
RegretMinimizing Representative Databases

Danupon Nanongkai Atish Das Sarma Ashwin Lall
Richard J. Lipton Jun Xu ∗

Georgia Institute of Technology
{danupon, atish, alall, rjl, jx}@cc.gatech.edu

ABSTRACT
We propose the k-representative regret minimization query
(k-regret) as an operation to support multi-criteria decision
making. Like top-k, the k-regret query assumes that users
have some utility or scoring functions; however, it never
asks the users to provide such functions. Like skyline, it
filters out a set of interesting points from a potentially large
database based on the users’ criteria; however, it never over-
whelms the users by outputting too many tuples.
In particular, for any number k and any class of util-

ity functions, the k-regret query outputs k tuples from the
database and tries to minimize the maximum regret ratio.
This captures how disappointed a user could be had she
seen k representative tuples instead of the whole database.
We focus on the class of linear utility functions, which is
widely applicable.
The first challenge of this approach is that it is not clear if

the maximum regret ratio would be small, or even bounded.
We answer this question affirmatively. Theoretically, we
prove that the maximum regret ratio can be bounded and
this bound is independent of the database size. Moreover,
our extensive experiments on real and synthetic datasets
suggest that in practice the maximum regret ratio is rea-
sonably small. Additionally, algorithms developed in this
paper are practical as they run in linear time in the size of
the database and the experiments show that their running
time is small when they run on top of the skyline operation
which means that these algorithm could be integrated into
current database systems.

1. INTRODUCTION
Extracting a few tuples from the database to support

multi-criteria decision making is an important functionality
for database systems. This is important in many applica-
tion domains where the end-users are more interested in the

∗Supported in part by NSF grant CNS-0905169, funded un-
der the American Recovery and Reinvestment Act of 2009
(Public Law 111-5), and by NSF grant CNS-0716423.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 1317,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 21508097/10/09... $ 10.00.

most important query answers in the potentially huge an-
swer space. Top-k [17] and skyline [5, 13] queries are two
well-studied tools in such settings. Consider the following
example.

Alice is looking for a car that has a high miles per gallon
(MPG) and a high horse power (HP). However, the horse-
power comes at the expense of the fuel economy. How can a
car dealer’s database system best assist Alice in trading off
between these two goals?

One approach is the top-k operator (see [17] for a recent
survey). This approach is based on a widely-accepted as-
sumption that utility functions exist. It allows the users to
input their utility functions. In particular, for the case of
linear utility functions, we could use a well-developed system
such as PREFER [16] and employ sophisticated techniques
such as ONION [8] and Ranked Join Indices [28] to assist
the customers. For example, in this case, Alice could indi-
cate that she gives weights 70% to the MPG and 30% to the
HP. However, she does not always know what weights she
wants to give to each criterion. Moreover, it might be too
much of an effort for her to input all these weights.

An alternative operator that helps in avoiding this prob-
lem is the skyline operator proposed by Börzsönyi et al. [5].
(For further details, see, e.g., [13] and references therein.)
This operator asks the customers only for the sets of crite-
ria they want and outputs everything that the users might
be interested in. For example, with this operator, Alice can
specify that she wants to maximize the MPG and the HP.
Then, the operator will output all the cars based on these
criteria. Some car may not be shown if there is another
car with more MPG and HP. After this, Alice can either
go through the list of these “skyline cars” and find the car
that she likes the most, or she can use this list to get the
“big picture” and then apply other queries such as top-k to
get more specific results (as envisioned by the founders of
skyline operator in their paper [5]). However, the size of the
skyline is usually too large to even get the big picture of
the database, let alone the use of it as a stand alone opera-
tor. Theoretically, the size of the skyline could be arbitrarily
large even when there are only two criteria involved. More-
over, when there are many criteria involved, the skyline size
grows exponentially in the number of criteria even when the
values are randomly generated [3, 12].

In this paper, we consider the setting where users have
unknown utility functions. Given a list of k tuples, we say
that a user is x% happy with the list if the utility she obtains
from the best tuple in this list is at least x% of the utility

1114

she obtains from the best tuple in the whole database.
We attempt for an operator that has features from both

top-k and skyline. That is, an operator that outputs a small
set of k tuples without asking for users’ utility functions.
Since it is impossible to display every user’s optimal tuple,
we instead ask the following question.

Does there exist one set of k tuples that makes
every user at least x% happy?

In this paper, we answer this question affirmatively for lin-
ear utility functions. Even more surprisingly, the happiness
guarantee is independent of the size of the database.
In particular, we propose the k-representative regret min-

imization operator (k-regret), as follows. Define the regret
ratio of a user to be one minus the happiness of the user’s
utility function for the k tuples. This operator aims at find-
ing k tuples to minimize the maximum regret ratio, where
the maximum is taken over a (possibly infinite) class of func-
tions. Our theoretical and experimental results for the class
of non-decreasing linear utility functions are stated below.

• We prove that, in the worst case, the maximum regret
ratio is at most

d− 1

(k − d+ 1)
1

d−1 + d− 1
,

where d is the number of criteria.

In particular, for d = 2, this corresponds to a max-
imum regret ratio of 1

k
. Therefore, with k = 10 the

bound is at most 10% (i.e., everyone is 90% happy).
Observe that the regret ratio guarantee is independent
of the size of the database. To complement this, for
d = 2, we show a theoretical lower bound on the max-
imum regret to be Ω(1/k2).

• Our extensive experiments on many datasets and algo-
rithms suggest that, in practice, the regret ratio might
be much lower than the worst case guarantee. For
example, in the case of two criteria we found that the
regret ratio is at most 1% for all the datasets we exper-
imented on with just k = 10. Moreover, even when we
increase the number of criteria to six, the regret ratio
is still at most 16% in all the datasets when k = 20.

We show that the k-regret operator has the following nice
properties. First, it is scale invariant. That is, even if we
multiply values in some attribute with a constant, k-regret
still outputs the same set of tuples. For example, whether
the cars’ efficiencies are in miles per gallon or kilometers per
liter, k-regret’s output is the same.
Secondly, the k-regret operator is stable. Informally, this

means that adding unimportant cars (i.e., cars no user will
be interested in) to the database does not change the so-
lution of k-regret. This avoids, e.g., car companies from
adding cars to manipulate the database in the hope that
their main products will be shown by the k-regret operator.
We also note that the the algorithms developed in this pa-

per run in time linear in n. Moreover, our experiments show
that their running time is small when they are run on top of
the skyline operator. This means that these algorithms can
be immediately integrated into a system where skyline op-
erator is available, while it is possible to completely remove
skyline operator from the system in the future when faster

algorithms for the k-regret operator, which might be faster
than computing skyline, are available.

Organization: In Section 2 we discuss previous work that
is most relevant to this paper. We formally define the prob-
lem that we solve and highlight some properties of this def-
inition in Section 3. We give worst case upper and lower
bounds in Section 4. In Section 5, we develop a heuristic
which seems to work well in practice. We present experi-
mental results in Section 6. We discuss possible future work
and conclude in Section 7.

2. RELATED WORK
Motivated by the deficiencies of top-k and skyline dis-

cussed above, there are many variations of top-k and skyline
proposed recently to assist multi-criteria decision making.

Lin et al. [22] and Tao et al. [27] consider finding k skyline
tuples that best represent the contour of the entire skyline,
called k representative skyline. [22] propose finding a set of
k skyline tuples that dominate the most number of tuples.
This approach is scale invariant but not stable. [27] illus-
trates that the approach of [22] could lead to an undesirable
solution. This is essentially because of the fact that it is
unstable. They propose an alternative distance-based solu-
tion which is to solve the k-center problem on the skyline
tuples. This approach is stable in the sense that adding a
non-skyline tuple will not change the solution but it is not
scale invariant since their definition is based on distances.

Yiu and Mamoulis [24, 31] propose the top-k dominating
query. Briefly, this query is the top-k query with scoring
function of each tuple as the number of tuples it dominates.
The authors argue that this query has the features of both
top-k and skyline; i.e., the output size can be controlled,
and no scoring functions need to be specified by the users.
Further, it is scale invariant. However, like [22], it is not sta-
ble. This query has been explored further in the domains of
uncertain databases [21,32] and continuous processing [19].

Goncalves and Vidal [14] propose two operators called
top-k skyline select and top-k skyline join. The idea is to let
the user specify criteria and a ranking function. The opera-
tor then uses the criteria to get skyline tuples and output the
top k skyline tuples based on the ranking function. There-
fore, the size of the skyline is controlled. However, the users
still have to specify their utility functions.

Several other approaches have been considered for con-
trolling the size of the output. In particular, some of these
works control the size of the output without explicitly spec-
ifying a bound. Xia et al. [29] propose ϵ-skyline queries
where users specify weights on attributes, and use the pa-
rameter ϵ to control the size of the output. Mindolin et
al. [23] propose p-skyline queries which is a framework that
allows attributes to have different importance. To avoid
asking users for weights explicitly, they offer an alternative
approach to discover importance from user feedback. Lee et
al. [20] avoid asking users for utility functions by requesting
only partial ranking over attributes. Chan et al. [7] intro-
duce the concept of skyline frequency as a way to measure
the importance of a point based on the number of subsets
of dimensions for which it is in the skyline. A related con-
cept of k-dominance proposed by Chan et al. [6] relaxes the
definition of dominance to a point dominating another if it
dominates on at least k dimensions. All these approaches
are used to reduce the size of the output.

1115

Car MPG HP
(p1) Toyota Prius 51 134
(p2) Honda Civic Hybrid 40 110
(p3) Ford Fusion 41 191
(p4) Nissan Altima Hybrid 35 198
(p5) Volkswagen Jetta TDI 30 140

Figure 1: Car database

Car f(0.2,0.8) f(0.4,0.6) f(0.6,0.4) f(0.8,0.2)
p1 117.4 100.8 84.2 67.6
p2 96 82 68 54
p3 161 131 101 71
p4 165.4 132.8 100.2 67.6
p5 118 96 74 52

Figure 2: Car utilities

3. PROBLEM DEFINITION
We now define the problem considered in this paper for-

mally. The input to our problem is a set of n d-dimensional
points over positive reals, denoted by D. This set corre-
sponds to the database of n tuples over d attributes. Ad-
ditionally, an integer k which specifies the output size is
given. The goal is to find a set of tuples, denoted by S,
of size at most k that minimizes the maximum regret ratio.
Informally, S corresponds to the set of representative tuples
that will be displayed to the users and the maximum regret
ratio measures how bad the users could feel if they have
to choose from these k tuples instead of the entire database.
We now define this important concept formally before giving
the precise problem statement.

3.1 Maximum regret ratio
In order to define this notion, we need to develop the

notions of utility function, gain, regret, and regret ratio as
follows. (Throughout, we use the car database in Figure 1
as an example.) First, users’ happiness is measured by un-
known utility functions.

Definition 1. Utility Function. A utility function f is
a mapping f : Rd

+ → R+. The utility of a point p for a user
with utility function f is f(p).

Each user attempts at getting an item that maximizes her
utility. For example, consider the car database in Figure 1.
If Alice has utility function f(p) = 0.2·MPG+0.8·HP then
her utility on Toyota Prius is f(p1) = 0.2 · 51 + 0.8 · 134 =
117.4. Her utilities on other items are shown in the second
column of Figure 2 and thus Nissan Altima Hybrid (p4)
maximizes her utility function.
Next, we use the notion of gain to capture the user’s utility

when she sees only a set of tuples. For a user with a utility
function f and a subset of points S ⊆ D, the gain of the
user is defined to be the maximum utility derived from this
subset of points.

Definition 2. Gain. Define gain(S, f) = maxp∈S f(p).

For example, using Alice’s utility function f(p) = 0.2 ·
MPG+0.8 ·HP , gain(D, f) = 165.4 (achieved by p4) while
gain({p1, p2}, f) = 117.4 (achieved by p1). This means that
if we represent the database by a set of two points S =
{p1, p2} then Alice’s utility will be 117.4 while her utility
would be as large as 165.4 if she sees the whole database.

We say that she has regret rD(S, f) = 165.4−117.4 = 48 and
regret ratio rrD(S, f) = 48/165.4 = 0.29. In other words, by
looking at two representative points, her happiness is about
71% of what she can get when she goes through the whole
database. Regret and regret ratio are defined as follows.

Definition 3. Regret and regret ratio. Define regret
rD(S, f) = gain(D, f)−gain(S, f) and regret ratio rrD(S, f) =
rD(S,f)

gain(D,f)
.

Notice that regret ratio is in the range [0, 1]. When the
regret ratio is close to 0, the user is very happy and when
the regret ratio is close to 1 the user is very unhappy.

Since we do not know users’ utility functions (even users
themselves do not know their own utility functions), we as-
sume that every user has some utility function in a broad
class. Three examples of classes of utility functions include
monotone, linear, and convex functions. Let the class of
utility functions being considered be F . We now define the
worst possible regret for any user with a utility function in
F .1

Definition 4. Maximum Regret Ratio. rrD(S,F) =

supf∈F rrD(S, f) = supf∈F
maxp∈D f(p)−maxp∈S f(p)

maxp∈D f(p)
.

To illustrate this definition, let us consider the car database
in Figure 1 and suppose that we know that users’ utility
functions are in a contrived class F = { f(0.2,0.8), f(0.4,0.6),
f(0.6,0.4), f(0.8,0.2)}, where f(x,y) = x ·MPG+ y ·HP . If we
represent the database by S = {p1, p2} then the maximum
regret ratio is 0.29. To see this, use values in Figure 2 to get
the regret ratios rrD(S, f(0.2,0.8)) = 0.29, rrD(S, f(0.4,0.6)) =
0.24, rrD(S, f(0.6,0.4)) = 0.17, and rrD(S, f(0.8,0.2)) = 0.05.

3.2 Problem
Given a database D and the desired output size k, we

are interested in handling situations where no information
on users is available. In absence of any distributional in-
formation on the utility functions, a natural approach is to
assume a broad class of functions F and maximize over the
worst (i.e., the maximum regret ratio). This guarantees the
happiness of all users.

As motivated in Section 1, this approach would be futile if
we cannot guarantee that the optimal maximum regret ratio
is always small. After all, it is possible that even when we
show users half of all tuples in the database, the maximum
regret ratio is still 80% which means that there is at least
one user who cannot find anything close to what she is in-
terested most in the database. Motivated by this, the main
problem in this paper is whether we can keep the maximum
regret ratio low.

Problem Definition. Given any integers k, d and n and a
class of functions F of interest, find minimum ρ(k, d, n,F)
such that the following holds. For any setD of n d-dimensional
points there exists a set of k points K ⊆ D such that
rrD(K,F) ≤ ρ(k, d, n,F).

1Recall that sup(S) denotes the supremum of S. For sim-
plicity, the reader can think of it as the maximum. Since F
is allowed to be an infinite class of functions, we need the
supremum as a maximum may not exist.

1116

Throughout this paper, we implicitly assume that k is at
least d; if this is not the case, the maximum regret ratio
cannot be bounded. In this paper, we focus on the class of
linear utility functions, denoted by L.

Definition 5. Linear Utility Function. A utility func-
tion f is linear if there exist non-negative reals a1, . . . , ad

such that f(p) =
∑d

i=1 aip[i] for any d-dimensional point p.
Alternatively, a linear utility function can be represented by
a vector v = ⟨a1, . . . , ad⟩; i.e., f(p) is the dot product v · p.

For linear utility functions, it is more natural to think of
gain in term of vectors: observe that gain(S, v) = maxp∈Sv ·
p. All other notions can be similarly defined using v. We
now state two desirable properties of our formulation.

3.3 Properties
We now discuss the scale invariance and stability proper-

ties which are defined on any measure and show that the
regret ratio measure satisfies both properties. Throughout
this section, we let h be a function on any subset S of D.
Essentially, h(S) measures how well a set S represents the
database.

Scale Invariance. Informally, scale invariant means that
rescaling the attribute values (scaling by a positive value to
maintain monotonicity), does not change the relative values
of the solutions. Formally, we consider two databases D =
{p1, p2, ..., pn} and D′ = {p′1, p′2, ..., p′n}. We assume that D′

is a rescaling of D, i.e., there exists reals λ1, λ2, ..., λd such
that p′i[j] = λjpi[j] for all i = 1, 2, . . . , n and j = 1, 2, . . . , d.
(For example, to convert MPG to kilometers per liter and
HP to watts, we use λ1 = 0.425 and λ2 = 750, since 1 MPG
= 0.425 kilometers per liter and 1 HP = 750 watts.) For
any set S ⊆ D, we define S′ to be the corresponding subsets
in D′, i.e., if S = {pi1 , pi2 , . . .} then S′ = {p′i1 , p

′
i2 , . . .}.

Finally, we say that h is scale invariant if h(S1)/h(S2) =
h(S′

1)/h(S
′
2) for any S1, S2 ⊆ D.

Theorem 1. The function h(S) = rrD(S,L) is scale in-
variant.

We in fact prove a stronger fact: rrD(S,L) = rrD(S′,L) for
any set S. The formal proof is in Appendix A.

Stability. Informally, we say that a function h is stable
if, for any S ⊆ D, h(S) is insensitive to adding or deleting
junk points, i.e., points that are not optimal for any linear
utility function. This captures the intuition that a car dealer
should not be able to strategically insert cars not liked by
anyone into the database to manipulate the solution.
Formally, we say that a point p is a junk point if, for any

linear utility function h, there is a point q ̸= p in D such
that h(p) ≤ h(q). (This means that p is not desired by any
user with a linear utility function.) We say that a function
h is stable on S if h(S) outputs the same value even after we
add any junk point p to D. Finally, we say that h is stable if
it is stable on any set S ⊆ D. The following theorem follows
naturally from definitions (see Appendix B).

Theorem 2. The function h(S) = rrD(S,L) is stable.

4. WORST CASE BOUNDS
In this section, we answer the question from a theoretical

standpoint. We show that in the worst case, the maximum

Algorithm 4.1 Cube algorithm(D, k)

Input: A database of d-dimensional points D =
{p1, p2, ..., pn} and an integer k, the desired output size.
Output: A subset of D of size k, denoted by S, that guar-

antees that rrD(S,L) ≤ d−1
t+d−1

where t = ⌊(k − d+ 1)
1

d−1 ⌋.
1: For i = 1, 2, . . . , d−1, let p∗i be the point with maximum

value in the ith coordinate, and let ci be such value; i.e.,
p∗i = argmaxp∈D(p[i]) and ci = maxp∈D(p[i]).2

2: Let S = {p∗1, p∗2, ..., p∗d−1}.
3: Let t = ⌊(k − d+ 1)

1
d−1 ⌋.

4: for each group of (not necessarily distinct) integers
j1, j2, . . . jd−1 such that 0 ≤ j1 < t, 0 ≤ j2 < t, . . . , 0 ≤
jd−1 < t do

5: Let Sj1,j2,...,jd−1 = {p ∈ D : ji
ci
t

< p[i] ≤ (ji +
1) ci

t
for all 1 ≤ i < d}.

6: Let sj1,j2,...,jd−1 be the point in Sj1,j2,...,jd−1

with maximum value in the dth coordinate; i.e.,
sj1,j2,...,jd−1 = argmaxp∈Sj1,j2,...,jd−1

(p[d]). Add

sj1,j2,...,jd−1 to S.
7: end for
8: return S.

regret ratio is at most d−1

⌊(k−d+1)
1

d−1 ⌋+d−1

. (Note that this

does not depend on the database size n.) This is done by
developing an algorithm called Cube. (See Section 4.1.)
Additionally, we complement this with a lower bound; the
optimal maximum regret ratio could be as bad as Ω(1/k2).
(See Section 4.2.) Simplifying (assuming d is constant),
ρ(k, d, n,L) (cf. Section 3) has the following upper and lower
bounds:

Ω

(
1

k2

)
≤ ρ(k, d, n,L) ≤ O

(
1

k
1

d−1

)
.

4.1 Upper bound
In this section, we develop an algorithm called Cube (cf.

Algorithm 4.1). We then show that for any database D of
d-dimensional points and a parameter k, Cube outputs a
set S of size at most k such that

rrD(S,L) ≤ d− 1

⌊(k − d+ 1)
1

d−1 ⌋+ d− 1

(cf. Theorem 3). The upper bound of the optimal maximum
regret ratio thus follows.

Informally, Cube does the following. First, it outputs the
point with maximum value in each coordinate, except the
last coordinate. Then, it divides every dimension, except the
last dimension, into t equal-sized intervals, for some choice
of t. That is, if the maximum value in the i-th coordinate
is ci then we divide the i-th dimension into t intervals,(
0,

ci
t

]
,
(ci
t
, 2

ci
t

]
, . . .

(
j
ci
t
, (j + 1)

ci
t

]
, . . . ,

(
(t− 1)

ci
t
, ci

]
.

The algorithm then partitions the points into td−1 “buck-
ets” based on which intervals they are in, in each dimen-
sion. These buckets are denoted by Sj1,j2,...,jd−1 where
j1, j2, . . . , jd−1 are integers from 0 to t− 1 (see formal defi-
nition in Algorithm 4.1). Then, Cube outputs the point in

2argmax returns the point for which the value of the expres-
sion attains its maximum value. argmin is defined similarly.

1117

each bucket with highest value in the last coordinate. No-
tice that Cube outputs td−1 + d − 1 points in total (d − 1
points initially and td−1 points from the buckets). Figure 8
(Appendix) shows an example of Cube algorithm.
The intuition behind this algorithm is that the points in

the same bucket have gains not far from each other when we
look only at coordinates 1, 2, . . . , d−1. This is because their
values in these coordinates are close to each other. More-
over, since we pick from each bucket the point with max-
imum value in the last coordinate, the gain of this point
is close to the gain of other points in the same bucket.
The regret is then bounded. Further, we pick the points
p∗1, . . . , p

∗
d−1 which are largest in the first d − 1 coordinates

to ensure that the gain of the output is large. We can
then bound the regret ratio by considering the gain of these
points. This intuition leads to the following main theorem,
the proof of which can be found in Appendix C.

Theorem 3. Cube (cf. Algorithm 4.1) returns a set S

such that rrD(S,L) ≤ d−1
t+d−1

where t = ⌊(k − d+ 1)
1

d−1 ⌋.

Example: If k = 10 and d = 2, then Cube guarantees that
the regret ratio is at most 10%.

Running Time: We only need to find what bucket each
point is in and, in each bucket, find the point with maximum
value in the last coordinate. Moreover, there are td−1 ≤ k
buckets to examine. Therefore, Cube runs in time O(nd+k).

4.2 Lower Bound
In this section, we present the lower bound theorem for

bounding the maximum possible regret ratio on 2-dimensional
points. Informally, we show that it is impossible to guaran-
tee a maximum regret ratio better thanO(1/k2). We present
the theorem and proof intuition below. The formal proof is
presented in Appendix D

Theorem 4. For any k, there exists n such that there is
a set D of n points such that, for any S ⊆ D of size k,
rrD(S,L) = Ω(1/k2).

The proof relies on considering infinitely many points spread
as a quarter-circle (centered at (0, 0)) between coordinates
(0, 1) and (1, 0). The proof can be suitably adapted to work
for finite number of points as well. If k of these points are
picked, consider the line segments formed by joining the ori-
gin (0, 0) to each of these points and also joining (0, 0) to
(0, 1) and (1, 0). The angle between some two consecutive
line segments is at least π/2(k + 1). Let pϕi and pϕi+1 de-
note the two points corresponding to these segments. We
then consider a point p in the center of arc (pϕi , pϕi+1). The
proof considers the linear utility function f that is maxi-
mized by p. The regret ratio for f is then measured, and is
determined by projecting pϕi and pϕi+1 . This can be com-
puted by considering the L2-distance of the projected point
to origin. We argue (details in Appendix D) that this regret
ratio is at least Ω(1/k2).

5. GREEDY HEURISTIC
In this section, we present a natural greedy heuristic called

Greedy (cf. Algorithm 5.1). This algorithm essentially fol-
lows the framework of Ramer-Douglas-Peucker algorithm [11,
25] for approximating curves and polygons, which, although

Algorithm 5.1 Greedy(D, k)

Input: A set of d-dimensional points D = {p1, p2, ..., pn}
and an integer k, the desired output size.
Output: A subset of D of size k, denoted by S.

1: Let S = {p∗1} where p∗1 = argmaxp∈D p[1].
{In the loop below, we find a point p ∈ D \ S with
maximum regret ratio.}

2: for i=1 to k − 1 do
3: Let r∗ = 0 and p∗ = null.
4: for each p ∈ D \ S do
5: Compute rrS∪{p}(S,L) using Linear Program (1).
6: if r∗ < rrS∪{p}(S,L) then
7: r∗ = rrS∪{p}(S,L)
8: p∗ = p
9: end if
10: end for
11: if r∗ = 0 then return S
12: else S = S ∪ {p∗} endif
13: end for
14: return S

does not have any theoretical guarantees beyond the case
of two dimensions [26,30], has been widely used and shown
to perform well in higher dimensions in various applications
with different measures (see, e.g., [9, 10, 15] and references
therein). Our greedy algorithm can be thought of as an-
other application of Ramer-Douglas-Peucker algorithm with
the maximum regret ratio as a measure.

Informally, Greedy performs the following greedy pro-
cess: First, it picks the point that maximizes the first coor-
dinate. In subsequent iterations it adds the “worst” point,
i.e., the point that currently contributes to the maximum
regret ratio. To be precise, for each round it adds the
point p to the solution set S where p is the point such
that rrD(S,L) = rrS∪{p}(S,L). This is done by computing
rrS∪{p}(S,L) for each point p ∈ D \ S and keep the point
with maximum value (as in Line 4–10), where rrS∪{p}(S,L)
is computed using the following linear program (LP).

Finding rrS∪{p}(S,L) using an LP. Given a point p and
a set S, one can find rrS∪{p}(S,L) by solving the LP (1)

below.3

max x

s.t.
∑d

j=1(p[j]− p′[j])v[j] ≥ x ∀ p′ ∈ S∑d
j=1 p[j]v[j] = 1

v[j] ≥ 0 ∀ j ≤ d

x ≥ 0

(1)

The above LP has a variable x and variables v[1], v[2], . . .,
v[d] which denote a non-negative vector v = (v[1], v[2], . . .).
The idea is that for any fixed value of v, x will be equal to
minp′∈S(p− p′) · v (by the first constraint and the fact that
we are maximizing x). Therefore, maximizing x is equiva-
lent to finding a vector v such that minp′∈S(p − p′) · v (i.e.
the regret ratio in the direction of v) is maximized. See Ap-

3Note that Greedy can be implemented with any linear
constraints imposed on the class of utility functions since
they can be added to the LP.

1118

pendix E for details on correctness and implementation.

Running Time. Greedy has to run LP (1) at most nk
times. Each LP has k+d+2 constraints and d+1 variables
and thus has running time independent of n. In practice, an
LP solver (such as variations of the Simplex method) will
result in O(k2d) running time per LP call [4, Chapter 3], and
hence O(nk3d) overall for Greedy. In the worst case, the
time per LP could be exponential in k and d using these LP
solvers. However, by using the interior point method [18]
we can guarantee a worst case running time of O(nk2d4.5).

6. EXPERIMENTAL EVALUATION
In this section, we show via experiments on both real and

synthetic data that the maximum regret ratio is small (even
for small k) in practice. We measured the maximum regret
ratios and running times for the algorithms proposed in this
paper as well as three previously proposed algorithms for
representing the skyline by a fixed set of points. All our
implementations were done in C. The experiments were all
performed on a 1.7GHz Intel Xeon machine running Linux
2.6.9.
We used both anti-correlated and independent synthetic

data, as is standard in the skyline literature, using the dataset
generator of [5]. We averaged the algorithms’ performance
over 10 independently generated data sets. For our exper-
iments on real data, we made use of some data sets that
are available from Dr. Yufei Tao’s homepage4. Unless oth-
erwise stated, our experiments all used ten thousand points
(n = 10, 000) and picked the top-10 points (k = 10). We
evaluated the maximum regret ratio for the algorithms us-
ing LP (1) implemented in the GNU Linear Programming
Kit (GLPK) package [1] (more details in Appendix E).
We consider both the Cube algorithm and the Greedy

algorithm suggested in this paper and also consider Max-
Dom-Greedy [22], Naive-Greedy [27], and Ext-Two-Scan [6].

• TheCube algorithm is our implementation of Algorithm 4.1
with the modification that we increment t until we have
at least k distinct points.

• The Greedy algorithm is our implementation of Algo-
rithm 5.1, which outputs precisely k distinct points.

• The Naive-Greedy algorithm is our implementation
of the naive algorithm proposed in [27]. In the Naive-
Greedy approach, the goal is to pick k points that admit
the best k-center clustering on the skyline set.

• The Max-Dom-Greedy algorithm is our implementa-
tion of the greedy algorithm in [22, Algorithm 1].5 The
objective of Max-Dom-Greedy is to pick k points that
together dominate the largest number of points.

• Finally, we implemented the Top-δ Ext-Two-Scan algo-
rithm proposed in [6, Algorithm 5]. However, the max-
imum regret ratio of this algorithm was so poor in the
experiments that we do not include its results in the
plots.

In Figure 3, we compare algorithms for various number of
dimensions on anti-correlated and independent data, respec-

4http://www.cse.cuhk.edu.hk/~taoyf/
5We only test the maximum regret ratio yielded by Max-
Dom-Greedy here and note that, if desired, a more effi-
cient implementation of Max-Dom-Greedy (with a slightly
worse solution) can be found in [22].

 0%

 5%

10%

15%

20%

25%

30%

35%

40%

45%

 2 3 4 5 6 7 8 9 10

M
ax

im
um

 r
eg

re
t r

at
io

d

Cube
Greedy

Naive-Greedy
Max-Dom-Greedy

(a) anti-correlated data

 0%

 5%

10%

15%

20%

25%

30%

35%

40%

45%

 2 3 4 5 6 7 8 9 10

M
ax

im
um

 r
eg

re
t r

at
io

d

Cube
Greedy

Naive-Greedy
Max-Dom-Greedy

(b) independent data

Figure 3: Varying d (n = 10000 and k = 10)

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 2 3 4 5 6 7 8 9 10

T
im

e
(s

ec
on

ds
)

d

Cube
Greedy

Naive-Greedy
Max-Dom-Greedy

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 100 1000 10000 100000 1e+06

n

Cube
Greedy

Naive-Greedy
Max-Dom-Greedy

 0.001

 0.01

 0.1

 1

 10

 100

 6 8 10 12 14 16 18 20

k

Cube
Greedy

Naive-Greedy
Max-Dom-Greedy

Figure 7: Running time for anti-correlated data (De-
fault: n = 10000, d = 6, k = 10)

tively, when the number of points was fixed to n = 10000
and k = 10. Due to the curse of dimensionality, the regret
ratio of the algorithms degrade with the increase in number
of dimensions. However, as the number of dimensions in-
creases, the regret ratio of all the algorithms appear to level
off much below the theoretical bound.

We varied the number of points using anti-correlated data
in Figures 4(a) and 4(b), using d = 2 and d = 6, respec-
tively. For the two-dimensional case, Greedy gives maxi-
mum regret ratio almost zero but for higher dimensions the
maximum regret ratio can be much larger (close to 25%
for the Greedy and Max-Dom-Greedy algorithms on 6D
data using k = 10). For 6D independent data (Figure 4(c)),
the Greedy and Max-Dom-Greedy algorithms are consis-
tently below 20% for k = 10.

In Figure 5 we see the effect of varying k on the four
algorithms. As would be expected, the regret-ratio decreases
monotonically with k. With only 20 representative points,
Greedy makes the maximum regret ratio at most 16% in all
three cases. We observe that the algorithms perform better
than predicted by theory on these specific distributions.

The results for other data sets that we considered are
summarized in Figure 6. In all cases we used k = 10. The
algorithms performed extremely well for this data (i.e., the
best algorithm was under 1% regret ratio), except for the
Color dataset. For this data, the maximum regret ratio
went up to almost 17% for the Greedy algorithm, due to
the high dimensionality of the data.

Times
In this section we discuss the running times of various algo-
rithms. We compute the skyline first before running these
algorithms as our main objective is to illustrate that mini-
mizing maximum regret ratio takes time negligible as com-
pared to the running time of skyline computation. Also, we
compute skyline first to avoid the issue of computation with
and without preprocessing (see, e.g., [13] for discussions). It
is an interesting future work to explore more on the running
time aspect of this problem, especially bypassing the whole
skyline computation and considering the computation with
and without preprocessing. The running time of skyline

1119

 0%

 1%

 2%

 3%

 4%

 5%

 6%

 100 1000 10000 100000 1e+06

M
ax

im
um

 r
eg

re
t r

at
io

n

Cube
Greedy

Naive-Greedy
Max-Dom-Greedy

(a) 2D anti-correlated data

 0%

 5%

10%

15%

20%

25%

30%

35%

40%

45%

 100 1000 10000 100000 1e+06

M
ax

im
um

 r
eg

re
t r

at
io

n

Cube
Greedy

Naive-Greedy
Max-Dom-Greedy

(b) 6D anti-correlated data

 0%

 5%

10%

15%

20%

25%

30%

35%

40%

45%

 100 1000 10000 100000 1e+06

M
ax

im
um

 r
eg

re
t r

at
io

n

Cube
Greedy

Naive-Greedy
Max-Dom-Greedy

(c) 6D independent data

Figure 4: Varying number of points n with k = 10

 0%

 2%

 4%

 6%

 8%

10%

12%

 2 4 6 8 10 12 14 16 18 20

M
ax

im
um

 r
eg

re
t r

at
io

k

Cube
Greedy

Naive-Greedy
Max-Dom-Greedy

(a) 2D anti-correlated data

 0%

 5%

10%

15%

20%

25%

30%

35%

40%

45%

 6 8 10 12 14 16 18 20

M
ax

im
um

 r
eg

re
t r

at
io

k

Cube
Greedy

Naive-Greedy
Max-Dom-Greedy

(b) 6D anti-correlated data

 0%

 5%

10%

15%

20%

25%

30%

35%

40%

45%

 6 8 10 12 14 16 18 20

M
ax

im
um

 r
eg

re
t r

at
io

k

Cube
Greedy

Naive-Greedy
Max-Dom-Greedy

(c) 6D independent data

Figure 5: Varying k (n = 10000)

computation is not shown here.
The running times on anti-correlated data, with d, n, and

k varied, are shown in loglog scale in Figure 7. In all cases,
Cube and Naive-Greedy are very fast. (They finish within
one second even when d = 6, n = 1, 000, 000 and k = 10.)
Note, however, that their solution is inferior to Greedy and
Max-Dom-Greedy as shown in the previous section. The
running time of Greedy is usually within 10 seconds except
in the case of d = 6, n ≥ 100, 000, and k = 10. We note
that its running time is always negligible compared with the
time taken to compute skyline. Max-Dom-Greedy runs
much longer. However, as noted earlier, one can obtain a
practical implementation by slightly sacrificing the solution
quality (see [22]).

Summary
Both Greedy and Max-Dom-Greedy work well in all data
sets (except the Island data set for Max-Dom-Greedy),
giving solutions with maximum regret ratio much lower than
the theoretical guarantee (cf. Section 4.1). Neither al-
gorithm beats the other in all cases. This suggests that
Greedy and an efficient implementation ofMax-Dom-Greedy
(based on a randomized index-based algorithm available in
[22]) could be used in practice. Note, however, that Max-
Dom-Greedy is optimizing a measurement that is unstable
(as discussed in Section 2). Finally, we observe that pick-
ing k to be about twice of d is sufficient in practice since it
bounds the regret ratio below 20%.

7. CONCLUSIONS
In this paper, we consider the problem of finding a few tu-

ples to represent the database such that these representative

tuples help users find the best tuple based on their criteria
and utility functions. Since it is impossible to display ev-
ery user’s optimal tuple, we consider a natural relaxation
where we want to minimize the maximum regret ratio which
captures how unhappy the users may feel when they see k
representative points instead of the whole database. Before
considering the computational issue of this problem, it is
more important to confirm first that we can always make
this quantity small. We confirm that this is possible by
showing that for linear utility functions the maximum regret
ratio can be bounded in terms of the number of represen-
tative points (k) and the dimensionality (d). The bound is
independent of the size of the database (n). Moreover, our
extensive experiments on various algorithms suggest that
the bound could be much lower in practice. This opens a
new door to multi-criteria decision support query in terms
of regret minimization, and many open problems follow.

The most important open problem is the computational
issue of this problem. Although algorithms in this paper run
in time linear in n and the experiments suggest thatGreedy
and Max-Dom-Greedy are practical enough, it would be
interesting to explore the running time aspect of this prob-
lem further. In particular, the restricted small output size
(k) of this problem makes it possible to get an algorithm
that runs faster than computing a huge skyline. The is-
sue of external algorithms with and without preprocessing
should also be thoroughly explored.

On the theoretical side, it is still open whether we can
compute the optimal solution. We conjecture that this is
NP-hard and it would be interesting to develop algorithms
with approximation guarantees. Moreover, for the theoret-
ical guarantee of the maximum regret ratio, there is still

1120

House 6D 127,931 points

0%

1%

2%

3%

4%

5%

6%

7%

NBA 5D 17,264 points

0.0%

0.7%

0
.6

%

0
.4

%

0
.1

6
%

0
.0

9
%

Island 2D 63,383 points

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

11%

7
.6

%

0
.6

%

0
%

1
0

.4
%

Cube

Greedy

Naive-Greedy

Max-Dom-Greedy

Color 9D 68,040 points

0%

10%

20%

30%

40%

50%

3
1

.7
%

4
9

%

1
6

.9
%

1
9

%

1
.9

%

6
.3

%

0
.0

4
%

0
.0

4
%

Figure 6: Maximum regret ratios on other data sets

a gap between the lower bound of Ω(1/k2) and the upper

bound of O(1/k1/(d−1)).
Finally, our techniques are very specific to linear utility

functions. It would be interesting to bound the maximum re-
gret ratio in other classes of utility functions, such as Cobb-
Douglas, weak gross substitutability, submodular, and con-
vex functions. (See, e.g., [2, Chapter 11] for more functions
that arise in Economics.) Ideally, we would like to be able
to bound the regret ratio for the class of all monotone func-
tions.
Acknowledgement: We thank anonymous reviewers for
very helpful comments on the paper.

8. REFERENCES
[1] Gnu linear programming kit, version 4.39,.

http://www.gnu.org/software/glpk/glpk.html.
[2] Algorithmic Game Theory. Cambridge University

Press, September 2007.
[3] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D.

Thompson. On the average number of maxima in a set
of vectors and applications. J. ACM, 25(4):536–543,
1978.

[4] D. Bertsimas and J. Tsitsiklis. Introduction to Linear
Optimization. Athena Scientific, 1997.

[5] S. Börzsönyi, D. Kossmann, and K. Stocker. The
skyline operator. In ICDE, 2001.

[6] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H.
Tung, and Z. Zhang. Finding k-dominant skylines in
high dimensional space. In SIGMOD, 2006.

[7] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H.
Tung, and Z. Zhang. On high dimensional skylines. In
EDBT, 2006.

[8] Y.-C. Chang, L. D. Bergman, V. Castelli, C.-S. Li,
M.-L. Lo, and J. R. Smith. The onion technique:
Indexing for linear optimization queries. In SIGMOD,
2000.

[9] J. L. Cohon. Multiobjective programming and
planning. Dover Publications, 2004.

[10] D. L. Craft, T. F. Halabi, H. A. Shih, and T. R.
Bortfeld. Approximating convex pareto surfaces in
multiobjective radiotherapy planning. Med. Phys.,
33(9):3399–3407, 2006.

[11] D. Douglas and T. Peucker. Algorithms for the
reduction of the number of points required to
represent a digitized line or its caricature. The
Canadian Cartographer, 10(2):112–122, 1973.

[12] P. Godfrey. Skyline cardinality for relational
processing. In FoIKS, 2004.

[13] P. Godfrey, R. Shipley, and J. Gryz. Algorithms and
analyses for maximal vector computation. VLDB J.,
16(1):5–28, 2007. Also appeared in VLDB’05.

[14] M. Goncalves and M.-E. Vidal. Top-k skyline: A
unified approach. In OTM Workshops, 2005.

[15] P. Heckbert and M. Garland. Survey of polygonal
surface simplification algorithms, 1997.

[16] V. Hristidis, N. Koudas, and Y. Papakonstantinou.
Prefer: A system for the efficient execution of
multi-parametric ranked queries. In SIGMOD, 2001.

[17] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey
of top-k query processing techniques in relational
database systems. ACM Comput. Surv., 40(4), 2008.

[18] N. Karmarkar. A new polynomial-time algorithm for
linear programming. Combinatorica, 4(4):373–396,
1984.

[19] M. Kontaki, A. N. Papadopoulos, and
Y. Manolopoulos. Continuous top-k dominating
queries in subspaces. In Panhellenic Conference on
Informatics, 2008.

[20] J. Lee, G. won You, and S. won Hwang. Personalized
top-k skyline queries in high-dimensional space. Inf.
Syst., 34(1):45–61, 2009.

[21] X. Lian and L. C. 0002. Top-k dominating queries in
uncertain databases. In EDBT, 2009.

[22] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting
stars: The k most representative skyline operator. In
ICDE, 2007.

[23] D. Mindolin and J. Chomicki. Discovering relative
importance of skyline attributes. PVLDB,
2(1):610–621, 2009.

[24] A. N. Papadopoulos, A. Lyritsis, A. Nanopoulos, and
Y. Manolopoulos. Domination mining and querying.
In DaWaK, 2007.

[25] U. Ramer. An iterative procedure for the polygonal
approximation of plane curves. Computer Graphics
and Image Processing, 1(3):244–256, 1972.

[26] G. Rote. The convergence rate of the sandwich
algorithm for approximating convex functions.
Computing, 48(3-4):337–361, 1992.

[27] Y. Tao, L. Ding, X. Lin, and J. Pei. Distance-based
representative skyline. In ICDE, 2009.

[28] P. Tsaparas, T. Palpanas, Y. Kotidis, N. Koudas, and
D. Srivastava. Ranked join indices. In ICDE, 2003.

[29] T. Xia, D. Zhang, and Y. Tao. On skylining with
flexible dominance relation. In ICDE, 2008.

[30] X. Q. Yang and C. J. Goh. A method for convex curve
approximation. European Journal of Operational
Research, 97(1):205–212, February 1997.

[31] M. L. Yiu and N. Mamoulis. Multi-dimensional top-
dominating queries. VLDB J., 18(3):695–718, 2009.
Also VLDB’07.

[32] W. Zhang, X. Lin, Y. Zhang, J. Pei, and W. Wang.
Threshold-based Probabilistic Top-k Dominating
Queries. VLDB J., 19(2):283–305, 2009.

1121

APPENDIX
A. SCALE INVARIANCE

Proof of Theorem 1. Consider two sets of t points, D =
{a1, a2, . . . at} and D′ = {a′

1, a
′
2, . . . , a

′
t}. Suppose that D

and D′ are a rescaling of each other, i.e., there exist pos-
itive reals λ1, λ2, . . . , λd such that for any 1 ≤ i ≤ t and
1 ≤ j ≤ d, a′

i[j] = λjai[j].

Claim 5. For any vector v, there exists a vector v′ such
that v · ai = v′ · a′

i for any ai ∈ D and a′
i ∈ D′.

Proof. Given a vector v, we define each coordinate of
vector v′ to be v′[j] = v[j]/λj for j = 1, 2, . . . , d. Observe
that for any ai and a′

i,

v · ai =

d∑
j=1

v[j]ai[j]

=

d∑
j=1

(λjv
′[j])(a′

i[j]/λj)

=
d∑

j=1

v′[j]a′
i[j]

= v′ · a′
i

as claimed.

Now consider any two sets S ⊆ D and S′ ⊆ D′ that
are “equivalent” in the sense that if S = {ai1 , ai2 , . . . , ais}
then S′ = {a′

i1 , a
′
i2 , . . . , a

′
is}. We claim that rrD(S,L) =

rrD′(S′,L).
To see this, let v be the “worst” vector for S, i.e., v is

such that rrD(S,L) = rrD(S, v). By Claim 5, there exists
a vector v′ such that v′ · a′

i = v · ai for all 1 ≤ i ≤ t. This
implies that rrD(S, v) = rrD′(S′, v′) because

rrD(S, v) =
maxai∈D v · ai −maxp∈S v · p

maxai∈D v · ai

=
maxa′

i∈D′ v′ · a′
i −maxp′∈S′ v′ · p′

maxa′
i∈D′ v′ · a′

i

= rrD′(S′, v′) .

Therefore, rrD(S,L) ≤ rrD′(S′,L). (There might be a vec-
tor worse than v′ for S′.) By the same argument (i.e.,
start from v′ that is “worst” for S′), we get rrD′(S′,L) ≤
rrD(S,L). Therefore, rrD′(S′,L) = rrD(S,L)
Since the regret ratio is the same for every pair of equiv-

alent sets, rrD(S1,L)/rrD(S2,L) = rrD(S′
1,L)/rrD(S′

2,L)
for any sets S1, S2 ⊆ D and the equivalent sets S′

1, S
′
2 ⊆ D′.

The theorem thus holds.

B. STABILITY

Proof of Theorem 2. Let p be any junk point andD′ =
D ∪ {p}. Let g be any linear utility function. Since p is
a junk point, there is a point q ∈ D such that g(p) ≤
g(q). In particular, maxp′∈D′ g(p′) = maxp′∈D g(p′) and
thus gain(D′, g) = gain(D, g). It follows from the equali-
ties below that h(S) = rrD(S,L) satisfies the definition of

k=3 ==> t=2

p*
1

s1 s2

S1 S2

Figure 8: Example of Cube when k = 3 (thus t = 2)

stability:

rrD′(S, g) =
gain(D′, g)− gain(S, g)

gain(D′, g)

=
gain(D, g)− gain(S, g)

gain(D, g)

= rrD(S, g) .

C. PROOF OF UPPER BOUND
Proof of Theorem 3. Let v be any vector whose en-

tries are non-negative. Vector v represents a linear utility
function of a user. Let p be a point in D that maximizes
this utility function; i.e., gain(D, v) = gain({p}, v). Let
j1, j2, ..., jd−1 be integers such that p ∈ Sj1,...,jd−1 . To pre-
serve ink, let s = sj1,...,jd−1 .

First, we claim that p · v − s · v ≤ d−1
t

maxi≤d−1(p
∗
i · v).

This claim follows from the following inequalities.

p · v − s · v =

d∑
i=1

(p[i]− s[i]) · v[i]

≤
d−1∑
i=1

(p[i]− s[i]) · v[i] (2)

≤
d−1∑
i=1

ci
t
v[i] (3)

≤ d− 1

t
max
i≤d−1

(civ[i])

≤ d− 1

t
max
i≤d−1

p∗i · v.

Note that (2) uses the fact that s[d] ≥ p[d] and (3) is
because both p and s are in Sj1,j2,...,jd . Since s is in S, the
regret of the user with utility function v is

rD(S, v) ≤ p · v − s · v.

Moreover, since p∗1, p
∗
2, ..., p

∗
d−1 are in S,

gain(S, v) ≥ max
i≤d−1

(p∗i · v) .

The previous claim implies that

rD(S, v)

gain(S, v)
≤ d− 1

t
.

1122

Figure 9: Proof idea of Theorem 4. Notations are
defined in the proof.

Note a simple observation that

rD(S, v)

gain({p}, v) =
rD(S, v)

rD(S, v) + gain(S, v)
.

The right hand side is bounded by d−1
t+d−1

. Therefore,

rrD(S,L) = max
v

rD(S, v)

gain(D, v)

= max
p,v

rD(S, v)

gain({p}, v)

≤ max
p,v

rD(S, v)

rD(S, v) + gain(S, v)

≤ d− 1

t+ d− 1

as desired.

D. PROOF OF LOWER BOUND
Proof of Theorem 4. Consider an infinite set of points

in 2-dimensions, D = {pΘ = (cosΘ, sinΘ) | Θ ∈ [0, π/2]}.
This forms quarter circle of unit radius (as in Figure 9).
Each of the points in D is maximal for some linear utility
function. This is because for π/2 ≥ Θ1 > Θ2 ≥ 0, we have
sinΘ1 > sinΘ2 and cosΘ1 < cosΘ2.
Consider any set S of k representative points. Let these

points be defined by angle parameters π/2 ≥ ϕ1 > ϕ2 >
. . . > ϕk ≥ 0; i.e. the points are pϕi for all 1 ≤ i ≤ k.
Consider the angles subtended between lines obtained by
joining the point O = (0, 0) with the points p0 = (1, 0),
pϕ1 , pϕ2 , . . ., pϕk , pπ/2 = (0, 1); that is, consider angles pϕi−
O−pϕi+1 for all 1 ≤ i ≤ k and also consider p0−O−pϕ1 and
pϕk −O− pπ/2. We know that the sum of these k+1 angles
is exactly π/2. Therefore, at least one of these k+1 angles is
at least π

2(k+1)
. Let this angle be defined by pϕi −O− pϕi+1

and denote it by γ.
Set α = ϕi+1+

γ
2
and consider a user with utility function

f(x, y) = x ·cosα+y · sinα. The utility of any point p along
the utility function f is the L2-distance between the origin
(0, 0) and the projection of point p onto the line (0, 0) −
−(cosα, sinα).
Consider the point (cosα, sinα). The utility of this point

for function f is cosα · cosα+ sinα · sinα = 1. Notice that
among the k selected points pϕ1 , . . . , pϕk , the two points that
have the largest distance from (0, 0) when projected onto the
line corresponding to α are pϕi and pϕi+1 . This follows from
our construction and choice of α = ϕi+1 +

γ
2
where γ is the

angle subtended at the origin by pϕi and pϕi+1 . Therefore,
the closer a point p’s angle subtended between (0, 0) and

(1, 0) is to α, the larger the L2 distance of the projection is
from (0, 0). See Figure 9.

Therefore, the best choice for f , among the representative
points in S, is pϕi , giving a gain of cosϕi · cosα + sinϕi ·
sinα. (In fact, pϕi+1 is also another best choice which gives
the same gain. To see this, observe that the line (0, 0) −
(cosα, sinα) is perpendicular to the line pϕi − pϕi+1 .) The
projection is the point (cos(γ/2) ·cosα, cos(γ/2) ·sinα). The
utility therefore is cos(γ/2) · cosα · cosα + cos(γ/2) · sinα ·
sinα = cos(γ/2) · (cos2 α+ sin2 α) = cos(γ/2).

The regret ratio for f therefore is 1−cos(γ/2)
1

. Now using
the series expansion for Cosine, we get a regret ratio of 1−
(1−(γ/2)2/2!+(γ/2)4/4!−. . .) = (γ/2)2/2!−(γ/2)4/4!+. . ..
Now using the fact that (γ) ≥ π

2(k+1)
, we get that the regret

ratio is at least π2

32(k+1)2
−O(1

k4). Therefore, the regret ratio

is at least π2

32(k+1)2
− o(1/k2) which is Ω(1

k2).

This completes the proof. See Figure 9 for proof idea.

E. LINEAR PROGRAM

E.1 Computing the regret ratio
Given a set of d-dimensional points S and a point p, we

can find the regret ratio when the database has only one
point p, i.e. rrS∪{p}(S,L), as follows. First, recall that by
definition

rrS∪{p}(S,L) = max
v: vector

gain({p}, v)− gain(S, v)

gain({p}, v)

= max
v: vector

p · v −maxp′∈S(p
′ · v)

p · v

= max
v: vector

min
p′∈S

(p− p′) · v
p · v .

Instead of maximizing over all vectors, we can restrict to
every vector v such that p · v = 1. (This is because we can
write any vector v as λv′ for some positive real scalar λ and
vector v′ such that p · v′ = 1. The scalar λ will be canceled
out.) Therefore,

rrS∪{p}(S,L) = max
v : p·v=1

min
p′∈S

(p− p′) · v .

Letting the coordinates of v be variables v[1], v[2], . . . , v[d]
and introducing a variable x, we can translate the above
equation into the following LP.

max x

s.t. (p− p′) · v ≥ x ∀ p′ ∈ S

p · v = 1

v[j] ≥ 0 ∀ j ≤ d

x ≥ 0

The LP (1) in the paper is the expanded form of the above
LP.

E.2 Implementing the Linear Program on GLPK
In this section we show the details of implementing the

linear program (1). We use GNU Linear Programming Kit

(GLPK) [1] in our experiment. To do this, we convert the
LP above into the following form. Let S = {p1, p2, . . . pt}.

1123

max x

s.t. x− (p− pi) · v ≤ yi ∀ i ≤ t

p · v ≤ r1

−p · v ≤ r2

0 ≤ v[j] <∞ ∀ j ≤ d

0 ≤ x ≤ ∞
−∞ < yi ≤ 0 ∀ i ≤ t

−∞ < r1 ≤ 1

−∞ < r2 ≤ −1

For further information, we refer the reader to the GLPK
manual.

1124

