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ABSTRACT
We show that it is possible to significantly improve the accu-
racy of a general class of histogram queries while satisfying
differential privacy. Our approach carefully chooses a set
of queries to evaluate, and then exploits consistency con-
straints that should hold over the noisy output. In a post-
processing phase, we compute the consistent input most
likely to have produced the noisy output. The final out-
put is differentially-private and consistent, but in addition,
it is often much more accurate. We show, both theoreti-
cally and experimentally, that these techniques can be used
for estimating the degree sequence of a graph very precisely,
and for computing a histogram that can support arbitrary
range queries accurately.

1. INTRODUCTION
Recent work in differential privacy [8] has shown that it is

possible to analyze sensitive data while ensuring strong pri-
vacy guarantees. Differential privacy is typically achieved
through random perturbation: the analyst issues a query
and receives a noisy answer. To ensure privacy, the noise
is carefully calibrated to the sensitivity of the query. Infor-
mally, query sensitivity measures how much a small change
to the database—such as adding or removing a person’s pri-
vate record—can affect the query answer. Such query mech-
anisms are simple, efficient, and often quite accurate. In
fact, one mechanism has recently been shown to be optimal
for a single counting query [9]—i.e., there is no better noisy
answer to return under the desired privacy objective.

However, analysts typically need to compute multiple sta-
tistics on a database. Differentially private algorithms ex-
tend nicely to a set of queries, but there can be difficult
trade-offs among alternative strategies for answering a work-
load of queries. Consider the analyst of a private student
database who requires answers to the following queries: the
total number of students, xt, the number of students xA,
xB , xC , xD, xF receiving grades A, B, C, D, and F respec-
tively, and the number of passing students, xp (grade D or
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Proving results from [1] and applying to degree sequence.

Lemma 1. Let A be an algorithm that on input x outputs A(x) = f(x) + S(x)
α Z. For any inputs x, y, we

have:
Pr[A(x) ∈ S] = Pr[Z ∈ Zx(S)]

where zx(s) = s−f(x)
S(x)/α and Zx(S) = {zx(s) | s ∈ S}. And

Pr[A(y) ∈ S] = Pr[Z ∈ Zy(S)]

where zy(s) = S(x)
S(y)

(
zx(s) + f(x)−f(y)

S(x)/α

)
= s−f(y)

S(y)/α and Zy(S) = {zy(s) | s ∈ S}. In shorthand, Zx and Zy are

related as:
Zy(S) = σ(Zx(S) + ∆)

where σ = S(x)
S(y) and ∆ = f(x)−f(y)

S(x)/α .

Proposition 1. Let Z be a Laplace random variable. Let c, δ > 0 be fixed. For any ∆ such that |∆| ≤ c,
the following sliding property holds:

Pr[Z ∈ Z] ≤ ecPr[Z ∈ Z + ∆]

For any σ such that σ ≤ 1 + c/ln 1
δ , the following dilation property holds:

Pr[Z ∈ Z] ≤ ecPr[Z ∈ σZ] + δ

Further, they can combined:
Pr[Z ∈ Z] ≤ e2cPr[Z ∈ σ(Z + ∆)] + δ

Proof. For any c, we have:

Pr[Z ∈ Z] =

∫

z∈Z

1

2
e−|z|dz

≤
∫

z∈Z

1

2

e|∆|−|z+∆|

e−|z| e−|z|dz because |∆| −| z + ∆| + |z| ≥ 0, observe |∆| + |z| ≥ |z + ∆|

= e|∆|
∫

z∈Z

1

2
e−|z+∆|dz

= e|∆|Pr[Z ∈ Z + ∆] ≤ ecPr[Z ∈ Z + ∆]

XXXXX For dilation, need to prove it but I know that there is some set Z such that for the dilation property
to hold, it must be that σ ≤ 1 + c/ ln 1

δ . But it may be the case that it is necessary for σ < 1 + c/ ln 1
δ to be

true for all Z.
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Figure 1: Our approach to querying private data.

higher).
Using a differentially private interface, a first alternative

is to request noisy answers for just (xA, xB , xC , xD, xF ) and
use those answers to compute answers for xt and xp by sum-
mation. The sensitivity of this set of queries is 1 because
adding or removing one tuple changes exactly one of the five
outputs by a value of one. Therefore, the noise added to in-
dividual answers is low and the noisy answers are accurate
estimates of the truth. Unfortunately, the noise accumulates
under summation, so the estimates for xt and xp are worse.

A second alternative is to request noisy answers for all
queries (xt, xp, xA, xB , xC , xD, xF ). This query set has sen-
sitivity 3 (one change could affect three return values, each
by a value of one), and the privacy mechanism must add
more noise to each component. This means the estimates for
xA, xB , xC , xD, xF are worse than above, but the estimates
for xt and xp may be more accurate. There is another con-
cern, however: inconsistency. The noisy answers are likely to
violate the following constraints, which one would naturally
expect to hold: xt = xp + xF and xp = xA + xB + xC + xD.
This means the analyst must find a way to reconcile the fact
that there are two different estimates for the total number
of students and two different estimates for the number of
passing students. We propose a technique for resolving in-
consistency in a set of noisy answers, and show that doing
so can actually increase accuracy. As a result, we show that
strategies inspired by the second alternative can be superior
in many cases.

Overview of Approach. Our approach, shown pictorially
in Figure 1, involves three steps.

First, given a task—such as computing a histogram over
student grades—the analyst chooses a set of queries Q to
send to the data owner. The choice of queries will depend on
the particular task, but in this work they are chosen so that
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(a) Trace data

Query Definitions: L : 〈C000, C001, C010, C011〉
H : 〈C0∗∗, C00∗, C01∗, C000, C001, C010, C011〉
S : sort(L)

True answer Private output Inferred answer

L(I) = 〈2, 0, 10, 2〉 L̃(I) = 〈3, 1, 11, 1〉
H(I) = 〈14, 2, 12, 2, 0, 10, 2〉 H̃(I) = 〈13, 3, 11, 4, 1, 12, 1〉 H(I) = 〈14, 3, 11, 3, 0, 11, 0〉
S(I) = 〈0, 2, 2, 10〉 S̃(I) = 〈1, 2, 0, 11〉 S(I) = 〈1, 1, 1, 11〉

(b) Query variations

Figure 2: (a) Illustration of sample data representing a bipartite graph of network connections; (b) Definitions
and sample values for alternative query sequences: L counts the number of connections for each source, H
provides a hierarchy of range counts, and S returns an ordered degree sequence for the implied graph.

constraints hold among the answers. For example, rather
than issue (xA, xB , xC , xD, xF ), the analyst would formulate
the query as (xt, xp, xA, xB , xC , xD, xF ), which has consis-
tency constraints. The query set Q is sent to the data owner.

In the second step, the data owner answers the set of
queries, using a standard differentially-private mechanism [8],
as follows. The queries are evaluated on the private database
and the true answer Q(I) is computed. Then random in-
dependent noise is added to each answer in the set, where
the data owner scales the noise based on the sensitivity of
the query set. The set of noisy answers q̃ is sent to the an-
alyst. Importantly, because this step is unchanged from [8],
it offers the same differential privacy guarantee.

The above step ensures privacy, but the set of noisy an-
swers returned may be inconsistent. In the third and final
step, the analyst post-processes the set of noisy answers to
resolve inconsistencies among them. We propose a novel ap-
proach for resolving inconsistencies, called constrained infer-
ence, that finds a new set of answers q that is the “closest”
set to q̃ that also satisfies the consistency constraints.

For two histogram tasks, our main technical contributions
are efficient techniques for the third step and a theoretical
and empirical analysis of the accuracy of q. The surprising
finding is that q can be significantly more accurate than q̃.

We emphasize that the constrained inference step has no
impact on the differential privacy guarantee. The analyst
performs this step without access to the private data, using
only the constraints and the noisy answers, q̃. The noisy
answers q̃ are the output of a differentially private mech-
anism; any post-processing of the answers cannot dimin-
ish this rigorous privacy guarantee. The constraints are
properties of the query, not the database, and therefore
known by the analyst a priori. For example, the constraint
xp = xA + xB + xC + xD is simply the definition of xp.

Intuitively, however, it would seem that if noise is added
for privacy and then constrained inference reduces the noise,
some privacy has been lost. In fact, our results show that
existing techniques add more noise than is strictly necessary
to ensure differential privacy. The extra noise provides no
quantifiable gain in privacy but does have a significant cost
in accuracy. We show that constrained inference can be an
effective strategy for boosting accuracy.

The increase in accuracy we achieve depends on the input
database and the privacy parameters. For instance, for some
databases and levels of noise the perturbation may tend to

produce answers that do not violate the constraints. In this
case the inference step would not improve accuracy. But we
show that our inference process never reduces accuracy and
give conditions under which it will boost accuracy. In prac-
tice, we find that many real datasets have data distributions
for which our techniques significantly improve accuracy.

Histogram tasks. We demonstrate this technique on two
specific tasks related to histograms. For relational schema
R(A,B, . . . ), we choose one attribute A on which histograms
are built (called the range attribute). We assume the domain
of A, dom, is ordered.

We explain these tasks using sample data that will serve
as a running example throughout the paper, and is also the
basis of later experiments. The relation R(src, dst), shown
in Fig. 2, represents a trace of network communications be-
tween a source IP address (src) and a destination IP address
(dst). It is bipartite because it represents flows through a
gateway router from internal to external addresses.

In a conventional histogram, we form disjoint intervals for
the range attribute and compute counting queries for each
specified range. In our example, we use src as the range at-
tribute. There are four source addresses present in the table.
If we ask for counts of all unit-length ranges, then the his-
togram is simply the sequence 〈2, 0, 10, 2〉 corresponding to
the (out) degrees of the source addresses 〈000, 001, 010, 011〉.

Our first histogram task is an unattributed histogram,
in which the intervals themselves are irrelevant to the anal-
ysis and so we report only a multiset of frequencies. For
the example histogram, the multiset is {0, 2, 2, 10}. An im-
portant instance of an unattributed histogram is the de-
gree sequence of a graph, a crucial measure that is widely
studied [17]. If the tuples of R represent queries submit-
ted to a search engine, and A is the search term, then an
unattributed histogram shows the frequency of occurrence
of all terms (but not the terms themselves), and can be used
to study the distribution.

For our second histogram task, we consider more con-
ventional sequences of counting queries in which the inter-
vals studied may be irregular and overlapping. In this case,
simply returning unattributed counts is insufficient. And
because we cannot predict ahead of time all the ranges of
interest, our goal is to compute privately a set of statistics
sufficient to support arbitrary interval counts and thus any
histogram. We call this a universal histogram.
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Continuing the example, a universal histogram allows the
analyst to count the number of packets sent from any single
address (e.g., the counts from source address 010 is 10), or
from any range of addresses (e.g., the total number of pack-
ets is 14, and the number of packets from a source address
matching prefix 01∗ is 12).

While a universal histogram can be used compute an unat-
tributed histogram, we distinguish between the two because
we show the latter can be computed much more accurately.

Contributions. For both unattributed and universal his-
tograms, we propose a strategy for boosting the accuracy
of existing differentially private algorithms. For each task,
(1) we show that there is an efficiently-computable, closed-
form expression for the consistent query answer closest to
a private randomized output; (2) we prove bounds on the
error of the inferred output, showing under what conditions
inference boosts accuracy; (3) we demonstrate significant
improvements in accuracy through experiments on real data
sets. Unattributed histograms are extremely accurate, with
error at least an order of magnitude lower than existing tech-
niques. Our approach to universal histograms can reduce er-
ror for larger ranges by 45-98%, and improves on all ranges
in some cases.

2. BACKGROUND
In this section, we introduce the concept of query se-

quences and how they can be used to support histograms.
Then we review differential privacy and show how queries
can be answered under differential privacy. Finally, we for-
malize our constrained inference process.

All of the tasks considered in this paper are formulated as
query sequences where each element of the sequence is a sim-
ple count query on a range. We write intervals as [x, y] for
x, y ∈ dom, and abbreviate interval [x, x] as [x]. A counting
query on range attribute A is:

c([x, y]) = Select count(*) From R Where x ≤ R.A ≤ y

We use Q to denote a generic query sequence (please
see Appendix A for an overview of notational conventions).
When Q is evaluated on a database instance I, the output,
Q(I), includes one answer to each counting query, so Q(I)
is a vector of non-negative integers. The ith query in Q is
Q[i].

We consider the common case of a histogram over unit-
length ranges. The conventional strategy is to simply com-
pute counts for all unit-length ranges. This query sequence
is denoted L:

L = 〈 c([x1]), . . . c([xn]) 〉, xi ∈ dom
Example 1. Using the example in Fig 2, we assume the

domain of src contains just the 4 addresses shown. Query L
is 〈c([000]), c([001]), c([010]), c([011])〉 and L(I) = 〈2, 0, 10, 2〉.
2.1 Differential Privacy

Informally, an algorithm is differentially private if it is
insensitive to small changes in the input. Formally, for any
input database I, let nbrs(I) denote the set of neighboring
databases, each differing from I by at most one record; i.e.,
if I ′ ∈ nbrs(I), then |(I − I ′) ∪ (I ′ − I)| = 1.

Definition 2.1 (ε-differential privacy). Algorithm
A is ε-differentially private if for all instances I, any I ′ ∈

nbrs(I), and any subset of outputs S ⊆ Range(A), the fol-
lowing holds:

Pr[A(I) ∈ S] ≤ exp(ε)× Pr[A(I ′) ∈ S]

where the probability is taken over the randomness of the A.

Differential privacy has been defined inconsistently in the lit-
erature. The original concept, called ε-indistinguishability [8],
defines neighboring databases using hamming distance rather
than symmetric difference (i.e., I ′ is obtained from I by re-
placing a tuple rather than adding/removing a tuple). The
choice of definition affects the calculation of query sensi-
tivity. We use the above definition (from Dwork [6]) but
observe that our results also hold under indistinguishability,
due to the fact that ε-differential privacy (as defined above)
implies 2ε-indistinguishability.

To answer queries under differential privacy, we use the
Laplace mechanism [8], which achieves differential privacy
by adding noise to query answers, where the noise is sam-
pled from the Laplace distribution. The magnitude of the
noise depends on the query’s sensitivity, defined as follows
(adapting the definition to the query sequences considered
in this paper).

Definition 2.2 (Sensitivity). Let Q be a sequence of
counting queries. The sensitivity of Q, denoted SQ, is

∆Q = max
I,I′∈nbrs(I)

∥∥Q(I)−Q(I ′)
∥∥
1

Throughout the paper, we use ||X−Y||p to denote the Lp
distance between vectors X and Y.

Example 2. The sensitivity of query L is 1. Database I ′

can be obtained from I by adding or removing a single record,
which affects exactly one of the counts in L by exactly 1.

Given query Q, the Laplace mechanism first computes
the query answer Q(I) and then adds random noise indepen-
dently to each answer. The noise is drawn from a zero-mean
Laplace distribution with scale σ. As the following propo-
sition shows, differential privacy is achieved if the Laplace
noise is scaled appropriately to the sensitivity of Q and the
privacy parameter ε.

Proposition 1 (Laplace mechanism [8]). Let Q be
a query sequence of length d, and let 〈Lap(σ)〉d denote a
d-length vector of i.i.d. samples from a Laplace with scale
σ. The randomized algorithm Q̃ that takes as input database
I and outputs the following vector is ε-differentially private:

Q̃(I) = Q(I) + 〈Lap(∆Q/ε)〉d

We apply this technique to the query L. Since, L has sen-
sitivity 1, the following algorithm is ε-differentially private:

L̃(I) = L(I) + 〈Lap(1/ε)〉n

We rely on Proposition 1 to ensure privacy for the query
sequences we propose in this paper. We emphasize that the
proposition holds for any query sequence Q, regardless of
correlations or constraints among the queries in Q. Such
dependencies are accounted for in the calculation of sensi-
tivity. (For example, consider the correlated sequence Q
that consists of the same query repeated k times, then the
sensitivity of Q is k times the sensitivity of the query.)
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We present the case where the analyst issues a single query
sequence Q. To support multiple query sequences, the pro-
tocol that computes a εi-differentially private response to
the ith sequence is (

∑
εi)-differentially private.

To analyze the accuracy of the randomized query sequences
proposed in this paper we quantify their error. Q̃ can be
considered an estimator for the true value Q(I). We use the
common Mean Squared Error as a measure of accuracy.

Definition 2.3 (Error). For a randomized query se-

quence Q̃ whose input is Q(I), the error(Q̃) is
∑
i E(Q̃[i]−

Q[i])2 Here E is the expectation taken over the possible ran-

domness in generating Q̃.

For example, error(L̃) =
∑
i E(L̃[i]−L[i])2 which simplifies

to: nE[Lap(1/ε)2] = nV ar(Lap(1/ε)) = 2n/ε2.

2.2 Constrained Inference
While L̃ can be used to support unattributed and univer-

sal histograms under differential privacy, the main contribu-
tion of this paper is the development of more accurate query
strategies based on the idea of constrained inference. The
specific strategies are described in the next sections. Here,
we formulate the constrained inference problem.

Given a query sequence Q, let γQ denote a set of con-
straints which must hold among the (true) answers. The
constrained inference process takes the randomized output
of the query, denoted q̃ = Q̃(I), and finds the sequence of
query answers q that is “closest” to q̃ and also satisfies the
constraints of γQ. Here closest is determined by L2 distance,
and the result is the minimum L2 solution:

Definition 2.4 (Minimum L2 solution). Let Q be a
query sequence with constraints γQ. Given a noisy query

sequence q̃ = Q̃(I), a minimum L2 solution, denoted q, is
a vector q that satisfies the constraints γQ and at the same
time minimizes ||q̃ − q||2.

We use Q to denote the two step randomized process in
which the data owner first computes q̃ = Q̃(I) and then
computes the minimum L2 solution from q̃ and γQ. (Al-
ternatively, the data owner can release q̃ and the latter step
can be done by the analyst.) Importantly, the inference step
has no impact on privacy, as stated below. (Proofs appear
in the Appendix.)

Proposition 2. If Q̃ satisfies ε-differential privacy, then
Q satisfies ε-differential privacy.

3. UNATTRIBUTED HISTOGRAMS
To support unattributed histograms, one could use the

query sequence L. However, it contains “extra” information—
the attribution of each count to a particular range—which
is irrelevant for an unattributed histogram. Since the associ-
ation between L[i] and i is not required, any permutation of
the unit-length counts is a correct response for the unattr-
ibuted histogram. We formulate an alternative query that
asks for the counts of L in rank order. As we will show,
ordering does not increase sensitivity, but it does introduce
inequality constraints that can be exploited by inference.

Formally, let ai refer to the answer to L[i] and let U =
{a1, . . . , an} be the multiset of answers to queries in Q. We
write ranki(U) to refer to the ith smallest answer in U . Then
the query S is defined as

S = 〈rank1(U), . . . , rankn(U)〉

Example 3. In the example in Fig 2, we have L(I) =
〈2, 0, 10, 2〉 while S(I) = 〈0, 2, 2, 10〉. Thus, the answer S(I)
contains the same counts as L(I) but in sorted order.

To answer S under differential privacy, we must determine
its sensitivity.

Proposition 3. The sensitivity of S is 1.

By Propositions 1 and 3, the following algorithm is ε-
differentially private:

S̃(I) = S(I) + 〈Lap(1/ε)〉n

Since the same magnitude of noise is added to S as to L,
the accuracy of S̃ and L̃ is the same. However, S implies
a powerful set of constraints. Notice that the ordering oc-
curs before noise is added. Thus, the analyst knows that
the returned counts are ordered according to the true rank
order. If the returned answer contains out-of-order counts,
this must be caused by the addition of random noise, and
they are inconsistent. Let γS denote the set of inequalities
S[i] ≤ S[i + 1] for 1 ≤ i < n. We show next how to exploit
these constraints to boost accuracy.

3.1 Constrained Inference: Computing S

As outlined in the introduction, the analyst sends query S
to the data owner and receives a noisy answer s̃ = S̃(I), the

output of the differentially private algorithm S̃ evaluated on
the private database I. We now describe a technique for
post-processing s̃ to find an answer that is consistent with
the ordering constraints.

Formally, given s̃, the objective is to find an s that mini-
mizes ||s̃ − s||2 subject to the constraints s[i] ≤ s[i + 1] for
1 ≤ i < n. The solution has a surprisingly elegant closed-
form. Let s̃[i, j] be the subsequence of j − i + 1 elements:

〈s̃[i], s̃[i + 1], . . . , s̃[j]〉. Let M̃ [i, j] be the mean of these

elements, i.e. M̃ [i, j] =
∑j
k=i s̃[k]/(j − i+ 1).

Theorem 1. Denote Lk = minj∈[k,n] maxi∈[1,j] M̃ [i, j] and

Uk = maxi∈[1,k] minj∈[i,n] M̃ [i, j]. The minimum L2 solu-
tion s, is unique and given by: s[k] = Lk = Uk.

Since we first stated this result in a technical report [12],
we have learned that this problem is an instance of isotonic
regression (i.e., least squares regression under ordering con-
straints on the estimands). The statistics literature gives
several characterizations of the solution, including the above
min-max formulas (cf. Barlow et al. [3]), as well as linear
time algorithms for computing it (cf. Barlow et al. [2]).

Example 4. We give three examples of s̃ and its closest
ordered sequence s. First, suppose s̃ = 〈9, 10, 14〉. Since s̃
is already ordered, s = s̃. Second, s̃ = 〈9, 14, 10〉, where
the last two elements are out of order. The closest ordered
sequence is s = 〈9, 12, 12〉. Finally, let s̃ = 〈14, 9, 10, 15〉.
The sequence is in order except for s̃[1]. While changing
the first element from 14 to 9 would make it ordered, its
distance from s̃ would be (14 − 9)2 = 25. In contrast, s =
〈11, 11, 11, 15〉 and ||s̃− s||2 = 14.

3.2 Utility Analysis: the Accuracy of S

Prior work in isotonic regression has shown inference can-
not hurt, i.e., the accuracy of S is no lower than S̃ [13].
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Figure 3: Example of how s reduces the error of s̃.

However, we are not aware of any results that give condi-
tions for which S is more accurate than S̃. Before presenting
a theoretical statement of such conditions, we first give an
illustrative example.

Example 5. Figure 3 shows a sequence S(I) along with
a sampled s̃ and inferred s. While the values in s̃ deviate
considerably from S(I), s lies very close to the true answer.
In particular, for subsequence [1, 20], the true sequence S(I)
is uniform and the constrained inference process effectively
averages out the noise of s̃. At the twenty-first position,
which is a unique count in S(I), and constrained inference
does not refine the noisy answer, i.e., s[21] = s̃[21].

Fig 3 suggests that error(S) will be low for sequences in
which many counts are the same (Fig 7 in Appendix C gives
another intuitive view of the error reduction). The following
theorem quantifies the accuracy of S precisely. Let n and
d denote the number of values and the number of distinct
values in S(I) respectively. Let n1, n2, . . . , nd be the number
of times each of the d distinct values occur in S(I) (thus∑
i ni = n).

Theorem 2. There exist constants c1 and c2 independent
of n and d such that

error(S) ≤
d∑
i=1

c1 log3 ni + c2
ε2

Thus error(S) = O(d log3 n/ε2) whereas error(S̃) = Θ(n/ε2).

The above theorem shows that constrained inference can
boost accuracy, and the improvement depends on proper-
ties of the input S(I). In particular, if the number of dis-
tinct elements d is 1, then error(S) = O(log3 n/ε2), while

error(S̃) = Θ(n/ε2). On the other hand, if d = n, then

error(S) = O(n/ε2) and thus both error(S) and error(S̃)
scale linearly in n. For many practical applications, d� n,
which makes error(S) significantly lower than error(S̃). In
Sec. 5, experiments on real data demonstrate that the error
of S can be orders of magnitude lower than that of S̃.

4. UNIVERSAL HISTOGRAMS
While the query sequence L is the conventional strategy

for computing a universal histogram, this strategy has lim-
ited utility under differential privacy. While accurate for
small ranges, the noise in the unit-length counts accumu-
lates under summation, so for larger ranges, the estimates
can easily become useless.

We propose an alternative query sequence that, in ad-
dition to asking for unit-length intervals, asks for interval
counts of larger granularity. To ensure privacy, slightly more
noise must be added to the counts. However, this strategy
has the property that any range query can be answered via
a linear combination of only a small number of noisy counts,
and this makes it much more accurate for larger ranges.

Our alternative query sequence, denoted H, consists of a
sequence of hierarchical intervals. Conceptually, these inter-
vals are arranged in a tree T . Each node v ∈ T corresponds
to an interval, and each node has k children, correspond-
ing to k equally sized subintervals. The root of the tree is
the interval [x1, xn], which is recursively divided into subin-
tervals until, at leaves of the tree, the intervals are unit-
length, [x1], [x2], . . . , [xn]. For notational convenience, we
define the height of the tree ` as the number of nodes, rather
than edges, along the path from a leaf to the root. Thus,
` = logk n + 1. To transform the tree into a sequence, we
arrange the interval counts in the order given by a breadth-
first traversal of the tree.

C0**

C00* C01*

C000 C001 C010 C011

Figure 4: The tree T associated with query H for
the example in Fig. 2 for k = 2.

Example 6. Continuing from the example in Fig 2, we
describe H for the src domain. The intervals are arranged
into a binary (k = 2) tree, as shown in Fig 4. The root is
associated with the interval [0∗∗], which is evenly subdivided
among its children. The unit-length intervals at the leaves
are [000], [001], [010], [011]. The height of the tree is ` = 3.

The intervals of the tree are arranged into the query se-
quence H = 〈C0∗∗, C00∗, C01∗, C000, C001, C010, C011〉. Eval-
uated on instance I from Fig. 2, the answer is H(I) =
〈14, 2, 12, 2, 0, 10, 2〉.
To answer H under differential privacy, we must determine
its sensitivity. As the following proposition shows, H has a
larger sensitivity than L.

Proposition 4. The sensitivity of H is `.

By Propositions 1 and 4, the following algorithm is ε-
differentially private:

H̃(I) = H(I) + 〈Lap(`/ε)〉m

where m is the length of sequence H, equal to the number
of counts in the tree.

To answer a range query using H̃, a natural strategy is to
sum the fewest number of sub-intervals such that their union
equals the desired range. However, one challenge with this
approach is inconsistency: in the corresponding tree of noisy
answers, there may be a parent count that does not equal
to the sum of its children. This can be problematic: for
example, an analyst might ask one interval query and then
ask for a sub-interval and receive a larger count.

We next look at how to use the arithmetic constraints
between parent and child counts (denoted γH) to derive a
consistent, and more accurate, estimate H.
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4.1 Constrained Inference: Computing H

The analyst receives h̃ = H̃(I), the noisy output from

the differentially private algorithm H̃. We now consider the
problem of finding the minimum L2 solution: to find the h
that minimizes ||h̃ − h||2 and also satisfies the consistency
constraints γH.

This problem can be viewed as an instance of linear regres-
sion. The unknowns are the true counts of the unit-length
intervals. Each answer in h̃ is a fixed linear combination of
the unknowns, plus random noise. Finding h is equivalent
to finding an estimate for the unit-length intervals. In fact,
h is the familiar least squares solution.

Although the least squares solution can be computed via
linear algebra, the hierarchical structure of this problem in-
stance allows us to derive an intuitive closed form solution
that is also more efficient to compute, requiring only linear
time. Let T be the tree corresponding to h̃; abusing nota-
tion, for node v ∈ T , we write h̃[v] to refer to the interval
associated with v.

First, we define a possibly inconsistent estimate z[v] for
each node v ∈ T . The consistent estimate h[v] is then de-
scribed in terms of the z[v] estimates. z[v] is defined recur-
sively from the leaves to the root. Let l denote the height
of node v and succ(v) denote the set of v’s children.

z[v] =

{
h̃[v], if v is a leaf node
kl−kl−1

kl−1
h̃[v] + kl−1−1

kl−1

∑
u∈succ(v) z[u], o.w.

The intuition behind z[v] is that it is a weighted average of
two estimates for the count at v; in fact, the weights are
inversely proportional to the variance of the estimates.

The consistent estimate h is defined recursively from the
root to the leaves. At the root r, h[r] is simply z[r]. As
we descend the tree, if at some node u, we have h[u] 6=∑
w∈succ(u) z[w], then we adjust the values of each descen-

dant by dividing the difference h[u]−∑w∈succ(u) z[w] equally

among the k descendants. The following theorem states that
this is the minimum L2 solution.

Theorem 3. Given the noisy sequence h̃ = H̃(I), the
unique minimum L2 solution, h, is given by the following
recurrence relation. Let u be v’s parent:

h[v] =

{
z[v], if v is the root

z[v] + 1
k

(h[u]−∑w∈succ(u) z[w]), o.w.

Theorem 3 shows that the overhead of computing H is
minimal, requiring only two linear scans of the tree: a bot-
tom up scan to compute z and then a top down scan to
compute the solution h given z.

4.2 Utility Analysis: the Accuracy of H

We measure utility as accuracy of range queries, and we
compare three strategies: L̃, H̃, and H. We start by com-
paring L̃ and H̃.

Given range query q = c([x, y]), we derive an estimate

for the answer as follows. For L̃, the estimate is simply the
sum of the noisy unit-length intervals in the range: L̃q =∑y
i=x L̃[i]. The error of each count is 2/ε2, and so the error

for the range is error(L̃q) = O((y − x)/ε2).

For H̃, we choose the natural strategy of summing the
fewest sub-intervals of H̃. Let r1, . . . , rt be the roots of dis-
joint subtrees of T such that the union of their ranges equals

[x, y]. Then H̃q is defined as H̃q =
∑t
i=1 H̃[ri]. Each noisy

count has error equal to 2`2/ε2 (equal to the variance of the
added noise) and the number of subtrees is at most 2` (at

most two per level of the tree), thus error(H̃q) = O(`3/ε2).
There is clearly a tradeoff between these two strategies.

While L̃ is accurate for small ranges, error grows linearly
with the size of the range. In contrast, the error of H̃ is
poly-logarithmic in the size of the domain (recall that ` =

Θ(logn)). Thus, while H̃ is less accurate for small ranges,
it is much more accurate for large ranges. If the goal of a
universal histogram is to bound worst-case or total error for
all range queries, then H̃ is the preferred strategy.

We now compare H̃ to H. Since H is consistent, range
queries can be easily computed by summing the unit-length
counts. In addition to being consistent, it is also more ac-
curate. In fact, it is in some sense optimal: among the
class of strategies that (a) produce unbiased estimates for
range queries and (b) derive the estimate from linear com-

binations of the counts in h̃, there is no strategy with lower
mean squared error than H.

Theorem 4. (i) H is a linear unbiased estimator, (ii)
error(Hq) ≤ error(Eq) for all q and for all linear unbiased
estimators E, (iii) error(Hq) = O(`3/ε2) for all q, and (iv)

there exists a query q s.t. error(Hq) ≤ 3
2(`−1)(k−1)−k error(H̃q).

Part (iv) of the theorem shows that H can more accurate

than H̃ on some range queries. For example, in a height 16
binary tree—the kind of tree used in the experiments—there
is a query q where Hq is more accurate than H̃q by a factor

of 2(`−1)(k−1)−k
3

= 9.33.

Furthermore, the fact that H is consistent can lead to
additional advantages when the domain is sparse. We pro-
pose a simple extension to H: after computing h, if there
is a subtree rooted at v such that h[v] ≤ 0, we simply set
the count at v and all children of v to be zero. This is a
heuristic strategy; incorporating non-negativity constraints
into inference is left for future work. Nevertheless, we show
in experiments, that this small change can greatly reduce er-
ror in sparse regions and can lead to H being more accurate
than L̃ even at small ranges.

5. EXPERIMENTS
We evaluate our techniques on three real datasets (ex-

plained in detail in Appendix C): NetTrace is derived from
an IP-level network trace collected at a major university;
Social Network is a graph derived from friendship relations
in an online social network site; Search Logs is a dataset of
search query logs over time from Jan. 1, 2004 to the present.
Source code for the algorithms is available at the first au-
thor’s website.

5.1 Unattributed Histograms
The first set of experiments evaluates the accuracy of con-

strained inference on unattributed histograms. We compare
S to the baseline approach S̃. Since s̃ = S̃(I) is likely
to be inconsistent—out-of-order, non-integral, and possibly
negative—we consider a second baseline technique, denoted
S̃r, which enforces consistency by sorting s̃ and rounding
each count to the nearest non-negative integer.

We evaluate the performance of these estimators on three
queries from the three datasets. On NetTrace: the query
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Figure 5: Error across varying datasets and ε. Each
triplet of bars represents the three estimators: S̃
(light gray), S̃r (gray), and S (black).

returns the number of internal hosts to which each exter-
nal host is connected (≈ 65K external hosts); On Social

Network, the query returns the degree sequence of the graph
(≈ 11K nodes). On Search Logs, the query returns the
search frequency over a 3-month period of the top 20K key-
words; position i in the answer vector is the number of times
the ith ranked keyword was searched.

To evaluate the utility of an estimator, we measure its
squared error. Results report the average squared error over
50 random samples from the differentially-private mecha-
nism (each sample produces a new s̃). We also show results
for three settings of ε = {1.0, 0.1, 0.01}; smaller ε means
more privacy, hence more random noise.

Fig 5 shows the results of the experiment. Each bar
represents average performance for a single combination of
dataset, ε, and estimator. The bars represent, from left-to-
right, S̃ (light gray), S̃r (gray), and S (black). The vertical
axis is average squared error on a log-scale. The results in-
dicate that the proposed approach reduces the error by at
least an order of magnitude across all datasets and settings
of ε. Also, the difference between S̃r and S suggests that
the improvement is due not simply to enforcing integrality
and non-negativity but from the way consistency is enforced
through constrained inference (though S and S̃r are compa-
rable on Social Network at large ε). Finally, the relative
accuracy of S improves with decreasing ε (more noise). Ap-
pendix C provides intuition for how S reduces error.

5.2 Universal Histograms
We now evaluate the effectiveness of constrained inference

for the more general task of computing a universal histogram
and arbitrary range queries. We evaluate three techniques
for supporting universal histograms L̃, H̃, and H. For all
three approaches, we enforce integrality and non-negativity
by rounding to the nearest non-negative integer. With H,
rounding is done as part of the inference process, using the
approach described in Sec 4.2.

We evaluate the accuracy over a set of range queries of
varying size and location. The range sizes are 2i for i =
1, . . . , `− 2 where ` is the height of the tree. For each fixed
size, we select the location uniformly at random. We report
the average error over 50 random samples of l̃ and h̃, and
for each sample, 1000 randomly chosen ranges.

We evaluate the following histogram queries: On Net-

Trace, the number of connections for each external host.
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Figure 6: A comparison estimators L̃ (circles), H̃ (di-
amonds), and H (squares) on two real-world datasets
(top NetTrace, bottom Search Logs).

This is similar to the query in Sec 5.1 except that here the
association between IP address and count is retained. On
Search Logs, the query reports the temporal frequency of
the query term “Obama” from Jan. 1, 2004 to present. (A
day is evenly divided into 16 units of time.)

Fig 6 shows the results for both datasets and varying ε.
The top row corresponds to NetTrace, the bottom to Search

Logs. Within a row, each plot shows a different setting of
ε ∈ {1.0, 0.1, 0.01}. For all plots, the x-axis is the size of
the range query, and the y-axis is the error, averaged over
sampled counts and intervals. Both axes are in log-scale.

First, we compare L̃ and H̃. For unit-length ranges, L̃
yields more accurate estimates. This is unsurprising since it
is a lower sensitivity query and thus less noise is added for
privacy. However, the error of L̃ increases linearly with the
size of the range. The average error of H̃ increases slowly
with the size of the range, as larger ranges typically require
summing a greater number of subtrees. For ranges larger
than about 2000 units, the error of L̃ is higher than H̃; for
the largest ranges, the error of L̃ is 4-8 times larger than
that of H̃ (note the log-scale).

Comparing H against H̃, the error of H is uniformly lower
across all range sizes, settings of ε, and datasets. The rela-
tive performance of the estimators depends on ε. At smaller
ε, the estimates of H are more accurate relative to H̃ and
L̃. Recall that as ε decreases, noise increases. This suggests
that the relative benefit of statistical inference increases with
the uncertainty in the observed data.

Finally, the results show that H can have lower error than
L̃ over small ranges, even for leaf counts. This may be sur-
prising since for unit-length counts, the scale of the noise of
H is larger than that of L̃ by a factor of log n. The reduction
in error is because these histograms are sparse. When the
histogram contains sparse regions, H can effectively identify
them because it has noisy observations at higher levels of
the tree. In contrast, L̃ has only the leaf counts; thus, even
if a range contains no records, L̃ will assign a positive count
to roughly half of the leaves in the range.

6. RELATED WORK
Dwork has written comprehensive reviews of differential

privacy [6, 7]; below we highlight results closest to this work.
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The idea of post-processing the output of a differentially
private mechanism to ensure consistency was introduced in
Barak et al. [1], who proposed a linear program for making
a set of marginals consistent, non-negative, and integral.
However, unlike the present work, the post-processing is not
shown to improve accuracy.

Blum et al. [4] propose an efficient algorithm to publish
synthetic data that is useful for range queries. In comparison
with our hierarchical histogram, the technique of Blum et al.
scales slightly better (logarithmic versus poly-logarithmic)
in terms of domain size (with all else fixed). However, our
hierarchical histogram achieves lower error for a fixed do-
main, and importantly, the error does not grow as the size
of the database increases, whereas with Blum et al. it grows
with O(N2/3) with N being the number of records (details
in Appendix E).

The present work first appeared as an arXiv preprint [12],
and since then a number of related works have emerged,
including additional work by the authors. The technique
for unattributed histograms has been applied to accurately
and efficiently estimate the degree sequences of large social
networks [11]. Several techniques for histograms over hierar-
chical domains have been developed. Xiao et al. [20] propose
an approach based on the Haar wavelet, which is conceptu-
ally similar to the H query in that it is based on a tree of
queries where each level in the tree is an increasingly fine-
grained summary of the data. In fact, that technique has er-
ror equivalent to a binary H query, as shown by Li et al. [14],
who represent both techniques as applications of the matrix
mechanism, a framework for computing workloads of linear
counting queries under differential privacy. We are aware of
ongoing work by McSherry et al. [16] that combines hierar-
chical querying with statistical inference, but differs from H
in that it is adaptive. Chan et al. [5] consider the problem of
continual release of aggregate statistics over streaming pri-
vate data, and propose a differentially private counter that
is similar to H, in which items are hierarchically aggregated
by arrival time. The H and wavelet strategy are specifically
designed to support range queries. Strategies for answering
more general workloads of queries under differential privacy
are emerging, in both the offline [10, 14] and online [18]
settings.

7. CONCLUSIONS
Our results show that by transforming a differentially-

private output so that it is consistent, we can boost accu-
racy. Part of the innovation is devising a query set so that
useful constraints hold. Then the challenge is to apply the
constraints by searching for the closest consistent solution.
Our query strategies for histograms have closed-form solu-
tions for efficiently computing a consistent answer.

Our results show that conventional differential privacy ap-
proaches can add more noise than is strictly required by the
privacy condition. We believe that using constraints may
be an important part of finding optimal strategies for query
answering under differential privacy. More discussion of the
implications of our results, and possible extensions, is in-
cluded in Appendix B.
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APPENDIX
A. NOTATIONAL CONVENTIONS

The table below summarizes notational conventions used
in the paper.

Q Sequence of counting queries
L Unit-Length query sequence
H Hierarchical query sequence
S Sorted query sequence
γQ Constraint set for query Q

Q̃, L̃, H̃, S̃ Randomized query sequence
H,S Randomized query sequence,

returning minimum L2 solution
I Private database instance
L(I),H(I),S(I) Output sequence (truth)

l̃ = L̃(I), h̃ = H̃(I), s̃ = S̃(I) Output sequence (noisy)

h = H(I), s = S(I) Output sequence (inferred)

B. DISCUSSION OF MAIN RESULTS
Here we provide a supplementary discussion of the results,

review the insights gained, and discuss future directions.

Unattributed histograms. The choice of the sorted query
S, instead of L, is an unqualified benefit, because we gain
from the inequality constraints on the output, while the sen-
sitivity of S is no greater than that of L. Among other ap-
plications, this allows for extremely accurate estimation of
degree sequences of a graph, improving error by an order
of magnitude on the baseline technique. The accuracy of
the estimate depends on the input sequence. It works best
for sequences with duplicate counts, which matches well the
degree sequences of social networks encountered in practice.

Future work specifically oriented towards degree sequence
estimation could include a constraint enforcing that the out-
put sequence is graphical, i.e. the degree sequence of some
graph.

Universal histograms. The choice of the hierarchical count-
ing query H, instead of L, offers a trade off because the sen-
sitivity of H is greater than that of L. It is interesting that
for some data sets and privacy levels, the effect of the H con-
straints outweighs the increased noise that must be added.
In other cases, the algorithms based on H provide greater ac-
curacy for all but the smallest ranges. We note that in many
practical settings, domains are large and sparse. The spar-
sity implies that no differentially private technique can yield
meaningful answers for unit-length queries because the noise
necessary for privacy will drown out the signal. So while L̃
sometimes has higher accuracy for small range queries, this
may not have practical relevance since the relative error of
the answers renders them useless.

In future work we hope to extend the technique for uni-
versal histograms to multi-dimensional range queries, and to
investigate optimizations such as higher branching factors.

Across both histogram tasks, our results clearly show that
it is possible to achieve greater accuracy without sacrificing
privacy. The existence of our improved estimators S and H
show that there is another differentially private noise dis-
tribution that is more accurate than independent Laplace
noise. This does not contradict existing results because the
original differential privacy work showed only that calibrat-
ing Laplace noise to the sensitivity of a query was sufficient

for privacy, not that it was necessary. Only recently has
the optimality of this construction been studied (and proven
only for single queries) [9]. Finding the optimal strategy for
answering a set of queries under differential privacy is an
important direction for future work, especially in light of
emerging private query interfaces [15].

A natural goal is to describe directly the improved noise
distributions implied by S and H, and build a privacy mech-
anism that samples from it. This could, in theory, avoid
the inference step altogether. But it is seems quite difficult
to discover, describe, and sample these improved noise dis-
tributions, which will be highly dependent on a particular
query of interest. Our approach suggests that constraints
and constrained inference can be an effective path to dis-
covering new, more accurate noise distributions that satisfy
differential privacy. As a practical matter, our approach
does not necessarily burden the analyst with the constrained
inference process because the server can implement the post-
processing step. In that case it would appear to the analyst
as if the server was sampling from the improved distribution.

While our focus has been on histogram queries, the tech-
niques are probably not limited to histograms and could
have broader impact. However, a general formulation may
be challenging to develop. There is a subtle relationship be-
tween constraints and sensitivity: reformulating a query so
that it becomes highly constrained may similarly increase its
sensitivity. A challenge is finding queries such as S and H
that have useful constraints but remain low sensitivity. An-
other challenge is the computational efficiency of constrained
inference, which is posed here as a constrained optimization
problem with a quadratic objective function. The complex-
ity of solving this problem will depend on the nature of the
constraints and is NP-Hard in general. Our analysis shows
that the constraint sets of S and H admit closed-form solu-
tions that are efficient to compute.

C. ADDITIONAL EXPERIMENTS
This section provides detailed descriptions of the datasets,

and additional results for unattributed histograms.
NetTrace is derived from an IP-level network trace col-

lected at a major university. The trace monitors traffic at
the gateway between internal IP addresses and external IP
addresses. From this data, we derived a bipartite connec-
tion graph where the nodes are hosts, labeled by their IP
address, and an edge connotes the transmission of at least
one data packet. Here, differential privacy ensures that in-
dividual connections remain private.
Social Network is a graph derived from friendship rela-

tions on an online social network site. The graph is limited
to a population of roughly 11, 000 students from a single
university. Differential privacy implies that friendships will
not be disclosed. The size of the graph (number of students)
is assumed to be public knowledge.1

Search Logs is a dataset of search query logs over time
from Jan. 1, 2004 to the present. For privacy reasons, it is
difficult to obtain such data. Our dataset is derived from a
search engine interface that publishes summary statistics for
specified query terms. We combined these summary statis-
tics with a second dataset, which contains actual search

1This is not a critical assumption and, in fact, the number
of students can be estimated privately within ±1/ε in ex-
pectation. Our techniques can be applied directly to either
the true count or a noisy estimate.
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Figure 7: On NetTrace, S(I) (solid gray), the average error of S (solid black) and S̃ (dotted gray), for ε = 1.0.

query logs but for a much shorter time period, to produce a
synthetic data set. In the experiments, ground truth refers
to this synthetic dataset. Differential privacy guarantees
that the output will prevent the association of an individual
entity (user, host) with a particular search term.

Unattributed histograms. Figure 7 provides some intu-
ition for how inference is able to reduce error. Shown is a
portion of the unattributed histogram of NetTrace: the se-
quence is sorted in descending order along the x-axis and the
y-axis indicates the count. The solid gray line corresponds
to ground truth: a long horizontal stretch indicates a sub-
sequence of uniform counts and a vertical drop indicates a
decrease in count. The graphic shows only the middle por-
tion of the unattributed histogram—some very large and
very small counts are omitted to improve legibility. The
solid black lines indicate the error of S averaged over 200
random samples of S̃ (with ε = 1.0); the dotted gray lines

indicate the expected error of S̃.
The inset graph on the left reveals larger error at the be-

ginning of the sequence, when each count occurs once or
only a few times. However, as the counts become more con-
centrated (longer subsequences of uniform count), the error
diminishes, as shown in the right inset. Some error remains
around the points in the sequence where the count changes,
but the error is reduced to zero for positions in the middle
of uniform subsequences.

Figure 7 illustrates that our approach reduces or elimi-
nates noise in precisely the parts of the sequence where the
noise is unnecessary for privacy. Changing a tuple in the
database cannot change a count in the middle of a uniform
subsequence, only at the end points. These experimental
results also align with Theorem 2, which states that the er-
ror of S is a function of the number of distinct counts in
the sequence. In fact, the experimental results suggest that
the theorem also holds locally for subsequences with a small
number of distinct counts. This is an important result since
the typical degree sequences that arise in real data, such
as the power-law distribution, contain very large uniform
subsequences.

D. PROOFS
Proof of Proposition 2. For any output q, then let

S(q) denote the set of noisy answers such that if q̃ ∈ S(q)
then the minimum L2 solution given q̃ and γQ is q. For
any I and I ′ ∈ nbrs(I), the following shows that Q is ε-
differentially private:

Pr[Q(I) = q] = Pr[Q̃(I) ∈ S(q)]

≤ exp(ε) Pr[Q̃(I ′) ∈ S(q)]

= exp(ε) Pr[Q(I ′) = q]

where the inequality is because Q̃ is ε-differentially pri-
vate.

Proof of Proposition 3. Given a database I, suppose
we add a record to it to obtain I ′. The added record affects
one count in L, i.e., there is exactly one i such that L(I)[i] =
x and L(I ′)[i] = x+1, and all other counts are the same. The
added record affects S as follows. Let j be the largest index
such that S(I)[j] = x, then the added record increases the
count at j by one: S(I ′)[j] = x+ 1. Notice that this change
does not affect the sort order—i.e., in S(I ′), the jth value
remains in sorted order: S(I ′)[j − 1] ≤ x, S(I ′)[j] = x + 1,
and S(I ′)[j+1] ≥ x+1. All other counts in S are the same,
and thus the L1 distance between S(I) and S(I ′) is 1.

Proof of Proposition 4. If a tuple is added or removed
from the relation, this affects the count for every range
that includes it. There are exactly ` ranges that include
a given tuple: the range of a single leaf and the ranges of
the nodes along the path from that leaf to the root. There-
fore, adding/removing a tuple changes exactly ` counts each
by exactly 1. Thus, the sensitivity is equal to `, the height
of the tree.

D.1 Proofs of Theorems 1 & 2
These proofs are omitted due to space limitations, but can

be found in the full version [12].

D.2 Proof of Theorem 3
We first restate the theorem below.
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Theorem 3. Given the noisy sequence h̃ = H̃(I), the
unique minimum L2 solution, h, is given by the following
recurrence relation. Let u be v’s parent:

h[v] =

{
z[v], if v is the root

z[v] + 1
k

(h[u]−∑w∈succ(u) z[w]), o.w.

Proof. We first show that h[r] = z[r] for the root node
r. By definition of a minimum L2 solution, the sequence
h satisfies the following constrained optimization problem.
Let succZ[u] =

∑
w∈succ(u) z[w].

minimize
∑
v

(h[v]− h̃[v])2

subject to ∀v,
∑

u∈succ(v)

h[u] = h[v]

Denote leaves(v) to be the set of leaf nodes in the subtree
rooted at v. The above optimization problem can be rewrit-
ten as the following unconstrained minimization problem.

minimize
∑
v

(
(

∑
l∈leaves(v)

h[l])− h̃[v]
)2

For finding the minimum, we take derivative w.r.t h[l] for
each l and equate it to 0. We thus get the following set of
equations for the minimum solution.

∀l,
∑

v:l∈leaves(v)

2
(
(

∑
l′∈leaves(v)

h[l′])− h̃[v]
)

= 0

Since
∑
l′∈leaves(v) h[l′] = h[v], the above set of equations

can be rewritten as: ∀l,∑v:l∈leaves(v) h[v] =
∑
v:l∈leaves(v) h̃[v]

For a leaf node l, we can think of the above equation for l
as corresponding to a path from l to the root r of the tree.
The equation states that sum of the sequences h and h̃ over
the nodes along the path are the same. We can sum all the
equations to obtain the following equation.

∑
v

∑
l∈leaves(v)

h[v] =
∑
v

∑
l∈leaves(v)

h̃[v]

Denote level(i) as the set of nodes at height i of the tree.
Thus root belongs to level(` − 1) and leaves in level(0).
Abbreviating LHS (RHS) for the left (right) hand side of
the above equation, we observe the following.

LHS =
∑
v

∑
l∈leaves(v)

h[v]

=

`−1∑
i=0

∑
v∈level(i)

∑
l∈leaves(v)

h[v]

=

`−1∑
i=0

∑
v∈level(i)

kih[v] =

`−1∑
i=0

ki
∑

v∈level(i)

h[v]

=

`−1∑
i=0

kih[r] =
k` − 1

k − 1
h[r]

Here we use the fact that
∑
v∈level(i) h[v] = h[r] for any

level i. This is because h satisfies the constraints of the tree.
In a similar way, we also simplify the RHS.

RHS =
∑
v

∑
l∈leaves(v)

h̃[v]

=

`−1∑
i=0

∑
v∈level(i)

∑
l∈leaves(v)

h̃[v]

=

`−1∑
i=0

∑
v∈level(i)

kih̃[v] =

`−1∑
i=0

ki
∑

v∈level(i)

h̃[v]

Note that we cannot simplify the RHS further as h̃[v] may
not satisfy the constraints of the tree. Finally equating LHS
and RHS we get the following equation.

h[r] =
k − 1

k` − 1

`−1∑
i=0

ki
∑

v∈level(i)

h̃[v]

Further, it is easy to expand z[r] and check that

z[r] =
k − 1

k` − 1

`−1∑
i=0

ki
∑

v∈level(i)

h̃[v]

Thus we get h[r] = z[r]. For nodes v other than the r,
assume that we have computed h[u] for u = pred(v). Denote
H = h[u]. Once H is fixed, we can argue that the value of

h[v] will be independent of the values of h̃[w] for any w not
in the subtree of u.

For nodes w ∈ subtree(u) the L2 minimization problem is
equivalent to the following one.

minimize
∑

w∈subtree(u)

(h[w]− h̃[w])2

subject to ∀w ∈ subtree(u),
∑

w′∈succ(w)

h[w′] = h[w]

and
∑

v∈succ(u)

h[v] = H

Again using nodes l ∈ leaves(u), we convert this mini-
mization into the following one.

minimize
∑

w∈subtree(U)

(
(

∑
l∈leaves(w)

h[l])− h̃[w]
)2

subject to
∑

l∈leaves(u)

h[u] = H

We can now use the method of Lagrange multipliers to
find the solution of the above constrained minimization prob-
lem. Using λ as the Lagrange parameter for the constraint∑
l∈leaves(u) h[u] = H, we get the following sets of equations.

∀l ∈ leaves(u),
∑

w:l∈leaves(w)

2
(
h[w]− h̃[w]

)
= −λ

Adding the equations for all l ∈ leaves(u) and solving

for λ we get λ = −H−succZ[u]
n(u)−1

. Here n(u) is the number of

nodes in subtree(u). Finally adding the above equations for
only leaf nodes l ∈ leaves(v), we get
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h[v] = z[v]− (n(v)− 1) · λ

= z[v] +
n(v)− 1

n(u)− 1
(H − succZ[u]])

= z[v] +
1

k
(h[u]− succZ[u])

This completes the proof.

D.3 Proof of Theorem 4
First, the theorem is restated.

Theorem 4. (i) H is a linear unbiased estimator, (ii)
error(Hq) ≤ error(Eq) for all q and for all linear unbiased
estimators E, (iii) error(Hq) = O(`3/ε2) for all q, and (iv)

there exists a query q s.t. error(Hq) ≤ 3
2(`−1)(k−1)−k error(H̃q).

Proof. For (i), the linearity of H is obvious from the
definition of z and h. To show H is unbiased, we first show
that z is unbiased, i.e. E(z[v]) = h[v]. We use induction:
the base case is if v is a leaf node in which case E(z[v]) =

E(h̃[v]) = h[v]. If v is not a leaf node, assume that we have
shown z is unbiased for all nodes u ∈ succ(v). Thus

E(succZ[v]) =
∑

u∈succ(v)

E(z[u]) =
∑

u∈succ(v)

h[u] = h[v]

Thus succZ[v] is an unbiased estimator for h[v]. Since z[v]

is a linear combination of h̃[v] and succZ[v], which are both
unbiased estimators, z[v] is also unbiased. This completes
the induction step proving that z is unbiased for all nodes.
Finally, we note that h[v] is a linear combination of h̃[v], z[v],
and succZ[v], all of which are unbiased estimators. Thus
h[v] is also unbiased proving (i).

For (ii), we shall use the Gauss-Markov theorem [19]. We

shall treat the sequence h̃ as the set of observed variables,
and l, the sequence of original leaf counts, as the set of
unobserved variables. It is easy to see that for all nodes v

h̃[v] =
∑

u∈leaves(v)

l[u] + noise(v)

Here noise(v) is the Laplacian random variable, which is in-
dependent for different nodes v, but has the same variance
for all nodes. Hence h̃ satisfies the hypothesis of Gauss-
Markov theorem. (i) shows that h is a linear unbiased
estimator. Further, h has been obtained by minimizing
the L2 distance with h̃[v]. Hence, h is the Ordinary Least
Squares (OLS) estimator, which by the Gauss-Markov the-
orem has the least error. Since it is the OLS estimator, it
minimizes the error for estimating any linear combination
of the original counts, which includes in particular the given
range query q.

For (iii), we note that any query q can be answered by
summing at most k` nodes in the tree. Since for any node
v, error(H[v]) ≤ error(H̃[v]) = 2`2/ε2, we get

error(H[q]) ≤ k`(2`2/ε2) = O(`3/ε2)

For (iv), denote l1 and l2 to be the leftmost and rightmost
leaf nodes in the tree. Denote r to be the root. We consider
the query q that asks for the sum of all leaf nodes except for
l1 and l2. Then from (i) error(H(q)) is less than the error of

the estimate h̃[r]− h̃[l1]− h̃[l2], which is 6`2/ε2. But, on the

other hand, H̃ will require summing 2(k−1)(`−1)−k noisy

counts in total—2(k−1) at each level of the tree, except for
the root and the level just below the root, only k− 2 counts
are summed. Thus error(H̃q) = 2(2(k− 1)(`− 1)− k)`2/ε2.
Thus

error(Hq) ≤ 3error(H̃q)

2(`− 1)(k − 1)− k
This completes the proof.

E. COMPARISON WITH BLUM ET AL.
We compare a binary H̃q against the binary search equi-

depth histogram of Blum et al. [4] in terms of (ε, δ)-usefulness
as defined by Blum et al. Since ε is used in the usefulness
definition, we use α as the parameter for α-differential pri-
vacy.

Let N be the number of records in the database. An algo-
rithm is (ε, δ)-useful for a class of queries if with probability
at least 1−δ, for every query in the class, the absolute error
is at most εN .

For any range query q, the absolute error of H̃q is |H̃q(I)−
Hq(I)| = |Y | where Y =

∑c
i=1 γi, each γi ∼ Lap(`/α), and

c is the number of subtrees in H̃q, which is at most 2`. We
use Corollary 1 from [5] to bound the error of a sum of

Laplace random variables. With ν =
√
c`2/α2

√
2 ln 2

δ′ , we

obtain

Pr

[
|Y | ≤ 16`

3
2 ln 2

δ′

α

]
≥ 1− δ′

The above is for a single range query. To bound the error
for all

(
n
2

)
range queries, we use a union bound. Set δ′ = δ

n2 .

Then H̃ is (ε, δ)-useful provided that ε ≥
(

16`
3
2 ln 2n2

δ

)
/α.

As in Blum et al., we can also fix ε and bound the size of
the database. H̃ is (ε, δ)-useful when

N ≥ 16`
3
2 ln 2n2

δ

αε
= O

(
log

3
2 n

(
logn+ log 1

δ

)
αε

)
In comparison, the technique of Blum et al. is (ε, δ)-useful

for range queries when

N ≥ O
(

logn
(
log logn+ log 1

εδ

)
αε3

)
Both techniques scale at most poly-logarithmically with the
size of the domain. However, the H̃ scales better with ε,
achieving the same utility guarantee with a database that is
smaller by a factor of O(1/ε2).

The above comparison reveals a distinction between the
techniques: for H̃q the bound on absolute error is indepen-
dent of database size, i.e., it only depends on ε, α, and the
size of range. However, for the Blum et al. approach, the
absolute error increases with the size of the database at a
rate of O(N2/3).
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