
Minimizing Minimality and Maximizing Utility:
Analyzing Method-based attacks on Anonymized Data

Graham Cormode, Divesh Srivastava
AT&T Labs–Research

{graham,divesh}@research.att.com

Ninghui Li, Tiancheng Li
Purdue University

{ninghui,li83}@cs.purdue.edu

ABSTRACT
The principle of anonymization for data sharing has become a very
popular paradigm for the preservation of privacy of the data sub-
jects. Since the introduction of k-anonymity, dozens of methods
and enhanced privacy definitions have been proposed. However,
over-eager attempts to minimize the information lost by the anonymiza-
tion potentially allow private information to be inferred. Proof-of-
concept of this “minimality attack” has been demonstrated for a
variety of algorithms and definitions [16].
In this paper, we provide a comprehensive analysis and study of
this attack, and demonstrate that with care its effect can be almost
entirely countered. The attack allows an adversary to increase his
(probabilistic) belief in certain facts about individuals over the data.
We show that (a) a large class of algorithms are not affected by this
attack, (b) for a class of algorithms that have a “symmetric” prop-
erty, the attacker’s belief increases by at most a small constant, and
(c) even for an algorithm chosen to be highly susceptible to the at-
tack, the attacker’s belief when using the attack increases by at most
a small constant factor. We also provide a series of experiments that
show in all these cases that the confidence about the sensitive value
of any individual remains low in practice, while the published data
is still useful for its intended purpose. From this, we conclude that
the impact of such method-based attacks can be minimized.

1. INTRODUCTION
Intuitively, anonymization is the problem of releasing a version

of a data set so that researchers can analyze the data and extract
useful information from it. However, the raw data usually contains
sensitive information about the individual data subjects. The goal
of anonymization is to apply some masking operations to the data
set to protect the privacy of the individuals in the data, while en-
suring that it remains useful to researchers. This approach allows
anonymized data sets to be “published” and shared with others:
in some cases, the publication may be shared indiscriminately (to
allow scientific study of the data by anyone); in other cases, the
published data may still be shared only among trusted individu-
als (as in sharing customer data across departments within a com-
pany). Within the last decade, a large number of anonymization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

algorithms [1, 4, 8, 9, 21] have been described. To guarantee that
individual privacy is protected, the algorithms ensure that various
requirements hold over the published data, such as `-diversity [12],
(α, k)-anonymity [18], and t-closeness [10]. Recent tutorials pro-
vide more background on existing models and techniques [3, 5].

As methods are proposed, researchers study them and ask: are
there vulnerabilities? Under what circumstances is it possible for
the privacy of an individual to be broken? This proceeds in the
vein of security research: by identifying flaws and weaknesses,
new methods are designed which are not susceptible; alternatively,
it may be demonstrated that any potential attacker would need re-
sources and information that exceed the limits of plausibility, so it
is safe to proceed with certain parameters.

In this spirit, we study a class of attacks based on the principle
of minimality [15, 22]. These attacks assume that the anonymiza-
tion algorithm and its parameters are known: a reasonable assump-
tion, in line with similar assumptions made in the security world.
Many anonymization methods publish a data set which implicitly
encodes a number of possible worlds, each of which is a candi-
date for being the original input. It is assumed that each candidate
is feasible, and by enforcing properties of these sets of possible
worlds, the algorithm concludes that the attacker’s ability to infer
any facts about the original data is limited. Most algorithms aim
to minimize the information loss; specifically, the algorithms never
generalize or distort the data more than necessary to achieve the pri-
vacy requirement. However, the minimization allows a “minimality
attack” to argue that some of these candidates are infeasible: had
the algorithm been executed on these inputs, the output would have
been different. Hence, by ruling out candidates, the adversary’s be-
liefs about the input can violate the claimed privacy requirements.
For instance, the simple `-diversity requirement claims that the ad-
versary cannot associate any sensitive value to any individual with
confidence greater than 1/`, but under minimality attack, this con-
fidence may become larger than 1/`.

This attack was proposed by Wong et al. in 2007 [15], where sev-
eral algorithms enforcing particular privacy guarantees were shown
to be susceptible to this attack. Indeed, in some cases, an attacker
could conclude some supposedly hidden facts with certainty! We
present examples in subsequent sections. This poses troubling ques-
tions: are all anonymization algorithms susceptible to this attack?
Is every method at risk of revealing private facts with certainty?

This paper provides the first detailed analysis of this style of at-
tack. We conclude that many algorithms are not susceptible to this
attack, or are only marginally affected. We also study algorithms
which are chosen to be highly susceptible to the attack, and show
that the attacker’s knowledge, expressed as a probability, may only
increase by a small constant factor. As such, the minimality attack
remains a concern, but its impact can often be mitigated, and made

1045

effectively zero, while still retaining utility in the anonymized data.
These results do not contradict the initial observations of [15].

Our goal is not to refute prior work, but rather to refine our under-
standing of this attack. The examples presented in [15] consist of
small tables and small privacy parameters; there, the attack leads
to total revelation of sensitive values. However, our analysis shows
that for larger examples, and larger parameters, the effect is less
dramatic. We identify properties of algorithms which make them
particularly susceptible to this attack. It is possible to make minor
modifications to some algorithms to make them less susceptible.

Contributions and Organization. Background on anonymization
algorithms, privacy goals, and the nature of the minimality attack
is presented in Section 2. Our contributions are as follows:

We identify three properties of algorithms that make them more
susceptible to this attack: being deterministic in operation, making
asymmetric grouping choices, and jointly considering the identi-
fying and sensitive attributes. To elaborate on these criteria, we
consider algorithms where these properties do not hold, and show
that they are not susceptible to the attack. We show that algo-
rithms which consider only identifying attributes or sensitive at-
tributes, such as algorithms which focus on providing k-anonymity,
or the Anatomy algorithm [19] are safe from this attack. We also
show that algorithms that have a high degree of symmetry in their
grouping choices are virtually invulnerable by describing a class of
“even-split” algorithms that include a “symmetric” version of the
Mondrian algorithm [9] (Section 3).

Next, we study the limits of the minimality attack by introduc-
ing a “Greedy Grouping” algorithm which is (deliberately) highly
susceptible to the attack: it is deterministic, asymmetric and con-
siders identifying and sensitive attributes together to meet privacy
requirements. This algorithm is vulnerable to the minimality at-
tack; an attacker can have a confidence of sensitive values larger
than 1/` even when the table satisfies `-diversity. Yet, via com-
binatorial analysis, we show that this confidence cannot grow too
large. No matter what the input data, or value of `, we show that
the confidence after applying the minimality attack is at most e/`,
i.e. less than 3 times the intended value. We choose to analyze
the greedy grouping algorithm in this paper because it is the most
vulnerable algorithm that we have found, it demonstrates the be-
haviors of minimality attacks, and it is amenable to analysis. We
expect that most other algorithms are less vulnerable to minimality
attacks. We also propose a randomized variant of the grouping al-
gorithm, which limits the attacker’s confidence further (Section 4).

To illustrate the practical impact of these insights, we experi-
mentally evaluate the methods discussed. We compute the number
of tuples susceptible to minimality attack under the (deliberately
bad) greedy grouping algorithm and show that the increase in con-
fidence is in line with the analysis. We show that adding appropri-
ate randomization is sufficient to eliminate any increase in confi-
dence above the 1/` baseline, with negligible change in measured
utility. Finally, we study the accuracy of answering a broad query
workload on anonymized data, and show that the methods we have
proposed achieve tangible utility gains over methods which do not
try to improve utility while offering equivalent privacy properties,
due to our theoretical and empirical privacy analysis (Section 5).

2. ANONYMIZATION AND MINIMALITY
The pioneering work of Samarati and Sweeney [14] was the

first to alert the database community to the problems of releasing
data which was supposedly stripped of identifying information, but
which was vulnerable to re-identification. In their model, there is
a table of data where each row contains information about an indi-

vidual and each column contains an attribute; some attributes are
sensitive. The goal is for the data owner to produce a modified
version of the data which can be released, so that the data can be
usefully studied, but no individual can be closely associated with
their original sensitive values. A natural first step removes iden-
tifying information from the data, such as name or social security
number. However, other parts of the data may still distinguish in-
dividuals: the non-sensitive attributes containing demographic and
other information may, when taken together, uniquely identify an
individual. The canonical example of health care data has patient
information, attributes, and details of the disease(s) that they suf-
fer. In this case, the “quasi-identifiers” (QI) which can identify
an individual are attributes like gender, height, and postal code.
With enough such attributes, many rows may be unique. Partial
knowledge of a particular individual in the data could identify their
record, and so recover the associated “sensitive attribute” (SA).

2.1 Anonymization Tools
The database community has expended much effort in studying

this model of anonymization, and in proposing methods to limit
the ability of the attacker to make such inferences. The general
approach is to mask the association between any particular QI and
SA, via techniques of generalization, suppression and permutation:
Generalization and Suppression reduce the specificity of attributes,
within a generalization hierarchy. Dates can be generalized to month
or year granularity; numeric values can be coarsened to ranges; cat-
egorical values can be replaced with (implicit) sets, such as gener-
alizing a town to its containing state or country; and so on. The
complete suppression of a value can be thought of as “full general-
ization” to a generalized value “*” meaning all possible values.
Permutation arranges rows of the data into groups, and publishes
the full set of QIs and SAs in each group, but withholds the exact
mapping between them. Implicitly, there is a bijection between
the two sets for each group, but no further information about the
mapping is published.

Generalization is usually used to generate multiple rows which
have the same set of (generalized) quasi-identifiers. Whichever “re-
coding” method is used, most anonymization algorithms implicitly
partition the input data into groups, and then apply recoding to
make individuals in these groups indistinguishable. Indeed, it is
possible to first choose a grouping and only then choose which re-
coding method to apply afterwards. Most existing algorithms can
be thought of as such group-and-recode methods. Formally, let T
be the original dataset so that a tuple t ∈ T can be represented as
t = (t[QI], t[SA]) where t[QI] is the QI value of t and t[SA] is
the SA value of t. Then:

DEFINITION 1 (GROUP-AND-RECODE METHOD). Given a dataset
T , a grouping of T partitions T into m groups {G1, G2, · · · , Gm},
so that ∪m

i=1Gi = T and ∀1 ≤ i1 6= i2 ≤ m, Gi1 ∩Gi2 = ∅.
A recoding of T applies a method such as generalization or permu-
tation to each tuple ti to generate t′i, with the intent of masking the
mapping from QI to SA values within each group.

In addition, we say a recoding is SA-Intact if ∀i : t′i[SA] =
ti[SA]. In other words, it keeps the SA attribute intact and only
modifies the QI attributes. In this paper, we consider SA-Intact
group-and-recode methods (for arbitrary SAs i.e. categoric or nu-
meric). This is not a limitation, since the vast majority of tabular
anonymization methods (including all those considered in [15]) are
in this category. Our analysis is independent of the final choice of
recoding, so it applies to all anonymization methods in this class:
the attack and our study focus on the grouping only.

1046

2.2 Privacy Guarantees
We describe some privacy guarantees that have been commonly
used. All view the anonymized data as a collection of groups.

k-anonymization [14] requires each group to have at least k mem-
bers, to give “safety in numbers”. It means that over the possible
worlds, there should be only a 1/k probability that a particular in-
dividual in the group is matched with a particular instance of a sen-
sitive attribute in the group. However, if the same SA value occurs
many times in the same group, the overall likelihood of any indi-
vidual in the group having that value is higher than 1/k, leading to
more stringent requirements being posed [13, Footnote 2].

(simple) `-diversity [12] tries to overcome this limitation by in-
sisting that in each group no distinct SA value occurs more than
a 1/` fraction of the time. This special case of the definition pro-
posed by [12] is equivalent to the (α, k) definition due to [18] with
α = 1/`. In some cases, only certain values of the SA are deemed
“sensitive”, and only these values must obey the 1/` fraction. An
extreme case is “binary” `-diversity, when the sensitive attribute
encodes either positive or negative (e.g. whether or not someone
has a particular disease), and each group should have at most a 1/`
fraction of positives. Negative values are not considered to be sen-
sitive. This case is considered extensively in [15]. Variants based
on the entropy of the SA distribution behave similarly in practice.

t-closeness [10] captures the insight that the earlier methods are ul-
timately concerned with ensuring that the SAs in each group are not
significantly divergent from the overall distribution of the SAs. So
t-closeness requires that the statistical difference between the SA
distribution in a group and the global SA distribution should not be
more than some parameter t. The difference may be measured with
a metric like Earth Mover’s Distance (EMD) which incorporates
the similarity of distinct SA values.

2.3 Anonymization Methods
Many SA-Intact group-and-recode methods for anonymizing data

have been proposed [3, 5]. Here, we present examples to focus our
study. Further background and context is provided in Appendix A.

Mondrian [9] treats the d QIs for each row in the table as defining
a point in d-dimensional space. Groups are formed by hierarchi-
cally partitioning this space. Starting from the whole dataset as a
single group, the algorithm recursively picks a dimension to split
the current group along, such as the widest dimension. The median
along that dimension of the points in the group is used a divider,
so approximately half the items fall in each new subgroup. In the
strict partitioning case, all points from the parent group on one side
of the divider are placed in one (sub)group and the rest in the other;
in the relaxed partitioning case, points lying on the median are as-
signed so subgroup sizes differ by at most 1. A recursive branch
halts when a group cannot be divided to achieve the privacy guar-
antee. [9] achieved k-anonymity by halting group splitting when it
contains k to 2k−1 points. Subsequent adaptations adopt different
conditions, such as requiring `-diversity of each proposed split.

Anatomy [19] chooses groups that meet the ` diversity measure.
It forms groups by repeatedly identifying the current top-` (i.e.
most frequent) SA values among the ungrouped rows. For each
top-` value, it picks an ungrouped row with this value at random,
and forms the ` picked rows into a new group. The process termi-
nates when there are fewer than ` remaining ungrouped rows, and
these are assigned to existing groups while maintaining `-diversity.
Clearly each group meets the privacy guarantee; it is proved in [19]
that provided the global distribution is `-diverse, the remaining un-
grouped rows will always have at least ` distinct values.

Greedy Grouping (GG) is a simple anonymization algorithm that
we introduce here to exemplify the minimality attack and to study
its power. GG first sorts the data based on the quasi-identifiers in
some fashion, chosen to make similar QIs adjacent in the order-
ing. The sort can be as simple as choosing a prioritization of the
attributes, and doing a lexicographic sort; or more complex, such
as some clustering. Starting from the first ungrouped row, the al-
gorithm keeps adding rows to the current group until the resulting
group meets a given privacy requirement (such as `-diversity), at
which point the group is complete, and a new group is started1. GG
abstracts the algorithms studied in the work of Wong et al. [15].

2.4 Minimality Attacks
Next we explain the rationale of minimality attack and show

some examples. Given a desired privacy requirement, this require-
ment determines the sizes of the resulting groups, and the distri-
bution of the sensitive values within the group. The utility of the
resulting anonymized data then depends on how much information
remains: clearly, if a lot of generalization has been performed on
the data, then there is little information present in the published
data. One anonymization paradigm is to try to perform the mini-
mal amount of masking needed to provide a desired privacy goal,
and hence minimize the “loss” of utility.

This minimization is precisely what the minimality attack aims
to exploit. That is, the attack proceeds by using knowledge of
the algorithm to infer properties of the original data, and hence of
individuals in the data. This can be understood probabilistically.
There are many possible unanonymized tables consistent with an
anonymized table. Without further information, the statistically
best strategy is to treat each of these “possible worlds” as equally
likely. Minimality attacks, and other “method-based attacks”, use
knowledge of the algorithm to eliminate (or reduce the likelihood
of) some of these possible worlds: essentially, they can say “run-
ning the algorithm on this input would not give the same output,
therefore it could not be the original data”. The elimination of pos-
sibilities can raise the attacker’s belief in certain events (e.g. some
individual having a particular disease), which may break the de-
sired privacy requirements. Examples of the attack are shown in
Appendix B and [15]: these show the vulnerability of GG in par-
ticular to minimality attack for a variety of privacy guarantees.

These examples suggest that the minimality attack can be very
powerful: for some entities, the anonymization could be completely
undone. Are many anonymization algorithms hopelessly vulnera-
ble to this attack? In fact, through our subsequent analysis, we will
show that this is not the case, and that we can quantify the (limits
of) the strength of the minimality attack. In the examples in Ap-
pendix B, the damage comes in part because the chosen parameter
` = 2 was so small. In more realistic examples, larger values of `
are used. There, the attack results not in complete revelation of sen-
sitive values, but rather in elevated probabilities of certain values,
which we are able to bound mathematically and empirically.

Formally, in the minimality attack, the attacker is pessimistically
assumed to have knowledge of (1) the QI values of all tuples in the
data, (2) the anonymization method usedA (including the parame-
ters), and (3) the anonymized data D. The goal of the adversary is
to infer SA values for a QI value, and the effectiveness of the attack
is measured based on this ability.

DEFINITION 2 (MINIMALITY ATTACK). The minimality at-
tack occurs when conditioning on A increases the posterior be-
lief in a particular QI value being associated with a particular SA
value, i.e. Pr[t[SA] = s|A,D] > Pr[t[SA] = s|D].
1For simplicity, we choose to ignore any tuples which remain after
this process, which only makes the GG more vulnerable to attack.

1047

3. ANALYSIS OF MINIMALITY ATTACK
Studying the minimality attack in different settings, we abstract
three properties of methods which are vulnerable to this attack:

1) Deterministic Behavior. The action of the anonymization al-
gorithm is primarily deterministic, which allows the attacker to
work back from the published data and reason about which inputs
were possible, as in the examples of Appendix B.

2) Asymmetric Group Choices. A key step in the attacker’s in-
ference is often to look at a group, and reason that the decision to
merge several smaller groups (or not to split a larger group) was
much more likely to have been caused due to the violation of a di-
versity constraint in a particular group. For the example in Figure
6(b), it was argued that the larger group could not have violated
diversity no matter how the sensitive values were allocated, so this
violation must have taken place in the smaller group.

3) Consideration of QIs and SAs together. The goal of publishing
the data is typically to separate the QIs and SAs so that the attacker
is unable to restore the exact mapping between any of them with
high confidence. Algorithms which consider these values together
potentially leak information about the original mapping by their
choices in what to group together.

3.1 SA-only methods
First, we study the impact that the minimality attack can have

on methods which choose a grouping of the rows of the data as a
function of the sensitive attributes only. Formally,

DEFINITION 3 (SA-ONLY METHOD). An anonymization method
is SA-only iff given two datasets D and D′ with |D| = |D′| that
have the same SA values for each tuple, the method (with the same
random choices) outputs the same grouping for D and D′.

CLAIM 4. Methods which choose an SA-Intact grouping based
on sensitive attributes alone are safe from the minimality attack.

This and all other proofs are deferred to the Appendix. To under-
stand this claim, consider such a method: the Anatomy algorithm
as described in Section 2 forms the ungrouped rows into groups
based on their sensitive attributes alone, ensure that there is a di-
verse mix of SA values in each group. In particular, among rows
which share the same SA value, the algorithm picks one at random.
So there is no “minimizing” at work here, and as a result, there is
nothing for the attacker to rule out.

A second example is the permutation based method of Koudas et
al. [7]: this method forms groupings of data with a single numeric
SA, and tries to ensure that all rows in the group have similar SA
values, but not too narrow a range. Here, there is some attempt at
minimizing, to ensure that the range of the SAs is not too much
larger than the minimum required. However, the minimality attack
does not apply here either, since the choice is over the SAs only, and
the same argument about interchanging the QIs above still applies.

Given this observation, one might ask, why not simply stick to al-
gorithms such as Anatomy which are invulnerable to minimality at-
tack? The reason is that in many settings, the utility of anonymized
data is limited. In particular, the Anatomy approach alone, which
makes no effort to provide utility sometimes yields unsatisfactory
results. There is no correlation between QI values that are chosen
to form a group, which leaves more uncertainty for query answer-
ing. In contrast, the GG algorithm gives groups with QIs that are
similar to each other under the initial sort ordering. Thus a query
which, say, selects a subset of rows based on QI, is likely to select
many groups in their entirety. This reduces uncertainty in the query
answer, making such groupings much more useful.

SA-only methods can improve the utility of the published data by
dividing large groups into smaller ones. A method which performs

13

7 7 7

27 27

9 9

54

5 4

914

6

Figure 1: Example even-split partitioning

an initial grouping based on both QI and SA information may result
in some large groups to ensure a guarantee such as `-diversity. Exe-
cuting an SA-only method on these large groups can guarantee that
the privacy guarantee is upheld, and that the resulting groups are
as small as possible. For example, provided a group is `-diverse,
executing the Anatomy algorithm on the group partitions it further
in groups of size (approximately) `, each of which is `-diverse. We
refer to this technique as “Anatomization of large groups”.

This discussion of SA-only methods applies equally to the case
of QI-only methods—that is, methods which only inspect the QI
attributes to determine the grouping. These are not susceptible to
minimality attacks for the same reasons: we can permute the SAs
anyhow and still achieve the same grouping. However, such meth-
ods can only give weak privacy guarantees such as k-anonymity
(which depend only on the QIs)—they cannot guarantee `-diversity
or t-closeness, since that would require inspecting the SAs. As
such, they may be of less interest.

3.2 Symmetric Methods
The two examples of the minimality attack in Appendix B both

relied on an asymmetry in the group formation. For greedy group-
ing, the lexicographical ordering of the data meant that the presence
of a larger group could be attributed to the first group that was con-
sidered; for Mondrian, the strict partitioning resulted in asymmetric
group sizes, so only one of them could have prevented the split into
smaller groups. Next, we show that by enforcing stronger symme-
try conditions on the set of groups considered by an anonymization
algorithm, it is possible to effectively prevent minimality attacks.

We define an even-split algorithm as one that considers a set
of possible groupings over a given data set based on recursively
partitioning the data into groups based on properties of the QIs.
The requirement on the group sizes is that all child groups of any
group must differ in size by at most 1 item. The algorithm searches
over this space of possible groupings, and outputs a partitioning
of the input data into groups from this hierarchy which satisfies a
chosen privacy requirement (k-anonymity, `-diversity, t-closeness
etc.). Figure 1 shows an example recursive partitioning that might
be considered by an even-split algorithm. Nodes denote possible
groups, and the number in each node denotes the number of entities
within the possible group. Hence, the whole data set consists of 54
entities, which at the top-level can be split into two groups of size
27. The highlighted nodes indicate a possible grouping that may
be output by the algorithm: the input is published as six groups, of
size 6, 7, 14, 9, 9 and 9 respectively.

We argue that however the grouping is chosen, and whatever
method is used to search for the groupings, any such even-split
algorithm is not vulnerable to a minimality attack. The insight is
that the resulting grouping is sufficiently symmetrical to eliminate

1048

Input: a microdata table T and a parameter `
Output: a set of groups {G1, ..., Gp} so that {G1, ..., Gp}
partitions of T and each Gi (1 ≤ i ≤ p) satisfies `-diversity.
1. Order tuples in T and partition them into buckets of size `.
2. Let T =

Sn
i=1 bi where each bucket bi has ` tuples.

3. Q = {b1, b2, · · · , bn}, i = 0.
4. while Q 6= ∅
5. ← i + 1, remove the first bucket b from Q, Gi = b
6. while Gi does not satisfy `-diversity
7. remove the first bucket b′ from Q, Gi = Gi ∪ b′

Figure 2: Greedy Grouping Algorithm with `-diversity

any possibility of inference. For k-anonymity, this follows immedi-
ately from the discussion above, since the grouping considers only
QIs. We prove this claim for (simple) `-diversity; other variations
of `-diversity have similar analyses.

THEOREM 5. Given the output of an even-split algorithm, knowl-
edge of the algorithm used and possible QI groups considered, the
adversary’s belief in the probability of any item in any possible
group taking a particular sensitive value is at most 1/(`− 2

3
).

Application to Mondrian. The Mondrian algorithm fits the pat-
tern of considering hierarchical binary splits of the input data and
accepting splits which meet a privacy requirement. As observed,
when the partitions are “strict”, the algorithm is vulnerable to the
minimality attack (see the example in Figure 6(b) and also [16]).
But when the partitions are “relaxed”, the even-split property can
be enforced. Following the above analysis, this version of the algo-
rithm is effectively immune to the attack! This gives an unexpected
dichotomy: a seemingly minor implementation choice has signifi-
cant impact on the susceptibility to attack.
Symmetric Grouping Algorithm (SG). To compare to the greedy
grouping algorithm, we define an alternate approach based on the
even-split paradigm. The SG algorithm is described in detail in Ap-
pendix C.3. It is also effectively immune to the minimality attack.

4. ANALYSIS OF GREEDY GROUPING
We analyze the impact of minimality attacks on the permutation-

based algorithm, Greedy Grouping (GG) with binary `-diversity.

4.1 Formal Definition of Greedy Grouping
We comment on the operation of the greedy algorithm. From

the `-diversity requirement, each group must have size at least `.
Moreover, since each sensitive attribute must have an integral num-
ber of occurrences, the size of each group must be a multiple of `.
Suppose to the contrary that the algorithm produced a group of size
c` + j for some j < `. Then there can be at most c occurrences of
any sensitive value in the group. But then the algorithm could out-
put only the c`-sized prefix of the group and still meet the diversity
requirement. As a result, we break the input relation into “buckets”
of size `, as each group is formed from the union of such buckets.

Formally, GG is shown in Figure 2, using this terminology. The
algorithm takes a microdata table T and a parameter ` as input, and
outputs a set of groups G1, G2, · · · , Gp such that {G1, G2, · · · , Gp}
is a partition of table T , the sensitive values in each group Gi

(1 ≤ i ≤ p) are randomly permuted, and each sensitive value
in each group occurs with relative frequency at most 1/`.

The algorithm starts by partitioning the tuples in T into buckets
of size ` (line 1-2). Let the buckets be {b1, b2, ...}. The initial
grouping preserves data utility by grouping tuples with similar QI
values in the same bucket. Then the algorithm iteratively generates

the groups {G1, G2, ..., Gp} (line 4-8). Specifically, to generate Gi

(1 ≤ i ≤ p), starting from the first remaining bucket, the algorithm
chooses to merge it with the next bucket until the merged group
satisfies `-diversity (line 5-8). There may not be enough buckets
and the last group may not be `-diverse; if so, we choose to remove
it from consideration for simplicity.

4.2 Properties of Greedy Grouping
We analyze the increased probability with which the attacker can

associate particular SAs with particular QIs. As each group is gen-
erated independently from the others, it is sufficient to analyze a
single group at a time. If the group contains only ` items, there is
no information for the attacker to use, so instead suppose that this
group has been formed by merging together m > 1 consecutive
buckets under the initial ordering. We write G1,i =

Si
j=1 bj for

1 ≤ i ≤ m to denote the concatenation of the first i buckets. Thus
group G can be written as G1,m =

Sm
j=1 bj . Since each bucket is

of size `, the size of G is m`. Let f(G) be the fraction of (posi-
tive) sensitive values in a group G. Because G1,m satisfies binary
`-diversity, we have

f(G1,m) ≤ 1

`
(1)

By minimality, the adversary infers that for 1 ≤ i ≤ m− 1,

f(G1,i) >
1

`
(2)

In particular, since the first bucket of size ` is not sufficiently di-
verse, f(G1,1) ≥ 2/`. Meanwhile, by the greedy nature of the
algorithm, the last bucket bm must be `-diverse, i.e. it contains
at most a 1/` fraction of positive sensitive values. Without addi-
tional knowledge, the adversary has to believe that all records in
the same bucket share the same probability of having a given sensi-
tive value. Let p(b) be the probability that the adversary associates
with records in bucket b having a positive sensitive value.

Without taking the minimality attack into consideration, the ad-
versary’s knowledge is limited to (1). In this case, for any bucket
b ∈ G1,m, we have p(b) = f(G1,m) ≤ 1/` and the confidence
of making any association between a record and a sensitive value is
thus bounded by 1/`. But when the minimality principle is applied,
in addition to (1), the adversary also has (2) for all i. These inequa-
tions imply more about p(b), and when p(b) > 1/` for some bucket
b, the minimality attack has succeeded. The goal of our analysis
is to calculate the adversary’s belief p(b) and examine how much
larger p(b) can become with this knowledge.

Our main theorem guarantees that p(bi) < e/` for any 1 ≤ i ≤
m. In other words, the adversary’s confidence in associating any
sensitive value to any record is bounded by e/`. The full analysis
is presented in Appendix D, from which we conclude:

THEOREM 6. For any output group G1,m, p(bi) < e
`

.

This bound is somewhat tight: for a group with m = 2 we have
that p(b1) = 2/`, and as m increases this approaches e/` in the
limit.

Extension to other privacy guarantees. Theorem 6 applies the
specific case of binary `-diversity. However, it is plausible that the
same guarantee holds for related formulations of `-diversity: we
argue that the worst case for simple `-diversity is when there is a
single frequent sensitive value within a group, and all other values
are unique or non-sensitive. If this is the case, then the same anal-
ysis applies to this case, and leads us to the same conclusion, that
the worst case is e/` confidence. Indeed, our experimental study
shows that this e/` guarantee holds in practice for such a privacy

1049

Attribute Type # of values
1 Age Numeric 74
2 Workclass Categorical 8
3 Education Categorical 16
4 Marital Status Categorical 7
5 Race Categorical 5
6 Gender Categorical 2
7 Occupation Sensitive 14

Table 1: Description of the Adult dataset.

guarantee. Similarly, we could ask how an algorithm like GG per-
forms when the privacy guarantee is t-closeness. This requirement
is less amenable to analysis; hence we study it experimentally.

4.3 Randomized Choice Methods
We have argued that deterministic operation is an important fac-

tor in allowing a minimality attack (also assumed in the definitions
of [22]). In this section, we study how random choices affect the
level of disclosure. Merely incorporating arbitrary randomization is
not sufficient to prevent attacks. Consider augmenting an existing
(vulnerable) anonymization method by tossing a fair coin to deter-
mine whether to publish the output of the algorithm, or to publish
nothing. Then, conditioned on some results being published, the
adversary can still perform the attack on them. More realistically,
consider a method which merges two groups together into a larger
group either when it is forced to do so to satisfy a privacy guarantee,
or also when a low-probability event occurs. The intention is that
the adversary should be unable to deduce whether the merger was
“forced”, or if it was “voluntary”. However, if the random event
is very low probability, then an attacker’s belief may be that it was
much more likely to be a forced merger.

Consequently, we still need to carefully analyze randomized al-
gorithms to bound the overall vulnerability. In particular, we define
and study a randomized version of GG. The analysis shows that
while indiscriminate randomization is not a universal cure, applied
carefully it can reduce the effect of minimality attacks.

Randomized Greedy Grouping Method (RGG). Informally, the
main difference is that given a partial group Gi, we may randomly
choose to add the next bucket b to the group, rather than always
closing the group as soon as it meets the privacy guarantee. More
formally, we modify the algorithm presented in Figure 2, by chang-
ing the condition in line 6 to be if either Gi does not satisfy `-
diversity or if a random event with probability p occurs. The out-
put of the algorithm is the same as before: a collection of groups,
where the QI values and SA values in each group are presented,
without any further description of how they are related. As in GG,
we can optionally apply “anatomization” to reduce the group sizes.

THEOREM 7. For any output group G, p(b1) ∈ (1/`, e/`).

For p = 0, this gives the upper bound of e/`. As we increase p,
the aim is to reduce this bound progressively. However, we cannot
guarantee that this will always work: as noted above, the attacker’s
belief depends on the likelihood of merges being forced. In some
cases, even with p = 1, the (worst-case) bound remains close to
e/`. Hence, we study the power of this method empirically.

5. EXPERIMENTS
We now empirically evaluate the various methods that we have

discussed, including (1) SA-only methods (Anatomy); (2) symmet-
ric methods (SG); (3) asymmetric methods (GG); and (4) random-
ized methods (RGG). We first study the power of minimality at-
tacks on the vulnerable methods, and then go on to compare the

utility provided by each method for answering queries. Through-
out, we use permutation as the recoding method, as this is observed
to have better utility than generalization/supression.

As with prior work on anonymization, we used the Adult dataset
from the UC Irvine machine learning repository [2], comprised of
data collected from the US census2. Tuples with missing values
are eliminated, leaving a total of 45222 valid tuples. We use seven
attributes of the fifteen attributes in the data, as described in Ta-
ble 1. We pick “Occupation” as the sensitive attribute, which con-
tains 14 values. We designate 2 of the 14 values (“Tech-Support”
and “Craft-Repair”) as the (positive) sensitive values.

5.1 Privacy Risks
We ran experiments with GG and RGG to establish the increase

in the attacker’s confidence in practice. The privacy risks of the
published grouping are computed via Monte Carlo sampling, as
follows. Given the published data, unifomly at random create an
assignment of the sensitive values to the tuples3. Reject those as-
signments on which the (deterministic) algorithm would not pro-
duce the published grouping: (i.e. use the minimality principle).
Over non-rejected assignments, the privacy risk is the largest prob-
ability of a sensitive value in any of the buckets forming any group.

Figure 3(a) shows the fraction of tuples that are vulnerable to
minimality attacks with `-diversity as the privacy model in GG
(i.e., they have a probability of above 1/` under minimality at-
tacks). The two bars show the effect of setting “Tech-Support” and
“Craft-Repair” as the SA in turn. In all cases, the fraction of vul-
nerable tuples is quite small (in most cases below 10%), and tends
to increase with `: this may be because when a group is deemed
vulnerable, more tuples are involved.

Figure 3(b) shows the maximum privacy risk among all vulner-
able groups, shown as a multiple of 1/`. Our analysis argues that
this should be at most e; and at least 2 if any bucket is unsafe. Fig-
ure 3(b) shows that indeed this multiple ranges between 2 and e:
when ` = 6, for instance, the maximum privacy risks for the two
sensitive values are 2.52 and 2.70, respectively.

Figure 3(c) and Figure 3(d) show the results when the privacy
guarantee used in the algorithm is t-closeness. Figure 3(c) shows
that the fraction of tuples vulnerable to minimality is low: about
2% at most in our experiments. The trend is increasing as t de-
creases (also corresponding to a stronger privacy guarantee and
larger groups). Figure 3(d) shows the maximum privacy risk in
terms of the actual distance between the probability distribution in
a group and that in the overall table. The actual distance is at most
twice the t value in all experiments, suggesting that the privacy
breach for minimality attacks for this measure is also bounded.

5.2 Randomized Methods
Our next experiments show that RGG, which adds randomiza-

tion, can effectively prevent minimality attacks (the number of vul-
nerable tuples reduces significantly) without much reduction of data
utility. We evaluate the privacy risks of the randomized choice algo-
rithms using different probability values of p = 0, 0.2, 0.4, 0.6, 0.65.
Figure 4 shows the results for RGG under `-diversity with ` = 6.
Figure 4(a) shows that the fraction of vulnerable tuples decreases
quickly as p increases. Setting p = 0.6 is sufficient to ensure that
no groups are vulnerable with respect to “Tech-Support”; increas-
ing to p = 0.65 makes all groups safe for both sensitive values.
Figure 4(b) shows that the maximum privacy risk (as a multiple
of 1/`) reduces quickly as p increases. When p = 0.6, no group
2Results on other data were similar, and are omitted for brevity
3This effectively applies a uniform prior to the possible worlds;
other priors are of course possible [6]

1050

 0

 5

 10

 15

 20

l=3 l=4 l=6 l=8

l value

Fraction of vulnerable tuples (%)

vulnerable(Tech-Support)
vulnerable(Craft-Repair)

(a) Fraction of vulnerable tuples
(`-diversity)

 0

 1

 2

 3

 4

 5

l=3 l=4 l=6 l=8

l value

Maximum privacy risk

vulnerable(Tech-Support)
vulnerable(Craft-Repair)

(b) Maximum privacy risk
(`-diversity)

 0

 2

 4

 6

 8

 10

t=0.15 t=0.2 t=0.25 t=0.3

t value

Fraction of vulnerable tuples (%)

vulnerable

(c) Fraction of vulnerable tuples
(t-closeness)

 0

 0.2

 0.4

 0.6

 0.8

 1

t=0.15 t=0.2 t=0.25 t=0.3

t value

Maximum privacy risk

vulnerable

(d) Maximum privacy risk
(t-closeness)

Figure 3: Privacy risks of minimality attacks

 0

 5

 10

 15

 20

p=0 p=0.2 p=0.4 p=0.6 p=0.65

p value

Fraction of vulnerable tuples (%)

vulnerable(Tech-Support)
vulnerable(Craft-Repair)

(a) Fraction of vulnerable tuples

 0

 1

 2

 3

 4

 5

p=0 p=0.2 p=0.4 p=0.6 p=0.65

p value

Maximum privacy risk

vulnerable(Tech-Support)
vulnerable(Craft-Repair)

(b) Maximum privacy risk

 0

 20

 40

 60

 80

 100

p=0 p=0.2 p=0.4 p=0.6 p=0.65

p value

Average group size

group-size

(c) Average group size, ` = 6

 0

 2

 4

 6

 8

 10

 12

 14

p=0 p=0.2 p=0.4 p=0.6 p=0.65

p value

Average relative error (%)

error

(d) qd = 4 and sel = 0.05

Figure 4: Effectiveness of random choice methods

is vulnerable to “Tech-Support” and the maximum privacy risk for
“Craft-Repair” is reduced to 1.37/`. When p = 0.65, the max-
imum privacy risk is reduced to 1/`, i.e. the anonymized data is
safe from the minimality attack.

Figures 4(c) and 4(d) show that adding randomization does not
significantly affect data utility. Figure 4(c) shows that the average
group size does not increase by very much. Note that if a random
event occurs with probability p, the expected number of times be-
fore a failure is expected is 1/(1 − p). Hence, if a group remains
safe as more buckets are randomly added, then we expect 1/(1−p)
new buckets to be added after it has met the privacy requirement.
More critically, the average relative error (shown in Figure 4(d))
does not grow much as p is increased; (more details on this evalu-
ation are in the next section). Taken together, these results suggest
that careful use of randomization can defuse the minimality attack
without sacrificing utility.

5.3 Aggregate Query Answering
Our final experiments address utility by measuring the accuracy

of query answering on the anonymized data. All methods are con-
figured to offer the same level of privacy after accounting for mini-
mality, equivalent to `-diversity. We evaluated utility of the anonymized
data for aggregate query answering, as in prior work [19, 11]. We
show results for “COUNT” queries where the selection predicate
involves the SA, as in [19], of the form:

SELECT COUNT(*) FROM Table
WHERE vi1 ∈ Vi1 AND ... vid ∈ Vid AND s ∈ Vs

where vij (1 ≤ j ≤ d) is the QI value for attribute Aij , Vij ⊆ Dij

where Dij is the domain for attribute Aij , s is the SA value and
Vs ⊆ Ds where Ds is the domain for the sensitive attribute S.

A query predicate is characterized by: (1) the predicate dimen-
sion qd and (2) the query selectivity sel . The dimension qd indi-
cates the number of quasi-identifiers involved in the predicate. The
selectivity sel indicates the number of values in each Vij , (1 ≤

j ≤ qd), where the size of Vij , (1 ≤ j ≤ qd) is randomly chosen
from {0, 1, ..., sel |Dij |}. For each parameter setting, we tested a
set of 1000 queries. Relative error is computed for each query in
the standard way, as the absolute difference between the true and
estimated values for each query, scaled by the true value; we show
the average relative error (ARE) over the set of queries.

We compare the methods GG, RGG, SG, and a baseline method
which simply releases two independent tables, one containing all
QI attributes and one containing the sensitive attribute. Since the
RGG method with p chosen to eliminate the minimality attack al-
ways performed better than GG with the group size set to e` (also
sufficient to eliminate minimality), we report results for RGG only.
We show the impacts of “anatomization” on all methods: using
Anatomy to partition a large group into smaller groups, each of
which satisfies `-diversity. Therefore, we have RGG(Ana), SG(Ana),
Base(Ana) corresponding to the three anatomized methods 4.

Figure 5(a) shows ARE as a function of query dimension and
Figure 5(b) shows ARE as a function of query selectivity. In all
experiments, RGG has smaller ARE than SG and the baseline, and
this relative ordering holds whether or not we perform anatomiza-
tion. The experiments also show that ARE decreases when query
dimension increases and when query selectivity increases (both of
which effectively eliminate more tuples from consideration). Anat-
omization reduces ARE: breaking a large group into smaller ones
still satisfies privacy with a substantial improvement on data utility.

Two characteristics that a grouping method should satisfy in or-
der to have better data utility are: (1) the average group size should
be small and (2) the quasi-identifier values in a group should be
similar. When both conditions hold, it is more likely that either all
tuples or none of the tuples in a group satisfy the query predicate.
Thus there is less uncertainty in the answer, reducing estimation
error and so improving utility. As groups grow larger or more dis-
parate, it is less likely that we have this “all or nothing” feature.

4Base(Ana) is equivalent to the original Anatomy algorithm [19].

1051

 0

 5

 10

 15

 20

 25

 30

-sel=0.03- -sel=0.05- -sel=0.07- -sel=0.10-

qd value

Average Relative Error (%)

RGG(Ana)
SG(Ana)

Base(Ana)
RGG

SG
Base

(a) ` = 6 and sel = 0.05

 0

 5

 10

 15

 20

 25

 30

-sel=0.03- -sel=0.05- -sel=0.07- -sel=0.10-

sel value

Average Relative Error (%)

RGG(Ana)
SG(Ana)

Base(Ana)
RGG

SG
Base

(b) ` = 6 and qd = 4

 0

 5

 10

 15

 20

 25

 30

qd=2 qd=3 qd=4 qd=6

qd value

Average Relative Error (%)

RGG(pos)
SG(pos)

Base(pos)
RGG(neg)

SG(neg)
Base(neg)

(c) ` = 6 and sel = 0.05

 0

 10

 20

 30

 40

 50

sel=0.03 sel=0.05 sel=0.07 sel=0.1

sel value

Average Relative Error (%)

RGG(pos)
SG(pos)

Base(pos)
RGG(neg)

SG(neg)
Base(neg)

(d) ` = 6 and qd = 4

Figure 5: Aggregate Query Answering

Before anatomization SG has a somewhat larger average group size
than RGG. The experiments in Figures 4(c) and 4(d) showed that
although the RGG group size is somewhat larger than `, the clus-
tering of QI values in the group is effective at keeping the relative
error low. But after anatomization, the baseline and RGG meth-
ods have similar group sizes, very close to `, indicating that group
size alone is insufficient to determine utility. SG has slightly larger
group size, but still less than 2`.

Intuitively, if each group is representative of the overall table
(i.e., the SA distribution in each group and in the overall table are
similar), then the baseline method “Base” would work well. We
partition the 1000 queries into two sets of the 100 queries which
show the most correlation. That is, we take queries where the true
count is much larger (smaller) than if we treat the attributes as un-
correlated and simply estimate based on multiplying selectivities,
as the negative (positive) queries. Figure 5(c) and Figure 5(d) show
the results for varying qd values and sel values, respectively. They
show that both errors decrease with increasing qd and sel values.
Moreover, we see that RG often achieves half the error of the base-
line methods, indicating that we can defeat minimality and still ob-
tain greater utility.

6. CONCLUSIONS AND FUTURE WORK
We have seen that with careful analysis it is possible to bound

or even eliminate the impact of minimality attacks which exploit
knowledge of the anonymization method. This is not to say that
this attack can be brushed aside entirely: for example, we saw
an algorithm (Mondrian) where a seemingly minor implementation
choice (whether to use a strict or relaxed grouping) makes all the
difference in whether the attacker has a higher chance of finding
the sensitive value of some tuples. Other algorithms which share
the danger signs identified (lack of symmetry, determinism, choices
based on both QI and SA values) remain vulnerable. For example,
the well-known Incognito algorithm [8], when combined with an `-
diversity condition, is easily shown to be susceptible for examples
like those shown here and in [15].

Nevertheless, our understanding of this style of attack is much
advanced. It remains to bring this insight to bear on other combi-
nations of algorithms and privacy requirements. Our focus, in line
with the bulk of the anonymization literature, has been on meth-
ods dealing with data represented within a table. However, there is
much recent interest in also handling other forms of data, such as
set-valued (representing transactions) and graph-structured (repre-
senting social-networks) [3]. Algorithms in these domains are also
concerned with minimizing information loss, and so are potentially
vulnerable to attack; we believe that similar analytic methodologies
will quantify exactly how damaging these attacks may be.

7. REFERENCES
[1] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy,

D. Thomas, and A. Zhu. Anonymizing tables. In ICDT, pages
246–258, 2005.

[2] A. Asuncion and D. Newman. UCI ML repository, 2007.
[3] G. Cormode and D. Srivastava. Anonymized data: generation,

models, usage. In SIGMOD, 2009.
[4] B. C. M. Fung, K. Wang, and P. S. Yu. Top-down specialization for

information and privacy preservation. In ICDE, pages 205–216,
2005.

[5] J. Gehrke and A. Machanavajjhala. Privacy in data publishing. In
S&P, 2009.

[6] D. Kifer. Attacks on privacy and deFinetti’s theorem. In SIGMOD,
2009.

[7] N. Koudas, D. Srivastava, T. Yu, and Q. Zhang. Aggregate query
answering on anonymized tables. In ICDE, pages 116–125, 2007.

[8] K. LeFevre, D. DeWitt, and R. Ramakrishnan. Incognito: Efficient
full-domain k-anonymity. In SIGMOD, pages 49–60, 2005.

[9] K. LeFevre, D. DeWitt, and R. Ramakrishnan. Mondrian
multidimensional k-anonymity. In ICDE, page 25, 2006.

[10] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy
beyond k-anonymity and `-diversity. In ICDE, pages 106–115, 2007.

[11] T. Li and N. Li. Injector: Mining background knowledge for data
anonymization. In ICDE, 2008.

[12] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam. `-diversity: Privacy beyond k-anonymity.
In ICDE, page 24, 2006.

[13] P. Samarati. Protecting respondent’s privacy in microdata release.
TKDE, 13(6):1010–1027, 2001.

[14] P. Samarati and L. Sweeney. Protecting privacy when disclosing
information: k-anonymity and its enforcement through
generalization and suppression. SRI-CSL-98-04, SRI, 1998.

[15] R. C.-W. Wong, A. W.-C. Fu, K. Wang, and J. Pei. Minimality attack
in privacy preserving data publishing. In VLDB, pages 543–554,
2007.

[16] R. C.-W. Wong, A. W.-C. Fu, K. Wang, and J. Pei.
Anonymization-based attacks in privacy-preserving data publishing.
ACM Trans. Database Syst., 34(2), 2009.

[17] R. C.-W. Wong, A. W.-C. Fu, K. Wang, Y. Xu, and P. S. Yu. Can the
utility of anonymized data be used for privacy breaches? Technical
Report abs/0905.1755, arXiv, 2009.

[18] R. C.-W. Wong, J. Li, A. W.-C. Fu, and K. Wang. (α, k)-anonymity:
an enhanced k-anonymity model for privacy preserving data
publishing. In KDD, pages 754–759, 2006.

[19] X. Xiao and Y. Tao. Anatomy: simple and effective privacy
preservation. In VLDB, pages 139–150, 2006.

[20] X. Xiao, Y. Tao, and N. Koudas. Transparent anonymization:
Thwarting adversaries who know the algorithm. ACM Trans.
Database Syst., 35(2):1–48, 2010.

[21] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A. W.-C. Fu.
Utility-based anonymization using local recoding. In KDD, pages
785–790, 2006.

[22] L. Zhang, S. Jajodia, and A. Brodsky. Information disclosure under
realistic assumptions: Privacy versus optimality. In ACM Conference
on Computer and Communications Security, 2007.

1052

APPENDIX
A. A BRIEF HISTORY OF ATTACKS

Research on anonymization is driven by studying potential at-
tacks on proposed methods, leading to improved anonymization
methods and new paradigms. Indeed, the groundbreaking work
on k-anonymization can be seen as a response to trivial methods
which merely remove uniquely identifying information [14]. That
first work showed how quasi-identifiers in the data could be linked
with external sources to reidentify individuals in the data and dis-
cover their sensitive values. Data which satisfies k-anonymity is
still susceptible to attacks: if many individuals in a group have the
same or similar sensitive values, the attacker’s belief in a particu-
lar value can exceed the desired 1/k bound. Such “homogeneity
attacks” (identified as early as [13]) led to stronger requirements in
the form of `-diversity (based on the frequency of sensitive values
in a group) and t-closeness (based on the similarity of distributions
in the group to the global distribution).

The minimality attack can be seen as another step in this process
of attack and strengthening: algorithms which try too eagerly to
enforce a condition such as `-diversity with the minimum of gener-
alization or modification end up failing to meet their promises when
the action of the algorithm is considered. The attack was first pro-
posed by [15]; similar ideas were also discussed in [22] around the
same time. Wong et al. [15] showed there exist algorithms that at-
tempt to enforce measures such as `-diversity and t-closeness that
are susceptible. The journal version of the paper showed in par-
ticular that when algorithms such Incognito [8], Mondrian [9] and
Zhang’s algorithm [22] are used to enforce `-diversity, the result
can be attacked. Wong et al. then proposed a “Mask” algorithm
that avoided minimality by modifying sensitive values, a paradigm
which most anonymization algorithms explicitly avoid due to the
distortion of basic statistics that results.

Recently, Xiao et al. [20] independently identified algorithms
that can achieve `-diversity against an adversary who knows the
algorithm. Compared to their algorithms, ours add less restrictive
constraints and thus potentially have better data utility. We also
demonstrated that the effects of the minimality attack are limited.

New attacks and countermeasures continue to be proposed. A
limitation of our approach is that we focus on the case where the
attacker has limited background knowledge, and so makes a unifor-
mity assumption over the possible worlds implied by the anonymized
data. However, recent work has considered extracting information
about correlations between QIs and SAs in the anonymized data
itself, and used this to modify beliefs about the likelihood of pos-
sible worlds [6, 17]. These so-called “foreground knowledge” or
“deFinetti” attacks allow an attacker to again raise their confidence
above the 1/` level. The observed effects are most pronounced on
small groups (of size 2 to 4 tuples). An open problem for the com-
munity is to exhibit algorithms where the effect of such attacks is
bounded or removed, just as we have for the minimality attack.

B. EXAMPLES OF MINIMALITY ATTACK

QI SA
a Negative
b Negative
c Positive
d Positive

(a) Example for GG algorithm

QI SA
a Negative
b Negative
c Negative
c Negative
c Positive
d Positive

(b) Example for Mondrian

Figure 6: Examples of minimality attack on anonymized data

The anonymized table shown in Figure 6(a) shows a group of 4
items that has been formed by GG with a binary 2-diversity require-
ment. The grouping is shown prior to recoding. The left column
shows the set of QIs present in the group in lexicographic order
(stylized as values a, b, c, d) and the right column shows that there
are two “positive” and two “negative” values associated with the
data. The intent is that any bijection between the QIs and SAs in
this group should be possible, and since ` = 2, no QI should be
associated with a positive value with probability greater than 1

2
.

However, knowing that the GG algorithm was used, an attacker
can learn more. The algorithm considered the input in the or-
der a, b, c, d, and must have decided not to release the grouping
{a, b}—therefore, this must not meet `-diversity. The only way
that this could happen given the tuples present in the group is if
both a and b were positive, violating the privacy requirement.

In Figure 6(b), the data is grouped (again, prior to recoding)
to meet binary 2-diversity using Mondrian with strict partition-
ing. The QI value c is the median of the group, and in this im-
plementation of Mondrian, the two groups considered were {a, b}
and {c, c, c, d}. If both positive values were in the larger group
{c, c, c, d}, this would have met the diversity requirement. Simi-
larly, if only one positive value was in each group, the result would
also meet the diversity requirement. So it must be that both a and b
were positive, again violating the privacy requirement.

By contrast, if the Anatomy algorithm had been used to obtain
binary 2-diversity, no such inference would be possible: in Figure
6(a), the SAs would be split into two groups with a positive and
negative value in each, but the attacker would have no further in-
formation with which to identify the corresponding QIs. Likewise,
in Figure 6(b) the split would be into three groups with at most
one positive value in each, and the attacker could make no further
inference.

C. DETAILED TECHNICAL MATERIAL
C.1 Proof of Claim 4

CLAIM 4. Methods which choose an SA-Intact grouping based
on sensitive attributes alone are safe from the minimality attack.

PROOF. Consider such a method which does not examine the
quasi-identifiers at all during the formation of groups. Then the
QI values for each input item could be altered completely, and the
algorithm would be just as likely to find the same grouping. In
particular, for any given group, the QIs could be interchanged so
that any possible mapping of QIs to rows would be possible, and
the same grouping would still result from the anonymization. But
this means that the attacker has no way of establishing which QI
belonged to which original row (beyond what is published), and
hence to which original SA, within a group.

C.2 Proof of Theorem 5
THEOREM 5. Given the output of an even-split algorithm, knowl-

edge of the algorithm used and possible QI groups considered, the
adversary’s belief in the probability of any item in any possible
group taking a particular sensitive value is at most 1/(`− 2

3
).

PROOF. The output of the algorithm consists of a set of groups
of QIs and the corresponding set of groups of sensitive values.
These form a partition of the original input to the algorithm. Clearly,
the output groups give more information about individuals than any
groups corresponding to ancestors in the tree. So consider a partic-
ular output group, and the child groups which it could have been
partitioned into. Assume that the algorithm considered partition-
ing this group into its children, but did not since this would have

1053

violated the diversity requirement. We treat this as a deterministic
decision; allowing a random choice only decreases the adversary’s
confidence in the probability of various outcomes.

Let the group under consideration be denoted G, and consider
any sensitive value x present in G. Suppose this value occurs r
times within G, and that G is formed from the union of k ≥ 2
subgroups. We reason about the probability of x in each of these
subgroups. If all subgroups have the same size, then by the sym-
metry, any possible assignment of the a copies of x to each group
is equally likely. Since G is `-diverse, the probability of x in each
group is also at most 1/`.

Therefore, the case to consider is when the k subgroups are not
equal in size. By the conditions on the grouping, some are size s−1
and the rest are size s. Since we assume that some subgroups is not
diverse, let r be the smallest value so that r/(s − 1) > 1/`. Con-
sider the possible worlds that have various numbers of instances of
x in each of the k subgroups. We can have at least r copies of x in
the smallest group, and the remaining copies divided between the
other groups. Let v be a vector of k values which records how many
copies of x are in each group: v1 indicates the number in the first
group, and so on. Due to the similarity of sizes of the other groups,
if there are r + 1 or more copies of x present, then they cannot
satisfy the diversity condition: since s ≥ r + 1 (otherwise, it is not
possible to have this many copies of x present in a group), it follows
that rs+s− r−1 ≥ rs, and hence (r+1)/s ≥ r/(s−1) > 1/`.
The other case to analyze is whether r copies of x are placed in a
group of size s is diverse or not. If it is not, then r/s ≤ 1/` while
r/(s − 1) > 1/`, and so s = r`. Consequently, with r copies
of x in a group of size s − 1 gives the adversary a probability of
r/(s− 1) = s/(s− 1) · 1/`.

We analyze all possible vectors v which have at least one group
violating the diversity requirement. First, consider all vectors which
have one entry at least r+1. For each such vector, consider all vec-
tors which are permutations of it: observe that they all correspond
to assignments of copies of x to groups so that at least one group
has more than r + 1 copies, and hence cannot be diverse. Across
all these vectors then the average number of copies of x in each
group is

Pk
i=1 v1/k = r/k. Each possible assignment generates

almost the same set of possible worlds: there are slightly more pos-
sible worlds corresponding to cases with the lack of diversity due
to groups of size s than size s− 1, but this only weakens the adver-
sary’s knowledge. Hence, for groups of size s− 1, the adversary’s
belief is bounded by

r

k(s− 1)
≤ 1

`
· |G|
ks− k

≤ 1

`
· ks− 1

ks− k
≤ s

s− 1
· 1

`

for s ≥ 1.
The only remaining cases are those where there are r copies of

x associated with groups of size s− 1. The confidence on just this
subset is also at most s/(s−1)·1/`, so no matter how much weight
is placed on either of these two cases, the attacker’s confidence can
be at most this much. Since s − 1 ≥ ` (else the algorithm would
not have considered a group of this size, as `-diversity requires the
group to be size at least `), the bound can be written as 1/(`− `

`+1
).

For any reasonable `, this is only marginally worse than 1/`: in
the worst case, ` ≥ 2 so the final guarantee on the adversary’s
knowledge is essentially equivalent to (`− 2

3
)-diversity.

C.3 The Symmetric Grouping Algorithm.
Consider the input to the greedy grouping, which is the data

sorted based on some chosen ordering. We apply a natural even-
split algorithm to this: starting with the full data, consider the split
that divides the current group under consideration into two almost

Input: a microdata table T and a parameter `
Output: a set of groups {G1, G2, ..., Gp} such that
{G1, G2, ..., Gp} is a partition of T
and each group Gi (1 ≤ i ≤ p) satisfies `-diversity.
1. Initialize G1 = T .
2. Split the current group G = tl . . . tr into G′ = tl . . . tb(l+r)/2c

and G′′ = tb(l+r)/2c+1 . . . tr .
3. If both G′ and G′′ satisfy `-diversity, recurse on each in turn.

Figure 7: Symmetric Grouping Algorithm with `-diversity

equal halves, say by always breaking ties with the larger group con-
sisting of the left half of the items under the given ordering (hence
the algorithm remains quite deterministic; it is the symmetric na-
ture which avoids minimality attack). If both new groups satisfy the
privacy requirement, then we recurse on each group in turn, else we
keep the current group, and terminate this branch of the recursion.
Pseudocode for a realization of SG is given in Figure 7 in the ap-
pendix. We note that although described in a top-down fashion, the
algorithm can also be thought of as bottom-up: starting with the
leaf-level groups, merge a node with its sibling if it does not meet
the diversity requirement. Given the same hierarchy of groups over
an input, the bottom-up merging reaches the same final grouping
as the top-down approach. The bottom-up method looks similar
to the greedy grouping algorithm, but made symmetric: instead of
growing groups left-to-right, the algorithm grows groups respect-
ing the hierarchy, and merges a pair if either neighbor is unsafe.
However, by Theorem 5, there is very little information that an ad-
versary can deduce from the output of SG, whereas we have seen
several examples where GG reveals more information.

C.4 Proof of Theorem 7
THEOREM 7. For any output group G, p(b1) ∈ (1/`, e/`).

PROOF. As for the deterministic version of GG, it suffices to
consider a single group G alone. By definition, G is formed from
the union of a set of buckets, and the QI values of the buckets are
known. However, the associations between the QI values and the
sensitive attribute values are not known.

We consider all possible assignments of the sensitive values to
the QI values. Each assignment is viewed as a possible world, W .
In some possible worlds, the first bucket b1 meets the privacy guar-
antee and so the merge is voluntary; we call the set of such possible
worlds WS. We call the set of worlds where this does not hold
WN. Note that the relative sizes of these two sets is data depen-
dent. In one extreme case, all sensitive values in G are distinct (or
negative), |WN| = 0. Here, all possible worlds are safe, so if G
consists of more than one bucket, the merges must all have been
voluntary. Another extreme case is when each sensitive value in G
occurs exactly a 1/` fraction of the time. Here, |WN| � |WS|, so
it is much more likely that the merges were forced.

Without additional knowledge, we must treat each of the pos-
sible worlds in WS as equally likely (we write this probability
as Pr[W ∈ WS]); similarly, each possible world in WN is also
equally possible (let the probability be Pr[W ∈WN]). When min-
imality attacks are not considered, Pr[W ∈WS] = Pr[W ∈WN]
and therefore the probability that a record r ∈ g takes a positive
sensitive value is the fraction of positive values in G. When ap-
plying the minimality attack to the (deterministic) GG algorithm,
Pr[W ∈WS] = 0 and Pr[W ∈WN] = 1

|WN| .
For the binary `-diversity guarantee, the probability that a record

in the first bucket b1 is sensitive assuming W ∈ WS is given by
p(b1|W ∈ WS). The probability p(b1|W ∈ WN) is defined simi-

1054

larly for W ∈ WN. Then p(b1), the probability that a record in b1

is sensitive is given by

p(b1) =|WS|Pr[W ∈WS]p(b1|W ∈WS)

+|WN|Pr[W ∈WN]p(b1|W ∈WN)

The probability that a uniformly chosen world W belongs to
WS is given by |WS|/(|WS| + |WN|), but the probability that
this results in a merger is p|WS|/(|WS| + |WN|). Given that a
merger took place, we can write Pr[W ∈ WS] = p

p|WS|+|WN| and
Pr[W ∈WN] = 1

p|WS|+|WN| . Note that when p = 0, the bound re-
duces to the simpler case where all possible worlds belong to WN.
The bound on p(b1) is now

p(b1) =
p|WS|px(b1|W ∈WS) + |WN|px(b1|W ∈WN)

p|WS|+ |WN|

From our analysis in Section 3), we have that p(b1|W ∈WS) ≤
1/` and p(b1|W ∈WN) ≤ e/`. Thus,

p(b1) ≤
p|WS|+ |WN|e

`(p|WS|+ |WN|) ∈ (1/`, e/`]

D. ANALYSIS OF GREEDY GROUPING
D.1 Reducing to the first bucket b1

In the next theorem, we show that the greatest privacy risk occurs
within the first bucket b1.

THEOREM 8. Given an output group G1,m =
Sm

j=1 bj where
the buckets are in the order of b1, b2, · · · , bm, we have

∀1 ≤ i < m : p(bi) ≥ p(bi+1).

PROOF. Any group G1,m output by GG could have resulted
from any one of many possible input relations. Each possible world
corresponds to a permutation of the sensitive values in G1,m. We
analyze these possible worlds by grouping together all worlds which
share the same number of positive values in each bucket. Each such
grouping of possible worlds can be mapped to a sequence of m in-
tegers from [` + 1]m, recording the number of positive values in
each of the m buckets in turn. A possible world could have been
the input relation if and only if the corresponding sequence is valid,
i.e., it satisfies the constraints given by Inequations (1) and (2).
Each valid sequence implies a set of valid worlds, although note
that the number of worlds generated by different sequences varies.

Consider such a sequence (n1, n2, . . . , nm). Observe that, for
it to be valid, we must have

Pm
i=1 ni = m: it cannot be more,

else the full sequence is not `-diverse, and it cannot be less, else
some prefix is `-diverse. To analyze the likelihoods of different
numbers of positive values within the buckets, we hold all elements
of the sequence fixed, except for ni and ni+1. Then the value r =
ni + ni+1 is also fixed, by the above observation. We consider all
possible assignments of ni and ni+1 that generate valid sequences.
Certainly, if assigning (ni = c, ni+1 = r − c) generates a valid
sequence, then (ni = c + 1, ni+1 = r − c + 1) is also a valid
sequence. Let the minimum value for ni that generates a valid
sequence be t, then ni = j, ni+1 = r − j is valid, provided t ≤
j ≤ r; all other assignments are invalid.

Let the number of valid worlds corresponding to this sequence
with (ni = j, ni+1 = r − j) be Nj . Then we have Nj = Nr−j ,
since we can establish a bijection between the worlds in each case:
essentially, any world with (ni = j, ni+1 = r − j) becomes a

world with (ni = r − j, ni+1 = j) by exchanging buckets i and
i + 1. Now we can calculate

p(bi) =

Pr
j=t jNjPr
j=t Nj

and p(bi+1) =

Pr
j=t(r − j)NjPr

j=t Nj
.

Therefore, p(bi)− p(bi+1) =

Pr
j=t(2j − r)NjPr

j=t Nj
.

To prove the theorem, we show that the numerator is never neg-
ative. When t ≥ r/2, we have (2j − r)Nj ≥ 0 for all t ≤ j ≤ r.
Then p(bi)− p(bi+1) ≥ 0 .

When t < r/2, write T =

rX
j=r−t+1

(2j − r)Nj , so we have

rX
j=t

(2j − r)Nj

= T +

br/2cX
j=t

(2j − r)Nj +

r−tX
j=br/2c+1

(2j − r)Nj

= T +

r−tX
j=r−br/2c

(2(r − j)− r)Nr−j +

r−tX
j=br/2c+1

(2j − r)Nj

= T +

r−tX
j=br/2c+1

(r − 2j)Nj +

r−tX
j=br/2c+1

(2j − r)Nj

= T ≥ 0

We have p(bi) ≥ p(bi+1) for any sequence (k1, k2, · · · , km).
Therefore, p(bi) ≥ p(bi+1).

D.2 Calculation of p(b1).
Following the analysis in Theorem 8, in a given world we have ni

occurrences of positive sensitive values in bucket bi, and
mX

i=1

ni = m (3)

Note that Equation (3) guarantees that Inequation (1) holds since

f(G1,m) = m
m`

= 1
`

The constraints given by Inequation (2) are equivalent to

∀1 ≤ j < m :
Pj

i=1 ni ≥ j + 1 (4)

We calculate p(b1) for b1 by enumerating all possible worlds
consistent with the output group G1,m. Each possible world of
G1,m corresponds to a permutation of the sensitive values in G1m

so that Equation (3) and Inequations (4) are satisfied. Based on the
random worlds assumption, we must consider each possible world
to be equally likely. The probability p(b1) is calculated simply by
dividing the expected number of positive values in b1 (written as
E[n1]) by the size of b1, i.e.:

p(b1) = E
h

n1
|b1|

i
(5)

Let m∗ = min{m, `}, an upper bound on any ni, and let Nk be
the number of possible worlds where n1 = k. Then, we have

E(n1) =

Pm∗

k=2 kNkPm∗

k=2 Nk

(6)

By Inequation (2), n1 ≥ 2, i.e., bucket b1 must contain at least 2
positive values. Since |b1| = `, combining Equations (6) and (5)

1055

yields

p(b1) =

Pm∗

k=2 kNkPm∗

k=2 `Nk

(7)

Equation (7) is our formula for calculating the adversary’s belief
p(b1). We separately give a closed form for the numerator and the
denominator (given by Lemmas 10 and 11). First, we compute Nk.

LEMMA 9. Nk =
k − 1

m− 1

`

k

!
m`− `

m− k

!
m!(m`−m)!

PROOF. Recall the notion of a sequence, which counts the num-
ber of occurrences of positive sensitive values in each bucket. Nk

is found using sequences which have n1 = k, and obey Inequation
(4) and (3). Such sequences are called “valid” sequences.

To prove the lemma, we show a stronger result: among all se-
quences of length m that start with 1 ≤ k ≤ m and then with
permutations of (n2, n3, · · · , nm), the fraction of valid sequences
is k−1

m−1
. When we apply this result to all possible subsequences of

length m− 1 for (n2, n3, · · · , nm), we obtain the lemma.
We prove the above result by induction on m. For m = 1, the

only possible sequence is (1) which is trivially not valid. For m =
2, there are three possible sequences: (2, 0) is valid, (1, 1) is not
valid, and (0, 2) is not valid.

Assume as the induction hypothesis that the lemma holds for m.
In other words, among all sequences of length m that start with
1 ≤ k ≤ m and then with permutations of (n2, n3, · · · , nm), a
k−1
m−1

fraction of the sequences are valid. We show that the result
also holds for the case of m + 1. Consider all sequences of length
m + 1 that start with 1 ≤ k ≤ m + 1: (k, n1, n2, · · · , nm). For
k = m + 1, there is only one possibility, (m + 1, 0, 0, · · · , 0),
which is always a valid sequence.

For 1 ≤ k ≤ m, we notice that (k, n1, n2, · · · , nm) is valid iff
(k+n1−1, n2, · · · , nm) is valid. By the induction hypothesis, the
fraction of such sequences that are valid is k+n1−2

m−1
. We repeat this

analysis for all possible permutations of (n1, n2, · · · , nm). The
overall fraction of valid sequences is the average, given by

1

m

mX
i=1

k + ni − 2

m− 1

=
km + (m + 1− k)− 2m

m(m− 1)

=
k − 1

m

Therefore, the result also holds for m + 1. By induction, we have
shown that the fraction of valid sequences is k−1

m−1
among all se-

quences of length m that start with k. the total number of all these
sequences is

`

k

!
m`− `

m− k

!
m!(m`−m)!

Therefore, Nk =
k − 1

m− 1

`

k

!
m`− `

m− k

!
m!(m`−m)!

Lemma 9 allows us to bound the numerator and denominator of (7).

LEMMA 10.
m∗X
k=2

kNk =
`(`− 1)

m− 1

m`− 2

m− 2

!
m!(m`−m)!

PROOF. Using Lemma 9, we havePm∗

k=2 kNk

m!(m`−m)!
=

m∗X
k=2

k(k − 1)

m− 1

`

k

!
m`− `

m− k

!

=

m∗X
k=2

`(`− 1)

m− 1

`− 2

k − 2

!
m`− `

m− k

!

=
`(`− 1)

m− 1

m`− 2

m− 2

!

LEMMA 11.
m∗X
k=2

`Nk =
`

m− 1

m`− `

m

!
m!(m`−m)!

PROOF. Using Lemma 9, we havePm∗

k=2 Nk

m!(m`−m)!
=

m∗X
k=2

k − 1

m− 1

`

k

!
m`− `

m− k

!

=

m∗X
k=1

k − 1

m− 1

`

k

!
m`− `

m− k

!

=

m∗X
k=1

k
`

`
k

´`
m`−`
m−k

´
m− 1

−
m∗X
k=1

`
`
k

´`
m`−`
m−k

´
m− 1

=

m∗X
k=1

`
`

`−1
k−1

´`
m`−`
m−k

´
m− 1

−
`

m`
m

´
−
`

m`−`
m

´
m− 1

=
`
`

m`−1
m−1

´
−
`

m`
m

´
+
`

m`−`
m

´
m− 1

=
1

m− 1

m`− `

m

!

THEOREM 6. For any output group G1,m, p(bi) < e
`

.

PROOF. From Theorem 8, it suffices to analyze p(b1). We com-
pute p(b1) from Equation (7) by combining Lemmas 10 11.

`p(b1) =

Pm∗

k=2 kNkPm∗

k=2 Nk

=
`(`− 1)

`
m`−2
m−2

´`
m`−`

m

´
=

m(m− 1)`(`− 1)(m`− 2)!(m`− `−m)!

(m`−m)!(m`− `)!

=
(m`− 2)!(m`− `−m)!

(m`−m− 1)!(m`− `− 1)!

=

`−1Y
j=1

m`− 1− j

m`−m− j

=

`−1Y
j=1

`
1 +

m− 1

m`−m− j

´
≤

`−1Y
j=1

`
1 +

m− 1

m`−m− (`− 1)

´
=
`
1 +

1

`− 1

´`−1
< e

Therefore, we have p(b1) < e/`.

1056

