in a serial order. As a result, we
cannot use the optimization of performing all sampling rounds
concurrently to save I/O costs as we did for A*-trees (see end of
Section 4.1.1). For example, in answering Q1 (Sec 4.1.1), the
system needs to follow the site visitation schedule and perform
sample rounds one by one (each round obtains one sample for
each cell in the bounding box Q).

4.2 COUNT, AVG, and SUM Queries
For sparse arrays, applications often query the COUNT, AVG,

or SUM of “non-empty” cells (i.e., with a value in the A*-tree)
that fall within in a bounding box (i.e., a range in each
dimension). It turns out that we can answer these queries very
efficiently using the A*-tree data structure.

We add an integer value (cell_count) to each internal node of
an A*-tree, recording how many non-empty cells there are in the
subtree rooted at the node. The cell_count of all nodes can be
easily obtained in a bottom-up manner during the construction of
the A*-tree. Next we introduce a definition.

Definition 2 (minimum cover): A minimum cover of a set of cells
of an array is a set of nodes in an A*-tree whose subtrees contain
exactly the set of cells (no more and no less). Further, there does
not exist another set of nodes that has this property but with fewer
nodes in it.

For example, in Figure 9, the minimum cover of the query
bounding box Q (last seven leaves, or cells in the array) has three
nodes: A, B, and C. Clearly, once we have the minimum cover of
cells in a bounding box, adding up the cell_count in all nodes in

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
. . .
. . .

. . .
. . .
. . .

.

. . .
. . .

.

.

.

.

.

.

. . .
. . .
. . .
. . .
. . .
. . .

. . .
. . .
. . .
. . .
. . .
. . .

A

Q

M

A

Q

M

(a) (b)

Fig. 8 Illustrating MRF construction for a two dimensional array. (a)
indicates a simple grid structure. (b) illustrates a box Q actually needed
for answering a query inside array A. An MRF over an arbitrary region
M that contains Q is used.

()
query box Q

A

B

C

D

E

B’

C’

()
query box Q

()
query box Q

A

B

C

D

E

B’

C’

968

Q1.1 Q1.2 Q1.3 Q2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Query

P
ro

b
a

b
ili

ty
 in

 q
u

e
ry

 r
e

su
lts

Q1.1 Q1.2 Q1.3
0

0.1

0.2

0.3

0.4

0.5

Query

P
ro

b
a

b
ili

ty

A*-tree
indep.

MRF 50

MRF 100

MRF 150

MRF 200
true value

1 2 3 4 5
0

1

2

3

4

5

6

Variance in dataset

V
a

ri
a

n
ce

 r
e

p
o

rt
e

d
 in

 q
u

e
ry

 r
e

su
lt

A*-tree
independence
MRF 50
MRF 100
MRF 200
true value

 Fig. 10 Q1 & Q2’s results. Fig. 11 Q1’s results with the synthetic dataset. Fig. 12 Q3’s results for various methods

the minimum cover gives us the COUNT of non-empty cells. This
means that during query processing we can stop early at the
minimum cover without going further down the tree. Nonetheless,
one might wonder if this is the best we can do. In Figure 9, for
example, we could also use nodes D and E (cell_count in D minus
that in E), which uses one fewer node. As we increase the tree
height, the difference gets bigger. We call such a node set a
minimum cover with subtraction. However, the following theorem
shows that it does not really reduce the access cost.

Theorem 2: In an A*-tree stored on disk in level-order ([4], also
Appendix D.3), for a group of sibling nodes, assume that
accessing any non-empty subset of them incurs the same I/O cost
(since they are stored contiguously). Then accessing a minimum
cover has the same I/O cost as accessing the corresponding
minimum cover with subtraction.

For an A*-tree, we can easily find out, for each node, the range
in each dimension of the array that it covers. Thus, the algorithm
to compute the minimum cover MC for a set of cells Q is quite
simple: Starting from the root, we check if the node covers only
cells in Q. If so, we add this node to MC; otherwise we
recursively check each of its children that has an overlap with Q.

For a COUNT of non-empty cells, we simply add up the
cell_count in the nodes of MC and do not need to do anything
extra. For AVG and SUM queries, however, we need to combine
with the sampling technique described in Section 4.1.1. In Monte
Carlo query processing, the sampling would be done together
with our top-down procedure above to get an MC. Then we stop
early at nodes in MC without sampling further down the tree. Let
the sample value and cell_count at each node in MC be ai and ci,
respectively (1 ≤ i ≤ t, where t is the cardinality of MC). Then the

SUM and AVG for this sampling round are 1

t

i i
i

c a

 and

1 1

()
t t

i i i
i i

c a c

. Thus, for queries over large-scale datasets, many
nodes in MC are at high levels and our optimization can
significantly improve the performance.

5. EXPERIMENTS
5.1 Accuracy of Modeling the Underlying
Joint Distribution

We describe the datasets and the setup of experiments in
Appendix E. The Intel Lab dataset contains sensor readings that
span about 65,535 epochs. We use the temperature readings from
that dataset. An epoch is a monotonically increasing sequence
number from each sensor. Two readings from the same epoch
number were produced from different sensors at the same time.

Temperature readings at missing time instances can be inferred
and are uncertain. We use A*-trees to model the inferred readings
at missing time points. This uncertain data forms a three-
dimensional array with the first two dimentions being the location
in the lab and the third dimension being time. At each missing
time instance, we have a grid of temperature values, some of
which are missing. Using linear interpolation [15] from
neighboring cells we can add more temperature values.

The joint distribution at each node of an A*-tree is learned from
a short period of time (100 epochs). In order to test if the A*-trees
model correlations correctly, we first query the existing dataset
and find three groups of sensors that have a relatively high
frequency, during all 65,535 epochs, of temperature readings
within a range of one degree. Each group has four sensors. The
first group has sensors at locations (2, 27), (11, 24), (6, 32), (6,
33) in the grid and the second group has sensors at (60, 2), (60, 3),
(61, 2), (61, 3), etc. The x and y coordinates of sensors are in
meters relative to the upper right corner of the lab space. We then
arbitrarily pick an A*-tree and query the probability that a group
of sensors has close temperature readings (within one degree):

Q1: SELECT close_values (temperature, 1)
 FROM lab_array
 WHERE (x = 2 AND y = 27) OR (x = 11 AND y = 24)
 OR (x = 6 AND y = 32) OR (x = 6 AND y = 33)
Q1 is on the first group of sensors. close_values is a user-

defined aggregate that takes a set of temperature attribute values
as the first parameter, and returns 1 if the set of values are all
within a distance range of each other (1 degree in the above
query). Thus, using Monte Carlo query processing, we can
compute the probability that the result is 1, which is the estimated
probability that the group of four sensors have close values.

We show Q1’s results for the three groups of sensors at epoch
800 in Figure 10 (Q1.1, Q1.2 and Q1.3). We retrieve 50 samples
from the A*-tree and compute the resulting probability. We
execute the query for each sensor group. To compare with the
result from an alternative graphical model of a lattice structured
MRF, we build an MRF for each of the four sensor groups, as
illustrated in Figure 8. Using Gibbs sampling and MCMC [5], we
compute the results of the four queries. As discussed in Section
4.1.2, MRF is impractical if we do not know the queries in
advance. Thus, here we assume that the system does know what
queries will be asked ahead of time and builds suitable MRF
models over small regions of the array ahead of time. Note that a
salient advantage of A*-trees is that we do not need such an
assumption; the system just builds one structure and accesses
different parts of it according to various queries.

For comparison, we also use the first 50 samples of MRF, as in
A*-trees. As discussed in Sec. 4.1.2, due to the mixing time of

969

MRF sampling, the initial samples are not from the stationary
distribution and thus are not of good quality. Therefore, we also
experiment with 100, 150, and 200 samples respectively, but only
use the final 50 samples to compute the result. We omit the initial
samples in order to pass the mixing time, and always use the last
50 samples for comparisons. We also compute the result under the
independence assumption (the second bar). Finally, we also
compare these results with the statistics collected over all epochs
in the dataset (the last bar), which serve as an indication of the
underlying true joint distribution (i.e., the true query result).

From Figure 10, we can clearly see that A*-trees model the
underlying joint distribution very well in terms of the accuracy of
inference results. On the other hand, the approach based on the
independence assumption produces a very small probability result
because it does not model the correlation among the sensors and
thus, the probability that all four independent sensor samples are
close to each other is small. The fact that we arrive at the correct
results with A*-trees verifies the well-structured correlation of the
data. For the Markov chain sampling from MRF’s, we can see
that because of the mixing time, it slowly converge to a stationary
distribution. For the same number of sampling rounds, A*-trees
give much better results. MRF can catch up with more rounds,
but that takes much longer time (as we show in Section 5.2). We
next repeat this experiment with the synthetic dataset. Again we
use three groups of sensors at different locations. The result is
shown in Figure 11 (which shares the same legend as Figure 10).
This dataset again verifies our observations earlier.

We use two other queries (Q2 & Q3) to further verify our
arguments. Q2 and Q3 access a larger and different part of the
array than Q1. In the Intel Lab, there is a “server” room. Imagine
that the lab administrator would like to be sure that various
locations in the server room maintain a constant temperature for
the benefit of the machines. In the dataset, the server room’s
location is approximately at the rectangle from the upper-right
position (12.5, 18) to the lower-left position (19, 25.5). She could
arbitrarily pick three random points in the server room and ask
this query:

Q2: SELECT 1 FROM lab_array
 WHERE x=14.5 AND y=24 AND
 temperature BETWEEN (18, 19)
 INTERSECT
 SELECT 1 FROM lab_array
 WHERE x=17.5 AND y=19.5 AND
 temperature BETWEEN (18, 19)
 INTERSECT
 SELECT 1 FROM lab_array
 WHERE x=16 AND y=22 AND
 temperature BETWEEN (18, 19)
Q2 essentially asks for the probability that three random

locations in the room (14.5, 24), (17.5, 19.5), and (16, 22) all have

temperatures between 18 and 19 degrees Celsius. The dummy
constant tuple “1” is in the result with some probability and our
system that manages uncertain data returns this probability (result
tuple uncertainty). The result of Q2 is shown in the final group of
bars in Figure 10. The result and reasons are similar to Q1’s. We
then issue the following query:

Q3: SELECT variance (temperature)
 FROM lab_array
 WHERE x BETWEEN (12.5, 19) AND
 y BETWEEN (18, 25.5)

The user-defined aggregate “variance” takes a set of temperature
attribute values as parameters, and returns their variance. When
the temperature is relatively constant across various locations of
the room, this variance should be small. We vary the variance
parameter in the uncertain data which we specified earlier and
execute the query. The results are shown in Figure 12. When
each temperature point is modeled independently, because the
expected values of the temperature variables across the room are
very close, the variance returned by the query is close to each
individual point’s variance. However, the temperature variables
are actually correlated. Thus, the correct result of Q3 should have
a very small value as indicated by the statistics collected over all
epochs (which is a constant). The results of Q2 and Q3 once
again confirm our findings that show that A*-trees produce much
better results than using the independence assumption or using
MRF with the same number of rounds. MRF with 200 rounds has
almost comparable result accuracy with A*-trees, but, as we show
in the next subsection, it is much slower, in addition to the fact
that MRF requires the assumption that query workloads are
known in advance.

5.2 Execution Time
We now examine the execution time for answering the queries

in Section 5.1. The result of answering Q1 on the lab dataset is
shown in Figure 13 (Q2 and Q3 show similar comparisons). We
measure the execution time of answering the query by generating
50 samples from the A*-tree. We also measure the execution time
by generating 50, 100, 150, and 200 samples from MRF’s. We
can see that using MRF’s is significantly slower than using A*-
trees in order to provide a result that has about the same accuracy.

5.3 Aggregate Queries
We now examine the performance improvement of the

optimization using the minimum cover for COUNT, AVG, and
SUM queries presented in Section 4.2. To arbitrarily control the
data size, we use the synthetic dataset whose schema is the same
as the Intel Lab dataset. We can programmatically control both
the size of the array and the fraction of empty cells in the array.
The array size is 32K by 64K (i.e., 2G cells) with half of them
empty. We issue an aggregate query of the following form:

1 2 3 4

0

100

200

300

400

500

600

Sensor group

E
xe

cu
tio

n
tim

e
(m

s)

 A*-tree

MRF 50

MRF 100
MRF 150

MRF 200

20 40 60 80 100
10

-2

10
-1

10
0

10
1

10
2

Number of non-empty cells (in million)

E
xe

cu
tio

n
 ti

m
e

 (
se

co
n

ds
)

 Without the optimization on aggregation

With the optimization on aggregation

20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

Number of non-empty cells (in million)

D
a

ta
 s

tr
u

ct
ur

e
 s

iz
e

 (
M

B
)

Data size if no uncertainty
A*-tree size
One distribution per cell

 Fig. 13 Execution time comparison. Fig. 14 Execution time of an aggregate query. Fig. 15 Examining A*-tree size.

970

Q4: SELECT AVG(temperature)
 FROM synthetic_array
 WHERE x BETWEEN ? AND ?
 AND y BETWEEN ? AND ?
By controlling the parameters, we run Q4 over different

numbers of non-empty cells. We compare the running times with
and without the optimization presented in Section 4.2. In both
cases, we perform 300 concurrent rounds of sampling whenever
we get to a node of the A*-tree. This avoids going back to the
node again and saves I/O costs. Figure 14 shows the comparison.
We use a log scale on the y-axis of Figure 14 in order to show
both lines clearly. The optimization is about two orders of
magnitude faster because it only accesses the A*-tree nodes on
the path from the root down to the minimum cover, instead of
accessing nodes all the way down to the leaves (as is the case
without the optimization).

5.4 Space Consumption
Using the generated synthetic dataset, we examine the space

costs of A*-trees. Figure 15 shows the details. The x-axis
indicates the number of non-empty cells of two-dimensional
arrays with different sizes in which about half of the cells are
empty. We compare the sizes of the A*-trees with an obvious
lower bound in which the data has no uncertainty at all. Figure 15
shows that the A*-tree sizes are a little more than twice the lower
bound. We also compare with a naive approach in which an array
stores one distribution per non-empty cell. This does not model
the correlation between cells, and the sizes of the resulting arrays
are significantly bigger than A*-trees. Note that a lattice-structure
MRF model for the whole array, which is too costly for query
processing, would have a similar size because we need to store, at
each cell, the conditional distribution of the cell on its neighbors
for sampling. We also note that the space consumption for A*-
trees can be further reduced when the basic uncertainty blocks are
bigger than single cells, as discussed in Section 2.2.

6. RELATED WORK
Uncertain data management has not been studied in previous

array systems, although uncertainty is common in scientific data.
There has been extensive work on managing uncertainty in
traditional databases, e.g., [12, 3, 9, 1, 23]. Probabilistic graphical
models have been used in databases to model correlation. For
example, Sen and Deshpande [22] are among the earliest. Wang et
al. [25] propose a declarative relational extension of BN models
to capture correlations at various levels of granularity. Our work,
however, takes advantage of the predictable and structured
correlations present in multidimensional data. We can provide a
more efficient way of representing uncertainty in large-scale array
data and of answering queries over this data.

Note that several techniques in our work have similarity to
other work in different contexts. The space partitioning scheme in
A*-tree has been used before. For example, Dasu et al. [13] use it
for the task of change detection. Dealing with averages in a tree is
similar in spirit to multi-resolution synopsis structures like Haar
wavelets [6]. The machine learning community has studied ways
to simplify a general model for efficient inference (e.g., [10, 14]).
However, our techniques are fundamentally different in that (1)
we use “auxiliary variables” – all internal nodes of an A*-tree
represent functions (i.e., averages) of the leaves; and (2) we take
advantage of the array structure. Finally, there has been recent
interest in applying Monte Carlo algorithms for managing
uncertain data (e.g., [21, 17, 18]).

7. CONCLUSIONS AND FUTURE WORK
Correlations are common in array data and they are structured

along dimensions. Based on this observation, we develop a novel
data structure, called A*-tree, which is a unified model for storage
and modeling of such data. We demonstrate that compared to
alternative approaches, an A*-tree can not only perform inference
much more efficiently, but it also models the underlying joint
distribution accurately. A systematic empirical study is conducted
on both real and synthetic datasets. As future work, we plan to
evaluate A*-trees in the domains of astronomy or biology, where
datasets tend to be larger, or where scenarios such as time-varying
data or hardly-correlated data may arise.

8. REFERENCES
[1] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and Simple

Relational Processing of Uncertain Data. In ICDE, 2008.
[2] Baumann P, Dehmel A, Furtado P, Ritsch R, Widmann N. The

multidimensional database system RasDaMan. In SIGMOD, 1998.
[3] Benjelloun, O., Das Sarma, A., Halevy, A. and Widom, J. ULDBs:

Databases with Uncertainty and Lineage. In VLDB, 2006.
[4] D. Benoit, E. Demaine, J. Munro, R. Raman, V. Raman, and S. Rao.

Representing Trees of Higher Degree. In Algorithmica, v.43, 2005.
[5] C. Bishop. Pattern Recognition and Machine Learning, 2006.
[6] K. Chakrabarti, M. Garofalakis, R. Rastogi, K. Shim. Approximate

query processing using wavelets. In VLDB Journal, 2001.
[7] C. Chang, A. Acharya, A. Sussman, J. Saltz. T2: a customizable

parallel database for multi-dimensional data. In SIGMOD, 1998.
[8] Chang C, Moon B, Acharya A, Shock C, Sussman A, Saltz JH.

Titan: a high-performance remote sensing database. In ICDE, 1997.
[9] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating

probabilistic queries over imprecise data. In SIGMOD, 2003.
[10] A. Choi, H. Chan, A. Darwiche. On Bayesian Network

Approximation by Edge Deletion. In UAI, 2005.
[11] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to

Algorithms (2nd edition). MIT Press and McGraw-Hill.
[12] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic

databases. In VLDB, 2004.
[13] T. Dasu et al. An information-theoretic approach to detecting

changes in multi-dimensional data streams. In Interface 2006.
[14] R. Dechter. Bucket Elimination: A Unifying Framework for

Probabilistic Inference. In UAI, 1996.
[15] A. Deshpande and S. Madden. MauveDB: Supporting model-based

user views in database systems. In SIGMOD, 2006.
[16] R. Finkel and J.L. Bentley. Quad Trees: A Data Structure for

Retrieval on Composite Keys. In Acta Informatica 4 (1): 1–9, 1974.
[17] T. Ge and S. Zdonik. Handling Uncertain Data in Array Database

Systems. In ICDE, 2008.
[18] R. Jampani, F. Xu, M. Wu, L. Perez, C. Jermaine, P. Haas. MCDB:

A Monte Carlo Approach to Managing Uncertain Data.SIGMOD‘08.
[19] A. Marathe and K. Salem. Query Processing Techniques for Arrays.

In VLDB Journal 11: 68-91, 2002.
[20] M. Mitzenmacher, E. Upfal. Probability & Computing: Randomized

Algorithms and Probabilistic Analysis. Cambridge U. Press, 2005.
[21] C. Re, N. Dalvi and D. Suciu. Efficient Top-k Query Evaluation on

Probabilistic Data. In ICDE, 2007.
[22] P. Sen and A. Deshpande. Representing and Querying Correlated

Tuples in Probabilistic Databases. In ICDE, 2007.
[23] S. Singh, C. Mayfield, R. Shah, S. Prabhakar, S. Hambrusch, J.

Neville, R. Cheng. Database Support for Probabilistic Attributes and
Tuples. In ICDE, 2008.

[24] M. Stonebraker et al. One size fits all? – Part 2. In CIDR, 2007.
[25] D. Wang, E. Michelakis, M. Garofalakis, and J. Hellerstein.

BayesStore: Managing Large, Uncertain Data Repositories with
Probabilistic Graphical Models. In VLDB, 2008.

[26] http://db.csail.mit.edu/labdata/labdata.html.
[27] http://scidb.org/.

971

APPENDIX
A. Additional Examples of Array Data
Correlation
Example A.1. Quantization techniques in image or sound
processing constrain some attribute from a continuous set of
values (such as the real numbers) to a discrete set (such as the
integers). It is a form of lossy compression. Once quantization has
been done, the stored values become uncertain and the
correlation is largely local.

Example A.2. A large network (e.g., the Internet) consists of
nodes, each of which is a router. Consider the traffic at each node
(e.g, the number of packets it needs to forward) at any point in
time during a day. This traffic follows some distribution, and the
distributions of neighboring nodes are correlated. All nodes form
a two-dimensional array. A query may ask about routing
decisions using knowledge of the network traffic distribution.

B. Background on Bayesian Networks and
Markov Random Fields

A probabilistic graphical model (PGM) is a diagrammatic
representation of a probability distribution [5]. In a PGM, each
node represents a random variable and edges express probabilistic
relationships between these variables. There are two major classes
of PGM’s: Bayesian Networks (BN) and Markov Random Fields
(MRF). BN’s edges are directed, while MRF’s edges are
undirected. Directed graphs are useful for expressing causal
relationships between random variables, whereas undirected
graphs are better suited to expressing soft constraints between
random variables. Figure 4(b) shows an example of BN. BN’s
joint probability density function can be written as a product of
the individual density functions at node variables, conditioned on
their parent variables.

Unlike BN, MRF uses undirected graphs to model random
variables and their dependencies. Nodes in an MRF satisfies the
“Markov property” which essentially says that all nodes are
conditionally independent of the rest of the graph given their
neighbors. The Hammersley-Clifford theorem [5] states that this
is equivalent to the Gibbs property: the joint distribution of all
nodes in the graph can be expressed as a product of multiple
factors, each of which corresponds to a clique (i.e., a complete
subgraph) and is a function of only random variables (nodes)
within that clique.

C. Proofs of Theorems
Proof of Theorem 1: For d = 1, first of all, Lemma 1 is a simple
property of a binary tree and is illustrated in Figure 5. The first
cell from the left has label 0000, the second has 0001, and so on.
Figure 5 shows the cases that CD = 0 to 3. Simply from the labels
of the cells marked black we can determine its CD with its right
neighbor.

Now consider the expected average CD. The label of a random
cell comes from a random walk from the root to a leaf. Thus,
Pr[zero trailing 1’s] = ½, Pr[one trailing 1’s] = ¼, etc. Let
random variable A denote the average CD of the random q pairs.
Then, from the linearity of expectation and Lemma 1, we have

1

1
1

1
[]

2

h

i
i

E A i

With some algebraic manipulation, which we omit, we get

1
[] 1 (1)

2h

h
E A

We next compute the expected maximum CD. Let random
variable X denote the maximum CD of q random pairs. Then we
have,

1

1
1 1 log

1
[] Pr[] log log 1 (2)

2 2

ih

h
i i q

q
E X X i q q q

The first equality is due to the fact that X is nonnegative
(intuitively, for i from 1 upwards, cumulatively, Pr[X ≥ i] is the
probability that we add 1 to the expectation) [20]. q(½)i is the
probability that any of the q pairs (hence the maximum) has CD at
least i. This is effectively 1 for the first logq terms, hence the
second equality in the equation above.

Next we consider the case of d = 2. Labeling a 4-ary tree is
similar. Each edge is now associated with a 2-bit label, indicating
the “left or right” decision for the two dimensions respectively.
Thus, four children of a node have labels 00, 01, 10, and 11. To
think about it another way, as a random walk is performed from
the root to a leaf, we are in fact doing a random walk on two
binary trees with the same height, one for each dimension. For a
pair of neighboring cells along one dimension of the original 4-
ary tree, they are next to each other in the binary tree of that
dimension and are on the same leaf cell in the binary tree of the
other dimension. From (1) we know that the expected average CD
only depends on the height of the trees, but not q1 or q2. Thus, it is
the same as in d = 1.

Let random variable Z denote the maximum CD; let random
variables X and Y denote the maximum CD of the q1 pairs along
one dimension and that of the q2 pairs along the other dimension,
respectively. Thus, Z = max (X, Y). Similar to the reasoning in (2),
we have

1

1 2
1 1 log

1

1 2 1 2
1 log

1 1

1 2
1 2 2

1 1
[] Pr[] log 1 1 1

2 2

1 1
log ()

2 4

1 1 1 1
log ()

2 3 4

i ih

i i q

i ih

i q

h h

E Z Z i q q q

q q q q q

q q
q q q

q q

This completes the proof of Theorem 1.

Proof of Theorem 2: Consider each node C in a minimum cover.
First we claim that if a minimum cover with subtraction does not
include C, it must include a node (say, E) in the subtree of at least
one of C’s siblings (say, C’). This is because at least one of C’s
siblings covers a cell not in the target set of cells, otherwise C and
its siblings all cover cells in the target and their parent node
would be in the minimum cover, but not C. The minimum cover
with subtraction must include E in order to subtract that cell. For
example, in Figure 9, for node C in the minimum cover, the
minimum cover with subtraction must contain a node (E) in the
subtree of node C’ (C’s sibling). The same is true with node B.

Thus, to access the minimum cover with subtraction, one must
access node C’ (since it is the only way to reach node E in the
top-down access of the minimum cover as discussed earlier). In
other words, for each node in the minimum cover, when we use
the minimum cover with subtraction instead, we must either
access that node, or one of its siblings. Therefore, the two
methods incur the same I/O cost.

972

Fig A.3 History data (a), normalized data (b), and learned distribution (c)

(a)

(b)

(c)

Fig. A.2 An example of a joint distribution table at a node

Fig A.1 Three combinations of final block shape and their partitions

D. Additional Details of A*-trees
We now look at some details of an A*-tree, in particular, the

representation of the joint distribution in each node and the layout
of an A*-tree on disk.

D.1 Arbitrary Dimension Sizes
For ease of exposition, in Section 2 we assumed that each

dimension has size 2n (for some integer n). However, in reality,
dimensions may have different sizes and they may not be a power
of 2. We can partition the array in a similar fashion. Recall that
the recursive partition of an array divides each dimension in half
every time. We note two cases:
 We do the same even if a dimension is not a power of 2.

When we have to divide a dimension of an odd size 2k + 1.
We simply divide it into pieces of size k and k + 1.

 When two dimensions do not have the same size, the “short”
dimension must first reach size either 2 or 3 in the recursive
partition procedure. At this point, we stop partitioning the
short dimension but continue dividing the long dimension in
halves, until the long dimension also reaches size 2 or 3.
Now we have three combinations of block shape: 2 by 2, 2
by 3, and 3 by 3. As illustrated in Figure A.1, the first case is
the same as the basic A*-tree; a final partition for the second
case gives us a 1 by 2 and a 2 by 2 block; a final partition for
the third case gives us 1 by 2, 1 by 3 and 2 by 2 blocks. Then
the final joint distributions are on these blocks.

Note that each node of an A*-tree now keeps track of its
bounding box (i.e., ranges that it covers at all dimensions). This
will prove useful in Section 4 when query processing is discussed.

D.2 Joint Distribution at a Node
In Section 2.1, we stated that a node encodes the joint

distribution of its four children, relative to their average. We now
elaborate on this and describe how to encode the joint
distribution. Each node stands for the average of all cells in its
subtree. Since each cell value is a random variable, so is each
node value. Thus, we specify a joint distribution of X1, X2, X3, and
X4, relative to a random variable Y (the average of X1 to X4), i.e.,
the joint distribution of the children (X1 to X4) given their parent’s
value (Y). But since X4 is completely determined given Y, X1, X2,
and X3, we only need to specify the joint distribution of X1, X2,
and X3, relative to Y.

Because we need to represent Xi’s relative to Y, usually this can
be done either using a multiplicative factor or an additive term.
Accordingly, the joint distribution relative to Y can be represented
either (1) as a joint distribution of multiplicative factors, or (2) as
a joint distribution of additive offsets. In the first method, we have
Xi = Y (1 + Fi), for 1 ≤ i ≤ 3, where Fi is a multiplicative factor.
We then simply encode the distributions of F1, F2, and F3. In the
second method, we have Xi = Y + Oi, where Oi is an additive
offset, and we just encode the distributions of O1, O2, and O3. We
can use a histogram for both methods. Thus, they are similar and
we only describe the first method.

Each of the Fi will have a range. There is a parameter k
indicating the number of intervals for each Fi. Suppose there are r
entries in the distribution table and each entry uses an l-bit
number to represent the probability. Then the joint distribution

takes (3 log)

8

r k l bytes. Figure A.2 shows an example in

which k = 8, r = 8 and l = 4 (i.e., probabilities are multiples of
1/16). Each Fi has 3 bits. The distribution table can be quite
compact. Finally, recall that the root also holds the distribution of
the average value of the whole array. This can either be a
histogram or a well-known distribution (e.g., Gaussian).

In general, obtaining a joint distribution is highly application
specific. There are statistical methods to do this [5] and it is
outside the scope of this paper. Having said that, we show a
simplified example on how one might create an A*-tree.

Recall the sensor readings example in Section 1. Suppose the
data in the array are temperatures at different locations in the
space. However, the readings in the array are outdated and we
have some uncertainty about what the current values are. The
basic idea is that we “learn from the history”. We examine logs
for readings in the past, and figure out what correlation we can
assume.

We focus on four cells of the array. The highlighted first line in
Figure A.3(a) indicates the data in the array. X1 to X4 are the
values of four neighboring cells. Y and Fi’s are computed as
described earlier. The Fi values in Fig. A.3(a) have a scale factor
of 10-3. Our log contains readings in the past, at time t1 through
t9. Our goal is to learn the correlation from the past. We first
normalize the Fi’s into interval numbers (0 to 7), as in Figure
A.3(b). There are many ways to learn the distribution. For
example, one can compute the L1 distance between data entries in
the past and the entry in the array (first line in Fig. A.3b) and find
four entries that have the smallest distance. This is shown in the
last column of Fig. A.3(b) as those four rows are highlighted. As a
simplified illustration, we can use the Fi values in the four rows
above them (i.e., the time instances after those entries that are
closest to the values in the array) as entries in the joint
distribution table and assign probability 0.25 to each (Figure

-24.412.2-12.28284808381t9

-260137778757778t8

-20.76.9-6.972.574717372t7

-19.66.5-6.576.578757776t6

-25008082788080t5

-6.5-19.66.576.578767577t4

-11.12.8-11.171.873717271t3

-14.314.3-14.37071697169t2

14.3-14.3-28.67072716968t1

-20.76.9-6.972.574717372t*

F3F2F1YX4X3X2X1
Time

-24.412.2-12.28284808381t9

-260137778757778t8

-20.76.9-6.972.574717372t7

-19.66.5-6.576.578757776t6

-25008082788080t5

-6.5-19.66.576.578767577t4

-11.12.8-11.171.873717271t3

-14.314.3-14.37071697169t2

14.3-14.3-28.67072716968t1

-20.76.9-6.972.574717372t*

F3F2F1YX4X3X2X1
Time

0.25272

0.25047

0.25045

0.25164

prob.F3F2F1

0.25272

0.25047

0.25045

0.25164

prob.F3F2F1

3073t9
6047t8
0164t7
0164t6
4045t5
10306t4
3253t3
4272t2
15710t1

164t*
dF3F2F1Time

3073t9
6047t8
0164t7
0164t6
4045t5
10306t4
3253t3
4272t2
15710t1

164t*
dF3F2F1Time

F1 F2 F3 prob

3 5 4 5/16

3 bits

8 entries

4 bits

F1 F2 F3 prob

3 5 4 5/16

3 bits

8 entries

4 bits

2x2 2x3 3x32x2 2x3 3x3

973

Fig. A.4 Illustrating a level-order storage of an A*-tree on disk

A.3c). Likewise, we can repeat this for nodes in the A*-tree at all
levels.

Clearly, if we examine a constant number of log entries to learn
each joint distribution, the overall cost of constructing this A*-
tree is O(n), where n is the number of non-empty cells of the
array. This is because the total number of nodes of an A*-tree is
also a constant factor of the number of non-empty cells of the
corresponding array.

D.3 Layout on Disk
Typically, scientific data (e.g., astronomical images) is rarely

updated. The data is mostly read-only. Our goal of managing an
A*-tree on disk is thus to make it as compact as possible and
read-optimized.

Succinct repersentation of k-ary trees is a well-studied problem
in the literature. Various schemes have been proposed and
analyzed (e.g., [4]). We choose to linearize an A*-tree in level-
order: starting from the root level and descending one level at a
time, nodes from left to right at each level are stored on disk in
that order. This is one of the representations discussed in [4].
Figure A.4 shows an example in which we store the nodes in the
numbered order bypassing the missing children. Note that as with
any positional tree, we must record the information about which
children are missing: we need that to determine cell locations.

An advantage of storing nodes in level-order is that we only

need to store the pointer to its first child at a node, as opposed to
storing one pointer for each child. This is because other children
must be stored immediately after the first child, likely in the same
page. This makes the structure more compact. For example, in
Figure A.4, node 3 only needs to store the pointer to its first child,
node 9; other children immediately follow node 9.

E. Datasets and Setup of Experiments
We perform experiments on the following two datasets:
 A real-world dataset: We use the publicly available Intel

Lab dataset [26]. It contains traces from a sensor network
deployment which measures various physical attributes such
as temperature, humidity, voltage of the sensors’ batteries,
etc. It uses the Berkeley Motes (sensor nodes) at several
locations within the Intel Research Lab at Berkeley.

 A synthetic dataset: We also generate a dataset that is
similar in nature to the Intel Lab dataset but can be arbitrary
in size and sparsity.

We implement the A*-tree construction and query processing
algorithms presented in the paper. All the experiments are carried
out on a 1.6GHz AMD Turion 64 machine with 1GB physical
memory.

ACKNOWLEDGEMENTS
We wish to thank the anonymous referees for several comments

and suggestions that have improved the paper. Tingjian Ge was
supported in part by the starup funding from the Department of
Computer Science at the University of Kentucky. Stan Zdonik

was supported in part by the NSF, under the grants IIS-0905553
and IIS-0916691.

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15

974

