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ABSTRACT
User generated content that appears on weblogs, wikis and social
networks has been increasing at an unprecedented rate. The wealth
of information produced by individuals from different geographical
locations presents a challenging task of intelligent processing.

In this paper, we introduce a methodology to identify notable
geographically focused events out of this collection of user gener-
ated information. At the heart of our proposal lie efficient algo-
rithms that identify geographically focused information bursts, at-
tribute them to demographic factors and identify sets of descriptive
keywords. We present the results of a prototype evaluation of our
algorithms on BlogScope, a large-scale social media warehousing
platform. We demonstrate the scalability and practical utility of our
proposal running on top of a multi-terabyte text collection.

1. INTRODUCTION
User generated content that appears on blogs, microblogging

websites, wikis and social networks proliferates at profound rates.
The number of active blogs, for instance, is estimated at the order of
tens of millions, while several hundreds of millions of user profiles
exist in the largest social networking sites. In this context, several
attributes of interest can be captured automatically to a certain ex-
tent and can be utilized for the further analysis of the contributed
information. In the blogosphere, for example, each blogger has
a well defined physical location captured by a profile, while each
piece of information contributed by bloggers (a blog post) is associ-
ated with a timestamp that declares the time the post was published.
In addition, demographic information is disclosed such as age, gen-
der, or profession, to name a few. Similar information is available
for users of social networks or microblogging services.

In the context of the BlogScope1 project [4], we have built the
infrastructure to automatically collect information published online
by individuals. The project aims to create a scalable data aggrega-
tion platform equipped with data mining and language processing
primitives to support advanced information retrieval tasks. Cur-
rently, BlogScope tracks the Blogosphere, news sources, social net-
works, and several other online forums. In addition, it warehouses
1http://www.blogscope.net

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

metadata about the content, including time of creation and demo-
graphic profile of the author, based on publicly available informa-
tion. At the time of writing, the platform was indexing more than
500M text documents, adding over 1M new documents daily.

Given such a vast collection of information we are interested in
automating the process of information discovery. A fundamental
property of social media that is utilized by information aggregators,
such as ours, is the following: when an event of interest to a certain
segment of individuals takes place there is a surge in the volume
of documents related to the event; as a result, such a surge of in-
formation (an information burst) can be utilized to identify events
of interest. For example, there were many events associated with
Barack Obama that took place within the last year. However, some
of them prompted more individuals to write about them. For exam-
ple the election of Barack Obama to the US presidency sparked a
lot of online activity and had a precise temporal scope; it took place
on November 4th 2008. As a result, for a few days in the vicinity of
November 4th, there was an information burst related to that event.

Such information bursts are commonly associated with points or
ranges in time and often have a clear geographical scope. Consider
an event (say a scandal) associated with a public figure in London.
Since the scope of the event is local it is expected that informa-
tion will be contributed mainly by individuals from London. In
this case, an information burst with a clearly identified geographi-
cal component (spatial information burst) can be identified. Taking
this idea one step further, one can utilize additional information
from the online profile of individuals in an attempt to attribute the
information burst to specific demographic factors. For example one
might identify that an information burst related to a concert is pri-
marily attributed to males of age between 20 and 35.

As a final step in information discovery, after an information
burst has been identified, it is possible to extract information from
the related documents in order to describe the event that caused the
burst. The idea is that since all documents associated with the in-
formation burst comment on the same event, some keywords are
frequently used together and when identified, they shed light on the
burst. Moreover, they offer suggestions for query expansion so that
documents related to the specific event can be retrieved with high
precision. Continuing the example for query ‘Barack Obama’, key-
words correlated with the information burst pertaining to his elec-
tion would be ‘election’, ‘president’, ‘McCain’, etc.

This paper proposes algorithmic techniques for the tasks defined
above. In summary, we make the following contributions: (1) We
introduce scalable algorithms to identify spatial information bursts.
(2) We present efficient techniques to attribute bursts to specific
demographic factors. (3) We present techniques to analyze bursts
and effectively identify sets of keywords that describe the burst.

The paper is organized as follows. Related work is discussed
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in section 2. Our contributions are provided in sections 3 to 5:
section 3 describes spatial burst detection, section 4 presents al-
gorithms that attribute spatial bursts to demographic factors and
section 5 presents techniques that produce keywords aiming to de-
scribe bursts. Section 6 contains a detailed experimental evalua-
tion of the techniques proposed in the paper. The appendix con-
tains background material on burst detection in time-series (Ap-
pendix A), improvements (Appendix B) over the basic techniques,
as well as experimental results (Appendices D, E) that complement
those of section 6. Pseudocode is provided in Appendix C.

2. RELATED WORK
Kleinberg [9] proposed a model for burst identification over doc-

ument streams. Burst detection is performed using a multi-state
automaton, where states correspond to different levels of bursti-
ness. Our contribution for spatial burst detection is inspired by that
model; we thus present it in detail in Appendix A. Another work by
Kleinberg and Tardos [10] provides a 2-approximation linear pro-
gramming algorithm to our spatial burst detection problem. Fung
et. al. [8] used a model similar to [9] for the detection of bursty
keywords in document streams. The paper showed how to utilize
bursty keywords for document classification. In another work [15],
Zhu and Shasha focused on the efficient detection of bursty win-
dows in time series.

Statistical discrepancy functions are used to quantify the differ-
ence between distributions and are commonly used to identify re-
gions where two spatial distributions differ significantly. Such re-
gions can be interpreted as areas where one spatial distribution ex-
hibits a burst in comparison with the other. There is a long line of
work that deals with this problem [1, 2, 6, 11]. The work in [1], for
example, provides both exact and approximate algorithms to iden-
tify the maximum discrepancy rectangle on a surface. The main
drawback of such approaches is that they are high polynomial and
in practice not scalable to large data collections. We included the
maximum discrepancy methods in our experiments (Section 6) as a
comparison baseline for the performance of our techniques.

In [3], Backstrom et. al. use a probabilistic framework to identify
the centers of search activity related to search engine queries, as
well as measure the dispersion of such activity around its center.
The notion of ‘search activity center’ intuitively corresponds to the
notion of ‘spatial burst’ as defined and used in our work. However,
there are two important differences between the two approaches.
The first is that [3] assumes prior specification of the number of
search activity centers, while our spatial burst framework is not
restricted to a predefined number of spatial bursts. Secondly, in
contrast with our approach, parameter estimation in [3] is done over
an unbounded parameter space, that can lead to poor performance,
as demonstrated in the experimental section.

The problem of burst attribution, namely determining the demo-
graphic factors that primarily contribute to a burst, is related to the
problem of explaining differences in a data cube. In [13], Sarawagi
proposed techniques to help OLAP analysts navigate a data-cube,
focusing on tuples that explained big differences at an aggregate
level. The algorithmic techniques and developments herein are
highly distinct as the problem formulation in our case is different
than that in the case of OLAP cubes.

Fung et. al., [7], proposed an algorithm to construct a hierarchy
of events related to a particular query. The basic idea is to first
identify events associated with specific bursty keywords and then
hierarchically create sub-events by clustering similar documents.
Document clustering, however, requires significant processing. We
seek to develop interactive and highly scalable solutions.

3. SPATIAL BURSTS
Consider a setting where geographically distributed individuals

contribute information in the form of documents. Each document d
is authored by an individual that resides in a specific geographical
location gd, declared in the individual’s profile. Moreover, it is as-
sociated with a timestamp td that indicates the time d was created,
as well as other metadata, such as the age or gender of the author.

In this setting, it is natural to seek spatial bursts of information,
i.e. geographic locations at which documents related to specific
keywords exhibit a surge. For example, one may look for loca-
tions that exhibit a surge in documents that contain the keywords
“barack”, “obama” and were created on November 4th, 2008 (day
of US elections). In general, one specifies a set of keywords q and a
time interval δt and identifies locations that exhibit a surge in doc-
uments that were created within δt and contain q. In what follows,
we use the term ‘query’ to refer to the set of keywords q.

Documents d are collected and stored inside a data warehousing
system. Specifically, consider a system that provides the following
functionality 2 : given a query q and a time range δt, the system
returns the following sets of documents: (i) the setDδt of all docu-
ments dwith a timestamp td within δt, (ii) the setRδt of documents
d that contain all keywords q and whose timestamp td belongs to
δt. In what follows, documents d ∈ Rδt will be referred to as
‘relevant’ to query q.

LetG be a grid; for a suitable choice of granularity, geographical
entities of interest (e.g., cities) correspond to a cell in this grid3. In
light of G, each document can be mapped to a particular cell of
the grid. Also, given query q and time range δt, the sets Rδt and
Dδt of documents returned by the system are associated with two
spatial distributions: (a) RS = RSδt, the spatial distribution of the
relevant documents published within δt, (b) DS = DS

δt, the spatial
distribution of all documents published within δt.

Spatial bursts are identified as cells for which the value of RSδt is
large in comparison with that of DS

δt. One simple way to identify
spatial bursts, then, is to threshold the fraction of relevant docu-
ments rg over the total number of documents dg that correspond
to cell g. This approach however, might lead to the identifica-
tion of ‘spurious bursts’, i.e. identification of ‘bursty’ cells that
either are associated with a small number of total documents dg
(but large ratio rg/dg) or are geographically isolated. This is not
desirable in cases when one looks for bursty cells g associated with
large dg or in the vicinity of other bursty cells. The spatial burst
model described in the paragraphs that follow allows to avoid ‘spu-
rious bursts’ but also contains the simple approach that was just
described as a special case.

In order to identify cells with RSδt values that are large in com-
parison with their DS

δt values, we model the state of cells of G
using two binomial distributions BIN(p0) and BIN(p1), 0 ≤
p0 < p1 ≤ 1. This corresponds to a generative model where
each document in a cell satisfies query q with a smaller (p0) or
larger (p1) probability, leading to a smaller (p0) or larger (p1) ex-
pected fraction rg/dg of relevant documents. Then, we character-
ize as ‘bursty’ those cells whose RSδt and DS

δt distribution values
are ‘closer’ to BIN(p1) rather than BIN(p0). We thus recognize
two fundamental states for cells g ∈ G, namely ‘bursty’ (sg = 1)
and ‘non bursty’ (sg = 0). Following the intuition behind using
binomial distributions in the model, parameters p0 and p1 are set
to represent what we consider to be a low or high fraction rg/dg of

2For a description of the technology used to provide such function-
ality the interested reader is referred to [12].
3In BlogScope, we use a grid with a granularity of nearly 2.5 de-
grees of latitude and longitude per cell.
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relevant documents in a cell, based on distributions RSδt and DS
δt.

Characterization of cells as bursty or non-bursty is formulated as
a minimization problem of an additive cost function C. For each
cell there is a term that penalizes the ‘distance’ of the cell’s RSδt
and DS

δt values from the binomial distribution that corresponds to
its state. As a penalty measure we use the negative log-likelihood.
Thus, for a cell g that contains rg relevant documents, dg total doc-
uments and is either bursty (sg = 1) or non-bursty (sg = 0), the
cost function contains a term

c(sg, rg, dg) = − log

[(
dg
rg

)
p
rg
sg (1− psg )

dg−rg

]
.

In addition, to avoid ‘spurious’ bursts, a cost term that penalizes
neighboring cells of different state is included. Specifically, for
neighboring cells with states x and y, the cost function includes a
term τ(x, y) defined as

τ(1, 0) = τ(0, 1) = γ ≥ 0, τ(0, 0) = τ(1, 1) = 0.

What value we set for γ depends on how strict we are against ‘spu-
rious bursts’. In what follows, when two neighboring cells are as-
signed different states we say that there is a transition between them
and that a transitional cost is imposed. Transitions between cells
form a graph (with cells corresponding to nodes and transitions to
edges between nodes) to which we refer as the transition graph.

Summing all terms up, cost function C takes the form

C =
∑
gi,j∈G

c(sgi,j , rgi,j , dgi,j )+τ(sgi,j−1 , sgi,j )+τ(sgi−1,j , sgi,j )

where sgi,j is the state of cell gi,j with coordinates i and j on the
grid. The problem of identifying spatial bursts is defined as follows.

PROBLEM 3.1 (SPATIAL BURSTS). Given a spatial distribu-
tionRS of documents related to a query q and a spatial distribution
DS , both over a gridG, assign bursty and non-bursty states to cells
in G so that cost function C is minimized.

In the special case of γ = 0, all transitional costs are equal to
zero (0). Then, the cost function takes the form

C = C1 =
∑
g∈G

c(sg, rg, dg)

and is minimized by states sg that independently minimize the cor-
responding cost term c(sg, rg, dg). Specifically, a cell g is assigned
state s1 iff

c(1, rg, dg) < c(0, rg, dg)⇔

− log

[(
dg
rg

)
p
rg
1 (1− p1)dg−rg

]
< − log

[(
dg
rg

)
p
rg
0 (1− p0)dg−rg

]

⇔ rg
dg

>
log
(
(1− p0)/(1− p1)

)
log
(
(1− p0)/(1− p1)

)
+ log(p1/p0)

.

Therefore, in the special case where transitional costs are not taken
into account, states are determined simply by the fraction of rele-
vant documents rg/dg in a cell.

In the general case when γ ≥ 0, problem 3.1 is NP-hard [10] and
is solved in a straightforward manner by a dynamic programming
algorithm. Consider the grid shown in figure 1. Cells in the grid
are grouped by diagonals — in figure 1, for instance, cells of the
(t − 1)-th or t-th diagonal are grouped together. States of cells in
the same diagonal are represented by a vector; for example, states
in the (t − 1)-th and t-th diagonal are denoted by vectors L and

L3

L1

L2

J4

J3

J2

J1

t-1 t

i

j

Figure 1: A dynamic programming algorithm solves Prob. 3.1.

J , respectively. Arrows between cells depict possible transitions.
Let CJ(t) be the optimal cost corresponding to the part of the grid
between the 1-st and the t-th diagonal, when the states of cells in
the t-th diagonal are given by vector J . Similarly, let CL(t) denote
the optimal cost for the part of the grid between the 1-st and the (t−
1)-th diagonal, when the states of cells in the (t−1)-th diagonal are
given by vector L. Then, CJ(t) can be written in terms of CL(t)
and the transition costs between the (t− 1)-th and t-th diagonal

CJ(t) = CJ1 (t) + min
L

(CL(t− 1) + τ(J, L)) (1)

where CJ1 (t) is the sum of c() terms along the t-th diagonal when
the burst states of its cells are given by a vector J . Notice that
for a particular diagonal with d cells, there are 2d possible ways to
set the associated vector of (burst) states. Therefore, the dynamic
programming algorithm that follows equation 1 is of exponential
complexity with respect to the grid size and is thus prohibitively
costly for practical scenarios.

We provide a practical solution to Problem 3.1 by solving a sim-
ilar but easier cost minimization problem, namely Problem 3.2.
Problem 3.2 is similar to Problem 3.1 in that its cost function also
penalizes (a) the ‘distance’ of a cell’s RSδt and DS

δt values from the
binomial distribution that corresponds to its state and (b) transitions
between cells. However, Problem 3.2 is defined so that it is easier to
solve. Therefore, solutions to Problem 3.2 are much more efficient
to obtain and, as we show experimentally in section 6, they can be
used as good heuristic approximations to solutions of Problem 3.1.

Unlike Problem 3.1, in Problem 3.2 only a subset of all possi-
ble transitions between grid cells are taken into account in the cost
function. Let gij be a cell and consider gi,j−1 and gi−1,j , two of
its neighboring cells. Problem 3.2 considers the transition cost be-
tween gij and only one of cells gi,j−1 or gi−1,j , namely the one that
under Problem 3.1 would be more ‘likely’ to impose a transitional
cost. Specifically, if values of RSδt and DS

δt for cell gij are closer to
BIN(p1), then Problem 3.2 considers the transition cost only be-
tween gij and the cell (gi,j−1 or gi−1,j) that is closer toBIN(p0).
Inversely, if cell gij is closer to BIN(p0), then a transition is con-
sidered only between gij and the cell that is closer to BIN(p1).
Ties are resolved by always considering a transition from gi,j−1.
The graph of transitions considered by Problem 3.2 will be similar
to the example of figure 2 and is in fact a set of binary trees.

Consequently, the cost function for Problem 3.2 is

C = C1 + C2 =
∑
gi,j

(
c(sgij , rij , dij) + τ(sg, sgij )

)
(2)

where, for every gi,j , we define g as

g = argmaxg′∈{gi,j−1,gi−1,j}{c(0, rg′ , rg′)− c(1, rg′ , rg′)}.
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when

c(0, rgij , rgij ) < c(1, rgij , rgij )

and as

g = argmaxg′∈{gi,j−1,gi−1,j}{c(1, rg′ , rg′)− c(0, rg′ , rg′)}.

when

c(0, rgij , rgij ) > c(1, rgij , rgij ).

The formal definition of Problem 3.2 is the same with that of Prob-
lem 3.1, except that cost function C is given by formula 2.

Figure 2: The graph of transitions considered by Problem 3.2
form a set of trees.

Problem 3.2 is also solved by a dynamic programming algo-
rithm, however much more efficiently than Problem 3.1. Let root
be a cell of the grid and left, right be its children on a tree of tran-
sitions. Moreover, let Cs(root) be the optimal cost for the cells
of the binary tree rooted at cell root, when root is assigned state
s (similarly for Csl(left), Csr (right)). Then, Cs(root) can be
expressed in terms of Csl(left) and Csr (right):

Cs(root) = Cs1(root)+ min
(s1,s2)

(Cs1left+τ(s, s1)+C
s2
right+τ(s, s2))

(3)
where Cs1(root) is the cost term c() evaluated for cell root with
state s. The dynamic programming algorithm that follows equa-
tion 3 is linear with respect to the number of cells it considers.

PROPOSITION 1. Problem 3.2 over a n × n grid is solved in
O(n2) time.

Proof For every node in a tree we solve the minimization problem
for b = 2 different states, considering every time O(b2) = O(4)
different cases for its children. The total number of nodes of all
trees is O(n2). Thus, the total complexity of the algorithm is
O(n2b3) = O(8n2) = O(n2). �

Let s-Spatial be the algorithm that produces the transition graph
and decides the states of grid cells according to equation 3 (pseu-
docode provided in Appendix C, Alg. 1). As we demonstrate ex-
perimentally in section 6, algorithm s-Spatial produces solutions
that are excellent approximations to the solutions of Problem 3.1
and achieves fast computation of the bursts. In appendix B, we
present i-Spatial, an algorithm that improves over the performance
of s-Spatial in the case of largely uniform spatial distributions.

4. BURST ATTRIBUTION
Spatial bursts locate geographically focused surges in online ac-

tivity related to a query. Since each individual is associated with
demographic information, a natural question that arises is whether
it is possible to attribute the burst to demographic factors. For ex-
ample, a burst in the city of Toronto in June 2009 related to singer
‘Britney Spears’, might be primarily attributed to teenage females.

There are many ways to approach and formalize the problem of
attributing a burst to profile features. One approach is to focus on a

specific set of bursty cells I (call it a region) and ask what are the
demographic factors in the absence of which no burst would have
been detected. For example, consider the query ‘Toronto Film Fes-
tival’ and the burst associated with the city of Toronto in September
2009 and suppose that all ages 20 to 50 contributed significantly to
it, while individuals of other ages did not. If it wasn’t for individ-
uals of ages 20 to 50, then, no burst would appear in Toronto and
therefore the burst can be attributed to them. Another approach is
to compare a bursty region I with a non-bursty region J and ask
what are the demographic factors that make the difference wrt the
‘burstiness’ of the two regions. Continuing the example for the
query ‘Toronto Film Festival’, suppose that in New York, where
only young people 20-30 years old wrote about the event, no burst
was captured. Comparing Toronto with New York, then, it is ages
30 to 50 that made the difference in burstiness. In the rest of the
section, we provide a formalization of these approaches.

Consider a maximal set of neighboring bursty cells I (two cells
are neighbors if exactly one of their coordinates differs by 1). We
call I a bursty region and define its burst weight to be

WI =
∑
g∈I

(
c(0, rg, dg)− c(1, rg, dg)

)
> 0. (4)

Weight WI captures how better spatial distributions RS and DS fit
a binomial distribution with parameter p1 over region I , instead of
that with parameter p0.

Without loss of generality assume that all documents can be
characterized by an attributeAwith domainDom(A) = {a1, . . . , ak}.
Formula 4 can be re-written as follows

WI =
∑
g∈I

(c(0, rg, dg)− c(1, rg, dg)) =

=
∑
g∈I

(rg log
p1(1− p0)
p0(1− p1)

+ dg log
1− p1
1− p0

) =
∑
g∈I

(rgα+ dgβ) =

=
∑
g∈I

∑
c

(rgcα+ dgcβ) =
∑
c

∑
g∈I

(rgcα+ dgcβ) =

=
∑
c

∑
g∈I

(c(0, rgc, dgc)− c(1, rgc, dgc)) =
∑
c

W c
I

with α = log p1(1−p0)
p0(1−p1)

> 0, β = log 1−p1
1−p0

< 0 and rgc (dgc)
denoting the number of relevant (all) documents from cell g with
attribute A value equal to ac. Therefore, the weight of a spatial
burst is a sum of individual weights, each corresponding to twoRS

and DS spatial distributions exclusively made of documents with
some attribute value ac.

Consider the following problem.

PROBLEM 4.1. Identify the largest set of attribute values C s.t.∑
c∈C

W c
I
< 0.

Set C has the following property: if two spatial distributions RS

and DS consisted only of documents with attribute values in C
(i.e. we had rgc = dgc = 0 for c /∈ C), then we would have

WI =
∑
c

W c
I
=
∑
c∈C

W c
I
+
∑
c/∈C

W c
I
=
∑
c∈C

W c
I
+ 0 < 0,

contrary to formula 4 and therefore, I would not have been identi-
fied as a bursty region. Therefore, it is intuitive to say that the burst
is attributed to those attribute values ac s.t. c /∈ C.
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The intuition behind the problem is illustrated with a simple
qualitative example. Suppose spatial burst detection is performed
with parameters p0, p1 for query q and time interval δt and letR,D
denote the sums of values of RS , DS respectively that correspond
to a bursty region I . Suppose also that all documents are charac-
terized by an attribute A with domain Dom(A) = {a1 = 1, a2 =
2, a3 = 3, a4 = 4}. In figure 3 we plot the sum of R values that
correspond to attribute values ac, 1 ≤ c ≤ 4 and suppose for sim-
plicity that D values are uniformly distributed over different ac’s.
In the plot, two horizontal lines indicate the thresholds implied by
the parameters p0 and p1. For all A 6= 3, the corresponding sums
of the R values are below the threshold implied by p0. Therefore,
the burst of region I is attributed to the documents with A = 3
without which the region I would not be bursty.

1  2  3  4 

R 
p0 
p1 

Figure 3: Number of relevant documents inside region I that
have A = ac, 1 ≤ c ≤ 4.

THEOREM 1. There exists an optimal algorithm to solve Prob-
lem 4.1 in O(k log k) time, with k = |Dom(A)|.

The problem is solved by sorting the weightsW c
I

and picking greed-
ily the smallest of them as far as their sum does not exceed 0 [5].

We now turn to the case we compare two geographic regions
with respect to their bursty behavior. Again, spatial burst detec-
tion is performed with parameters p0 and p1 for a query q and time
interval δt and we identify a non-bursty region I0 and a bursty re-
gion I1. Let R0 and R1 denote the values of RS that correspond to
regions I0 and I1 respectively and as before, assume that all docu-
ments are characterized with an attribute A that takes values from
the set {a1 = 1, a2 = 2, a3 = 3, a4 = 4}. For simplicity, assume
that all cells g of the grid share a common value dg and that for any
cell g and 1 ≤ c, c′ ≤ 4 we have dgc = dgc′ (all attribute values
share the same total number of documents inside a cell).

For each attribute value ac, we calculate the number of relative
documents inside regions I0 and I1 that have A = ac (i.e., we cal-
culate

∑
g∈I0 rgc and

∑
g∈I1 rgc) and we plot it in figure 4. Since

we have assumed a uniform distribution DS and the attribute val-
ues, the parameters p0 and p1 imply two thresholds in the values of
the distributionsR0 andR1, which we demonstrate with horizontal
lines in figure 4. As shown in plot of R1, the number of documents
with attribute values A = 2 or A = 3 exceeds the threshold set
by p1 and therefore these two attribute values have a positive burst
weight for region I1 – while the other two attribute values have a
negative burst weight, since they do not exceed the threshold set by
p0. Consequently, by solving Problem 4.1 for I1 we would attribute
the burst of I1 to the two attribute values A = 2 and A = 3.

However, if we compared region I1 with region I0 in terms of
burstiness, then we would notice that the plots for region I0 and re-
gion I1 are nearly identical for all attribute values except forA = 3.
Then, since region I1 is bursty while I0 is not, we should attribute
the difference in burstiness between the two regions to A = 3.

The problem of attributing differences in burstiness to particular
attribute values is stated as follows.

1  2  3  4 

R0 
R1 
p0 
p1 

Figure 4: Number of relevant documents inside the regions I0
and I1 that have A = ac, 1 ≤ c ≤ 4.

PROBLEM 4.2. Let I1 and I0 be two regions on a grid with
WI1

> 0 and WI0
< 0 . Find the largest set of attribute values

C ⊆ A s.t.
∑
c∈C (W c

I1
−W c

I0
) < −WI0

.

To see the intuition behind the problem, notice thatWI0
is the burst

weight of region I0 (assumed negative) and therefore −WI0
is the

additional burst weight that we would need to ‘add’ to region I0 so
that its burst weight would turn positive. On the other hand, (W c

I1
−

W c
I0
) is the difference in burstiness that is due only to attribute

value c. It is now easy to observe that the set C that solves the
second problem has the following property: even if I0 was assigned
the same weights with I1 for attributes in C, then I0 would still
not have positive burst weight (would not be bursty). Thus, we
interpret documents with attribute values in the set (A− C) as the
ones primarily responsible for the difference in the bursty behavior
between the two regions.

The problem is solved with the same optimal algorithm as in
the case of the previous problem in O(k log k) time, with k =
|Dom(A)|. The model extends directly to more than one attributes
A1, . . . , Ad with

WI =
∑
c1∈A1

∑
c2∈A2

. . .
∑
cd∈Ad

W c1c2...cd
I

for a region I and C ⊆ A1 × A2 . . . × Ad for Problems 1 and
2. The complexity of the problem increases with more dimensions.
However, for the small property domains we consider, complexity
is not a big issue.

5. KEYWORD BASED DESCRIPTION OF
BURSTS

In this section, we turn to the identification of keywords that de-
scribe a burst. Assume we have identified temporal (using back-
ground techniques surveyed in Appendix A) and/or spatial bursts
for a query q. The following subsections present techniques that
identify keywords that aim to describe the burst.

5.1 Query Expansion
A first attempt could utilize generic techniques for query expan-

sion to identify keywords highly related to q. For instance, to quan-
tify how related a keyword w is to query q, we can use the measure
of mutual information [14]. A simple iterative algorithm can then
be employed to expand query q: retrieve the documents that contain
query q, compute the k most related keywords, say w1, w2, . . . wk,
then form k queries by pairing q with eachwi, 1 ≤ i ≤ k; provided
that a burst is also identified for a newly formed query q ∪ wi,
1 ≤ i ≤ k, the process is repeated until a maximum expansion
depth has been reached. All keyword expansions to q can be re-
ported or, since for each keyword ’related’ to q we have a score, we
can report only the highest scoring paths starting from q if desired.
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The approach is reasonable, but suffers in terms of performance
as for a query q, in order to retrieve k related keywords for an ex-
pansion depth d we should form kd queries in the worst case. The
associated costs can be prohibitive for online scenarios primarily
due to the number of document retrievals involved and the costs
associated with identifying related keywords. We refer to this algo-
rithm as ContentBased in the sequel.

5.2 Expansion Based on Curve Similarity
We aim to reduce the costs associated with query expansion and

in particular the overhead associated with identifying related key-
words for a specific query. The approach we describe is based on
the following observation: when a query q is bursty over a time
interval bq , then keywords w that occur frequently together with q
often exhibit a burst themselves over the same interval. Therefore,
such keywords w are good candidates for keywords related to q.

BlogScope has an inverted index of 13M keywords. For each
keyword, the index contains a list of document-id’s, that correspond
to the documents that contain it at each time step (e.g., day). There-
fore, for each keywordw in the index we can construct a time series
of the number of documents containing the keyword for each time
step. For each such time series it is possible to identify all segments
bw that exhibit bursty behavior (e.g., using techniques such as those
of Appendix A) and insert all such bursty segments into a suitable
indexing structure (e.g., a one dimensional R-tree).

Assume that q exhibits bursty behavior over segment b(q). We
then retrieve all segments in the R-tree that partially overlap b(q)
(say above θ%). As described in the previous paragraph, such
segments generally correspond to different keywords wi. We or-
der the keywords by assessing the Pearson correlation coefficient
ρ between time series segments b(q) and b(wi) for each returned
keyword wi. We maintain the top-k keywords (according to ρ)
and rank them by their tf − idf values [14]. For each keyword
wi, 1 ≤ i ≤ k we expand q with wi thus forming query q ∪ wi
and repeat the process until the desired expansion depth is reached.
Notice however that at each step we need the corresponding time-
series segment for the newly formed queries q ∪wi. This informa-
tion is not materialized and to compute it one has to retrieve and
intersect the document-id lists of q and wi. We refer to this algo-
rithm as CurveCorr.

We may speedup the computation even more. Instead of retriev-
ing the curve of an expanded query q′ = q∪wi, we estimate it, thus
avoiding querying again the index. Estimation is based on the cor-
relation coefficient ρ between the two curves. When ρ = −1 the
curves are anti-correlated (they behave in exactly opposite ways).
For this reason, we heuristically estimate that the corresponding
queries q and wi do not occur together in documents and therefore
the curve of q′ = q ∪ wi will have only zero values. On the other
hand, when ρ = 1 the curves are perfectly correlated. When this
happens, we estimate that all the occurrences of the query (q or wi)
with the smallest curve value happen together with the other query.
Estimation for other values of ρ is done by using ρ to scale between
the two extreme cases we just described.

q′[t]est = (1 + ρ) ·min{b(q)[t], b(wi)[t]} (5)

We refer to this algorithm as CurveEstim in the sequel.

6. EXPERIMENTS
We provide quantitative and qualitative experimental results and

establish the scalability and practical utility of the techniques pre-
sented. In this section, we evaluate spatial burst detection. For
experiments on burst attribution and keyword-based description of
bursts, we refer the reader to appendices D and E. All experiments

ZeitgeistJan
chateleine, peinture, u2, synonyms, croatia, 
carmen electra, tiny pic, rabbits, 
encyclopedia, Mila Kunis

Top 10 Google Zeitgeist queries 
for Canada, Jan 2008

Top 10 Google Zeitgeist queries 
for Canada, Dec 2007ZeitgeistDec

digestive system, traductor, neitman 
marcus, NBA, telus.ca, banque scotia, flow 
93.5, mastermind, chemistry, rush hour 3

HotKeywords Hot Keywords on Blogscope
for Feb 18th 2008

airbus, bhutto, former, gunman, hessbolah, 
israel, mccain, mulroney, premier, romney

Query Sets Queries Description

Figure 5: The sets of queries.

are performed over the vast data collection of BlogScope, which
currently includes an excess of 3 TB of social media data.

6.1 Spatial Burst Detection

6.1.1 Scalability
For the purposes of scalability experiments, we implemented al-

gorithm s-Spatial, described earlier in section 3, as well as algo-
rithm i-Spatial, an improved version of s-Spatial, detailed in
Appendix B. Algorithm i-Spatial differs from s-Spatial in that
it produces and operates upon a smaller transition graph than s-
Spatial, thus allowing for faster computation of the burst states of
cells. This improvement is based on the observation that s-Spatial
often produces transition graphs with long branches over grid cells
of the same burst state and that such graphs can be ‘condensed’ to
ones of smaller size. This is achieved by substituting successive
cells of the same state with one cell, so that we end up with the
same cost function but a smaller transition graph. The observation
is formally stated and proved in Appendix B.

In addition, we implemented techniques presented in [1], which
address the problem of maximizing the Kulldorf [11] statistical dis-
crepancy between two distributions over a grid. Although of high
complexity, such techniques have been previously used to identify
‘bursty’ regions of activity and we thus include them as a baseline
comparison to our approach. We also implemented the algorithm
described in [3] for the case it looks for a single ‘activity center’.
We include this algorithm in our experiments because the notion of
‘activity center’ intuitively corresponds to the notion of a ‘spatial
burst point’ defined in our work.

In summary, we implemented the following algorithms: (1) s-
Spatial, described in Section 3 (2) i-Spatial, described in
Appendix B (3) sp-Variation, described in [3] (3) Exact [1],
an optimal algorithm that identifies a rectangle of maximum dis-
crepancy on a grid (4) Approx [1], an approximate algorithm that
identifies a rectangle of maximum discrepancy on a grid.

Data was collected by issuing queries to BlogScope that returned
pairs ofRS andDS distributions over a grid that represents a world
map. We generated three sets of queries named, HotKeywords,
ZeitgeistDec and ZeitgeistJan, shown in figure 5. We model grids
of various sizes, producing RS and DS distributions over grids
of varying granularity, with dimensions (901 · f) × (459 · f) for
f ∈ {1, 1/3, 1/10} and sizes 413559, 46053, 4186 respectively
(we’ll refer to f as the granularity parameter) and for each set of
queries and granularity, we report the average running time of the
algorithms. The grid of size 901× 459 = 413559 (for f = 1) has
a granularity that allows major cities to be covered by a single cell.

Results are shown in figure 6 for one of the datasets (the plots are
similar for the other two and are omitted due to space constraints).
We have plotted the running time of the algorithms in ms (y axis
in log scale), as a function of the grid size. We observe that the
s-Spatial algorithm scales much better with the size of the grid
not only compared to the Exact and Approx algorithms but also
compared to sp-Variation, since the latter performs its param-
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eter estimation over an unbounded space of values and for each
guess it needs to compute a likelihood value over the entire grid.

Additionally, we observe significant improvement in the running
time achieved by i-Spatial (the times reported for this algo-
rithm include the time needed to transform the initial graph of tran-
sitions to its ‘condensed’ version). The improvement is due to the
sparseness of the spatial distributions that is larger for smaller gran-
ularity and results in condensed transition graphs much smaller in
size than the initial ones (Fig. 7).

6.1.2 Qualitative Results
Queries q were submitted to BlogScope, with temporal interval

δt set as the first 10 days of March 2008; we used keywords or
sets of keywords of local interest to specific regions of the world
(Figure 8). Retrieving distributions RS and DS for a query, we set
the parameter p0 equal to the weighted average of the values of RS

normalized by the corresponding values of DS and set p1 to three
standard deviations higher than p0. We deliberately set γ to 0 to
exclude the effect of the transition costs.

In figure 8, the set of keywords ‘northern rock’ appear to have
spatial bursts in the UK, where a bank with the same name was
in the center of attention in the local economic and political news.
Furthermore, the keyword ‘cricket’ appears to be bursty in India
and Australia; both countries were involved in an important cricket
game on March 4th. The name of the Spanish prime minister ‘za-
patero’ appeared to be bursty in Spain for the first days of March,
due to the elections that took place that time. Finally, notice that the
keyword ‘snowstorm’ has a burst across all regions of northeastern
US that were under a snowstorm from the 7th to the 9th of March.

We now demonstrate the result quality obtained solving Prob-
lem 3.2. As detailed in section 3, we use solutions to Problem 3.2
– produced by algorithms s-Spatial or i-Spatial – as approximate
solutions to Problem 3.1. The quality of these solutions can be ex-

Figure 8: Examples of spatial bursts (denoted with stars).

pressed formally in terms of the ratio

r = C1(S2)/C
1(S1)

where S1, S2 are solutions to Problem 3.1 and Problem 3.2, re-
spectively, over the same grid G and C1(S1), C1(S2) are the cor-
responding costs of the solutions according to the cost function C
of Problem 3.1. Obviously, the smaller the approximation ratio r,
the better the quality of the approximation. For γ = 0 the two
problems are equivalent and therefore we have r = 1. For γ ≥ 0,
we define the transition cost ratio as

t = trC1(S2)/C
1(S2)

where trC1(S2) ≤ C1(S2) is the sum of the transition costs τ for
approximate solution S2, i.e.

trC(S) =
∑

gi,j∈G
τ(sgi,j−1 , sgi,j ) + τ(sgi−1,j , sgi,j ) (6)

where sgi,j is the state of cell gi,j ∈ G according to solution S.
Intuitively, t expresses what part of solution S2 cost is due to tran-
sition costs and, thus, parameter γ. To demonstrate the effect of
γ ≥ 0 on the quality of the solution, we conducted experiments on
a grid of size 10x10 populated with synthetic data – the size of the
grid was chosen to be small so that we could efficiently acquire a
solution to Problem 3.1. Specifically, we measured the ratio r as
a function of the transition cost ratio t 4. The grid was populated
with a constant spatial distribution D and a binomial spatial distri-
butionR,BIN(p0). We subsequently solved the two problems for
a range of values of γ. The results, shown in figure 9 for parameters
p0 = 0.5, p1 = 0.55, demonstrate that when the transition costs
do not dominate the cost of the approximate solution (t < 0.8) a
small approximation ratio is achieved (r < 6). These cases cor-
respond to settings that are of practical interest, since for larger
values of parameter γ and ratio t, none or few cells are character-
ized as ‘bursty’, due to large transition costs. Very similar results
were obtained for a wide range of values of p0, p1.

6.1.3 Parameter Sensitivity
We conducted experiments on synthetic data to demonstrate the

effect of parameters on burst detection. The experiments were per-
formed over a grid of size 500 × 500. All cells g of the grid were
assigned a total of dg = 100 documents. The number of relevant
4We present our experimental results in terms of t instead of γ,
since t is more informative, while, for a particular solution S, there
is a linear relationship between t and γ.
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Figure 9: Approximation ratio r vs. transition cost ratio t.

documents rg per cell g was set as follows. Each cell was randomly
set as ‘bursty’ with probability 10% and ‘non-bursty’ otherwise.
‘Non-bursty’ and ‘bursty’ cells g were assigned a number rg of
relevant documents according to binary distribution BIN(p′0) and
BIN(p′1), respectively. After the synthetic data were generated,
algorithm s-Spatial was employed with parameters p0, p1, γ,
with p0 and p1 possibly different from the respective p′0, p′1 that
were used to generate the data. For every execution of s-Spatial,
we measured the fraction of cells that is identified as ‘bursty’.

The first set of experiments demonstrates the effect of parameter
γ. To populate the grid with synthetic data, we used p′0 = 0.01 and
p′1 = 0.050/0.075/0.100. Subsequently, we employed algorithm
s-Spatial with the same parameters p0 = p′0, p1 = p′1 and
ranging values of γ ∈ [0, 100]. Figure 10(a) reports the fraction
of bursty cells for different values of γ and p1 = p′1. We observe
that the fraction of bursty cells decreases smoothly as γ increases.
Moreover, to demonstrate the effect of γ on spurious bursts, we
considered the transitions adjacent to at least one bursty cell in the
full transition graph and we report as ‘burst concentration’ the frac-
tion of those transitions that connect two bursty cells (Figure 10(b)
– the plot is almost identical for all three values of p1). The results
show that for larger γ the fraction of isolated, spurious bursts tends
to decrease.

The second set of experiments isolates the effect of parameter p1
on burst detection (the situation for p0 is symmetric). To generate
the synthetic data, we used p′0 = 0.01 and p′1 = 0.05. Subse-
quently, we employed s-Spatial with the same p0 = p′0 =
0.01, γ = 0 and ranging p1. Figure 10(c) reports the fraction ζ of
bursty cells for different values of p1 and, as we can see, it shows
little sensitivity for values around p1 = 0.05 = p′1. Bigger changes
in fraction ζ’s value are exhibited when p1 becomes too large or too
small relative to p′1.

7. CONCLUSIONS
We presented algorithms and techniques for spatial burst detec-

tion, attribution and keyword description of bursts over large col-
lections of user generated text. We plan to make these features
available in the public version of our social media platform.
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APPENDIX
A. BURST DETECTION OVER TIME SE-

RIES
Following [9], a query q to an online social activity tracking sys-

tem will return a set of documents D ordered (for the purposes of
our discussion) by time. Assume documents arrive in discrete time
steps, the time duration of each step being a constant. For exam-
ple a time step could be a suitably chosen time duration such as a
minute, hour, day etc. Among the documents in the same time step
(e.g., arriving in the same hour), some are considered as relevant
(e.g. documents that constitute valid answers to q) and the rest are
considered to be irrelevant. Let S and Ŝ be two integer valued ar-
rays, each element of which corresponds to a time step. In Ŝ we
store the total number of documents in each time step, while in S
we store the number of the corresponding relevant documents in
that time step.

A simple instantiation of the model considers the case of only
two levels of “burstiness”. That is, every time step t in the data
stream is characterized either as ‘bursty’ (state st = 1) or ‘non-
bursty’ (state st = 0), depending on whether it contains a “large” or
a “small” fraction of relevant documents. What constitutes “large”
and “small” numbers of relevant documents is left as parameters
in the model. Thus, the model introduces parameters p0 and p1
corresponding to thresholds for small and large numbers of rele-
vant documents. Moreover the model introduced a cost parame-
ter γ, that signifies the ’cost’ incurred whenever one moves from
a non-bursty time step to a bursty one, or vice versa. With these
parameters specified, the assignment of states to each time step is
conducted by minimizing a cost function C(S, Ŝ) that depends on
the number of relevant and non-relevant documents in each time
step and the transitions.

Let st ∈ {0, 1} denote the burst state assigned to the t-th time
step. The total cost of these assignments is given by the equation

C(S, Ŝ) = C1(S, Ŝ)+C2(S, Ŝ) =

n∑
t=1

c(st, rt, dt)+

n−1∑
t=1

τ(st, st+1)

(7)
with rt = S[t] and dt = Ŝ[t]. In equation 7, the first term of the
cost is defined as

c(st, rt, dt) = − log

[(dt
rt

)
prtst (1− pst )

d−r
]
. (8)

Furthermore, the term τ(st, st+1) in equation 7 is defined by the
formulas

τ(1, 0) = τ(0, 1) = γ

τ(0, 0) = τ(1, 1) = 0

and denotes a cost incurred whenever we move from a non-bursty
state to a bursty state, i.e. when we move from state st = 0 to state
st = 1.

Typically, p0 is set to
∑n

t=1 rt∑n
t=1 dt

, the weighted average of the nor-
malized values of S and p1 is set to some larger value. On the
other hand, parameter γ introduces an additional difficulty in char-
acterizing as ‘bursty’, elements of the array that follow non-bursty
ones. Given the parameters p0, p1 and γ, we can decide the op-
timal assignment of states by running a standard forward dynamic
programming algorithm on S and Ŝ.

B. IMPROVEMENTS
In this section, we present algorithm i-Spatial, that improves

upon the performance of algorithm s-Spatial.

Recall that the context in which we study spatial bursts involves
data arriving from locations distributed across the globe which are
represented by a grid on a world map. In this context, it is evident
that the RS and DS distributions(of section 3) omitting the time
range for simplicity, are sparse, i.e. in a particular time step there
are parts of the grid that produce a large amount of data, while there
are many cells for which there are no related data.

Secondly, as we observe in figure 2 the binary trees that consti-
tute a transition graph under our model are not full (there are inter-
nal nodes of the trees that do not ‘branch’, i.e. have only one child).
In addition, when the RS and DS distributions are sparse and un-
der the convention that we always choose a specific dimension (for
the purposes of our discussion the vertical) to resolve ties there will
be long paths in the transition graph consisting of nodes with only
one child (non-branching paths). Cells on these paths will all have
the same state and we demonstrate how to take advantage of such
conditions to speed up the process of spatial burst detection.

To become more specific, as we have seen so far the cost function
consists of two terms C1 and C2 (see equation 2); the first depends
only on the distributions RS and DS and the second contains the
transition costs. Suppose for a moment that we do not take the
term C2 into account (i.e., set γ = 0) and we identify that there is
a non-branching path in a transition tree consisting only of cells
that have the same state s, bursty or non-bursty (see figure 11). In
proposition 2, we prove that for γ > 0 the states of this path will
have the same state s′ – which is not necessarily equal to s.

PROPOSITION 2. Let T be a transition tree and let I ⊆ T be
a non-branching path of cells that have the same burst state s ∈
{0, 1} when γ = 0. Then the points in I will have the same state
s′ ∈ {0, 1} when γ > 0 (in general s 6= s′).

Proof Suppose that all cells g in I have the same state s = 1 when
γ = 0. This means that

c(1, rg, dg) < c(0, rg, dg)

for all g ∈ I , (see figure 12, in which we’ve numbered the cells
from 1 to n and depict the transitions). Suppose also that the cells
at positions 0 and n + 1 have a fixed state 0 (if they had state 1
we could prove the lemma for a bigger interval). Then, we need
only consider three choices for the states in the path I , when γ 6= 0
(shown in figure 12).

1. All cells are assigned state 1. In this case, the cost for the path
I is equal to

∑n
g=1 c(1, rg, dg) + 2γ.

2. All cells are assigned state 0. In this case, the cost for the path
I is equal to

∑n
g=1 c(0, rg, dg).

3. At least one cell is assigned state 1 and at least one cell j is
assigned state 0. In this case, the cost of the path I is at least∑
g∈[1,n]−{j} c(1, rg, dg) + c(0, rj , dj) + 4γ.

It is easy to observe that the third choice is always worse than the
first. Thus, we have that either all cells in I will be bursty or all will
be non-bursty. By repeating the above process, we prove the lemma
for the case where the cells in the non-branching path I have state
0 for γ = 0. �

Proposition 2 allows for improvement over the performance of
s-Spatial. Since the costs c(s, rg, dg) are additive w.r.t. rg
and dg , we to observe (bullets 1 and 2 in the proof of the lemma)
such n consecutive cells (of the same state when γ = 0) can be
substituted with a single cell of values r′ =

∑
g∈I rg and d′ =∑

g∈I dg before applying dynamic programming. We refer to the
new transition graph as the condensed transition graph.

If n′ is the number of points in the time-series after the substi-
tution, then algorithm spDynProg (Appendix C, Alg 3) will be
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Figure 12: Cells in I would be bursty (s = 1) if γ = 0. For
γ > 0 they will have the same state s′, just as in the 1d case.

applied for a much smaller problem (in time O(n′2b3)), and will
have better running time in the average case. The worst case hap-
pens when for γ = 0 the states in every non-branching path fol-
low the pattern . . . 0101010 . . . (0 for non-bursty, 1 for bursty), in
which n′ = n and there is no improvement in the running time
of the dynamic programming algorithm. We refer to the improved
version of algorithm s-Spatial as i-Spatial (pseudocode provided in
Appendix C, Alg. 2).

B.1 Accounting for More States
So far, we have considered only the simple case of using only two

states to signify a burst condition (bursty and non bursty). However,
there might be cases where we want to model various degrees of
burstiness and thus require K > 2 states. This might be especially
desirable when the distributions RS and DS vary significantly and
take a large range of values across the grid G.

Generalizing, we employ several binomial distributions that aid
modelling multiple burst states. We wish to characterize with burst
state k ∈ {0, 1, . . . ,K − 1} those cells with RS and DS values
that are ‘close’ to the binomial distribution BIN(pk), for some
pk ∈ [0, 1], p0 < p1 < . . . < pK−1. Therefore, we consider a cost
function where for a cell g ∈ G with rg relevant documents and dg
total number of documents that has burst state k ∈ {0, 1, . . . ,K −
1}, there is a term

c(k, rg, dg) = − log

[(
dg
rg

)
p
rg
k (1− pk)dg−rg

]
.

We create the transition graph in the same way as in section 3, but
we modify the transition cost function as follows.

τ(h, l) = τ(l, h) = (h− l) · γ
τ(h, h) = τ(l, l) = 0.

for burst states l < h.
Furthermore, the results of proposition 2, can be generalized, as

stated in proposition 3 (proof omitted due to space constraints).

PROPOSITION 3. Let T be a transition tree and let I ⊆ T be
a non-branching path of cells that have the same burst state s ∈
{0, . . . , k − 1} when γ = 0. Then, the points in I will have the
same state s′ ∈ {0, 1} when γ > 0 (in general s 6= s′).

C. PSEUDOCODE
This section provides pseudocode for algorithms s-Spatial and

i-Spatial, described in section 3 and appendix B, respectively.

Algorithm 1 s-Spatial

Input: GridG // TheRS andDS distributions are also contained
in the grid

Produce the transition graph X of G
for every tree T in X do

Use spDynProg to calculate the optimal states of T
end for

Algorithm 2 i-Spatial

Input: GridG // TheRS andDS distributions are also contained
in the grid

Produce transition graph X on G
Use Proposition 2 to compute X ′, the condensed graph of X
for every tree T in X ′ do

Use spDynProg to calculate the optimal states of T
end for

Algorithm 3 spDynProg
Input: Cell root, State sroot
Output: Cost C // optimal cost for subtree under root

C1 = c(sroot, root.r, root.d)
Cost C =∞

for State sleft = 0 to 1 do
for State sright = 0 to 1 do
C = min{C,C1 + spDynProg(root.left, sleft) +
τ(sroot, sleft) + spDynProg(root.right, sright) +
τ(sroot, sright)}

end for
end for

D. EXPERIMENTS: BURST ATTRIBUTION
We submitted the query ‘cricket’ to BlogScope with a temporal

restriction on the first 10 days of March 2008. We then assessed a
solution to the burst attribution problem 4.2 for the regions of India
and USA, for the Age attribute of blog posts, which takes values
from 1 to 80. We varied the number of buckets in which we parti-
tion the domain of the attribute and we measure the time required
to solve problem 4.2 in order to observe performance trends. We
repeated the same experiment, this time with attributes Age and
Gender, the latter assuming only two values {Male, Female}.
We split the domain of Age in a variable number of buckets k, so
that for a fixed k a blog post can take 2×k different pairs of values
for (Age, Gender).

In figure 13, we plot the running time (in µsec) required to
solve problem 4.2 for both cases described above as a function of
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the number of buckets used to split the domain of attribute Age.
We observe that these running times impose a very small delay in
BlogScope.
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Figure 13: The running time needed to solve Problem 4.2 of
section 4 for the case of a single attribute Age of blog posts and
for a pair of attributes (Age, Gender), for a varying number
of Age Buckets and for the regions of India and USA.

We now demonstrate the practical utility of the two problems
defined in section 4 using real examples. We consider a single at-
tribute Age, dividing its domain (0 - 80) into 8 buckets ([01-10],
[11− 20], . . ., [70-80]).

The first example is a query for keyword ‘cricket’ in the first
10 days of March 2008. For the same query (Figure 8), there are
many bursts in India related to ‘cricket’ for that period, while there
is none in USA. We performed burst detection (described in sec-
tion 6.1.2) and then for every bucket c of attribute Age, we plotted
the corresponding burst weight Wc for India (first bar) and USA
(second bar) and their difference (third bar). All ages contribute
non-negative burst weights in the spatial burst for India for that pe-
riod of time. On the other hand, solving Problem 4.2 we obtain
only the bucket [21 − 30] as a solution. As a result, we observe
that it is the bucket [21 − 30] (corresponding to individuals in that
age group) that contributes the big difference in the burstiness of
the keyword ‘cricket’ between the two countries.

As another example, consider the keyword ‘snowstorm’ again
for the first 10 days of March 2008. The keyword ‘snowstorm’
had large bursts in USA, while it had none in the UK. We plot the
corresponding burst weights in figure 14(b). Following a similar
reasoning, figure 14(b) indicates that individuals with ages between
21 and 60 years old contributed largely to the burst. Furthermore,
all ages between 21 and 60 are returned as a solution to problem 4.2
for the two regions (the difference in the burstiness of the regions
is attributed to all of them).

E. EXPERIMENTS: BURST DESCRIPTION
We now proceed to test the scalability and the quality of re-

sults for the three algorithms, ContentBased, CurveCorr and
CurveEstim. We test the three algorithms for a set of keywords
that had a burst at the beginning of year 2008 (from Jan. 4th to Jan.
8th). This set of keywords is SQ = {‘giuliani’, ‘clinton’, ‘obama’,
‘mccain’, ‘romney’}; it consists of the names of well known politi-
cians that participated in the presidential US primaries. The burst
is related to the Iowa caucus on Jan. 4th. For each algorithm we
request top-3 results for each query expansion and vary the depth
of the expansion from 2 to 5. We compute the average running time
of the three algorithms as a performance indicator.

In the graph of figure 15, we report the running time of the al-
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Figure 14: Burst weights (and their differences) for different
age buckets produced for queries ‘cricket’ and ‘snowstorm’ for
the 10 first days of March 2008.
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Figure 15: The average running time of the three keyword hi-
erarchy construction algorithms for different number of hier-
archy levels.

gorithms (in seconds) as a function of the number of levels in the
expanded hierarchy. Both CurveCorr and CurveEstim scale
much better than ContentBased, since their overheads are much
lower (with CurveEstim being faster than CurveCorr since it
has lower overheads).

Finally, in figures 16(a) and 16(b) we provide examples of hi-
erarchies returned by the three algorithms for the keywords ‘giu-
liani’ and ‘romney’. In figure 16(a), we show the expansion of
the keyword ‘giuliani’ by 3 keywords in one level. Algorithms
CurveCorr and CurveEstim produce keywords that are highly
related to the particular presidential candidate (Hillary Clinton and
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Mike Huckabee were candidates as well and the keywords ‘mike’,
‘hillary’ and ‘candidate’ are also in the top results returned by ContentBased).
The situation is similar when we expand the keyword ‘romney’
with one keyword at the first level and two keywords at the second
level. The keywords are closely related to this presidential candi-
date; the results of CurveCorr and CurveEstim overlap with
the results of ContentBased (for keywords ‘obama’ and ‘mc-
cain’) and the keywords ‘clinton’, ‘ron’ and ‘candidate’ are again
among the top keywords returned by ContentBased.

giuliani
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giuliani
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mike hillary candidate
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Figure 16: Examples of expansion for the keywords ‘giuliani’
and ‘romney’, produced by the three algorithms described in
section 5 – (A) ContentBased (B) CurveCorr (C) CurveEstim
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