Dealing with Web Data: History and Look Ahead

Junghoo Cho
(UCLA)

Hector Garcia-Molina
(Stanford University)
Outline

• Digital Library Project
• Web crawling and our VLDB 2010 paper
• What has happened since then
• Open Challenges
Digital Library Project

• NSF-funded research project, 1994-2004
• Develop technologies to integrate heterogeneous digital information for seamless, universal access
 – Data integration, clustering, and archival
 – Query and data translation
 – Data security, copyright protection
 – Mobile access
WebBase Project

• Collect, store, search and mine a significant portions of the Web
 – For Web search and mining research
 – Data repository for Web researchers
• WebBase crawler
• Backrub search engine, PageRank
 – Eventually became Google
What is a Crawler?

web

init

going next url

going page

extract urls

initial urls

to visit urls

visited urls

web pages
Crawling Issues

• Load at the site
 – Crawler should be unobtrusive to visited sites

• Load at the crawler
 – Download billions of Web pages in short time

• Page selection
 – Download “important” pages

• Page refresh
 – Refresh pages incrementally not in batch
VLDB 2000 Paper

• How to crawl the Web incrementally?
 – Web evolution experiment
 • Active monitoring of half million Web pages
 • Poisson process as Web change model
 – Incremental crawling policy and architecture
 • It is not always best to visit frequently changing pages more often
 • Crawler design choices and their impact
Since Our 2000 VLDB Paper

• Many follow-up work on Web crawling and Web evolution experiments
 – 400 citations to our 2000 VLDB paper

• Web crawling
 – 214 papers with keywords “Web crawler” in their title since 2000
 • Statistics are based on results from Google Scholar
Example of Recent Web Crawling Work

• “Crawl Ordering By Search Impact” by Pandey and Olston in WSDM 2008
 – Give high priority to the pages that are likely to handle the queries with few matching pages

• Google’s sitemap protocol
 – Standard mechanism to inform Web crawlers of the URLs on the site and their modification date
 – Help crawlers discover pages to download and update
 – Based on our work on “Crawler-Friendly Web Servers” in 2000 PAWS
Follow-Up Work on Web Evolution

• 578 papers on Web evolution since 2000
 (According to Google Scholar)

• Example:
 – “On the Bursty Evolution of Blogspace” by Kumar et al. in WWW 2005
 – Study of exponential growth of graph connectivity within “blog” pages
 – Demonstrated formation of “micro-communities” within blogsphere and studied their time evolution
In Practice, This Resulted In ... (1)

- No more “404 page not found” error
 - 7% of search results are “broken” in 1999 [LG99]
In Practice, This Resulted In ... (2)

• Significantly less indexing delay
 – Indexing delay of more than 6 months [LG99]
 – Important pages are indexed more than once a day by major search engines
In Practice, This Resulted In ... (3)

• Significantly better coverage for popular queries
 – We get good results for most of navigational queries
But Things Are Not Done

- Complete paradigm shift in how Web is used
- Web as library vs Web as community
 - Twitter, Facebook, blogs, ...
 - Exponential increase in generating and sharing personal and/or time-sensitive content
- We do not handle the “new” Web well
- New Challenges in
 - Scalability & performance issues
 - Helping users sift through data
Scalability & Performance (1)

• Ashton Kutcher at Twitter
 – 5.8M followers
 – 7 tweets per day on average

• Many other Twitter users like him
 – Barack Obama: 5.3M followers
 – Lady Gaga: 6.2M followers
 – Bill Gates: 1.5M followers
 – ...
Scalability & Performance (2)

• Simple problem, but existing solutions are not adequate
 – Publish/subscribe system
 – Order of magnitude difference in data scale, distribution, and update
 – Twitter notorious for frequent outage
 – Problems are not unique to Twitter
 – Big companies develop their own in-house solutions

• Can we develop a general solution
 – Active ongoing research
Thoughts on Review Process

• Excellent track record in evaluating scalability & performance work

• But some concerns
 – Preference to new and sophisticated ideas, not a new application of an old idea
 • “This has been done before by XXX”
 • “The solution is too simple”
New Challenges

• Scalability & performance issues
• Helping users sift through data
My Student’s Google Reader Page

Subscriptions
- deals (1000+)
 - Fatwallet.com Hot Deals (1000+)
 - Passwird (546)
 - SlickDeals.net (482)
 - dealsea.com RSS Feed (254)
 - Techbargains.com (1000+)
- news (667)
 - Financial Times - US ... (184)
 - Slashdot (483)
- tech (1000+)
 - Data Mining: Text Min... (4)
 - Google Operating System (30)
Existing Techniques are Limited

• Indicating sources to follow is not enough
 – Limited understanding of users and their interest
• Listing everything new is not enough
 – Limited understanding of information
• Simple keyword matching is not enough
 – Real-time search results are not satisfactory
How Humans Filter Information?

• My paper filtering process
 – Evaluate the source
 • What conference did it appear?
 • Who are the authors?
 – Evaluate the paper
 • Read title and abstract
 – Know myself
 • Is it the topic that I am interested in?
Replicating Human Filtering

• Can we replicate the human filtering process algorithmically?
• We need better models on
 – Users
 – Data
 – Sources
• PageRank is just a first-step to the solution
There Is Hope

• Richer meta data is available
 – Most information is tagged with its source
 – Most information is time-stamped
 – Information spread is traceable

• More data from diverse sources
 – Easier to learn general trend and pattern
 – It may be possible to ignore noise once the trend is learned

• Recent successes of probabilistic approaches
 – Probabilistic topic model as an example
Probabilistic Topic Model (1)

• Classify text into categories of topics
 – Decades-old problem with a large body of existing work, but with limited success

• Wide skepticism on papers on this topic until recently
 – “Yet another paper on document classification”
 – “Thousands of papers. Is there any more to study?”
 – “How much better can this be?”
Probabilistic Topic Model (2)

• In mid 2000, probabilistic latent semantic index (pLSI) and latent dirichlet analysis (LDA) were developed
 – The result blew away researchers in the field

• Model document generation as a probabilistic process
 – Infer the model parameters from available data
Probabilistic Document Model

\[P(w|t) \quad P(t|d) \]

Topic 1
- \(money \)
- \(bank \)
- \(loan \)

\(\frac{1.0}{1} \) → DOC 1

Topic 2
- \(river \)
- \(stream \)
- \(bank \)

\(\frac{1.0}{1} \) → DOC 3

\(\frac{0.5}{1} \) → DOC 2

DOC 1
- \(money^1 \)
- \(bank^1 \)
- \(loan^1 \)
- ...

DOC 2
- \(money^1 \)
- \(river^2 \)
- \(bank^1 \)
- ...

DOC 3
- \(river^2 \)
- \(stream^2 \)
- \(river^2 \)
- ...
LDA as Topic Inference

Topic 1

Topic 2

DOC 1

money? bank? loan?
bank? money? ...

DOC 2

money? river? bank?
stream? bank? ...

DOC 3

river? stream? river?
bank? stream? ...
Results on Real Dataset [Steyvers 07]

• TASA corpus
 – 37,000 text passages from educational materials collected by Touchstone Applied Science Associates
Identified Topics

Topic 77

<table>
<thead>
<tr>
<th>word</th>
<th>prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSIC</td>
<td>.090</td>
</tr>
<tr>
<td>DANCE</td>
<td>.034</td>
</tr>
<tr>
<td>SONG</td>
<td>.033</td>
</tr>
<tr>
<td>PLAY</td>
<td>.030</td>
</tr>
<tr>
<td>SING</td>
<td>.026</td>
</tr>
<tr>
<td>SINGING</td>
<td>.026</td>
</tr>
<tr>
<td>BAND</td>
<td>.026</td>
</tr>
<tr>
<td>PLAYED</td>
<td>.023</td>
</tr>
<tr>
<td>SANG</td>
<td>.022</td>
</tr>
<tr>
<td>SONGS</td>
<td>.021</td>
</tr>
<tr>
<td>DANCING</td>
<td>.020</td>
</tr>
<tr>
<td>PIANO</td>
<td>.017</td>
</tr>
<tr>
<td>PLAYING</td>
<td>.016</td>
</tr>
<tr>
<td>RHYTHM</td>
<td>.015</td>
</tr>
<tr>
<td>ALBERT</td>
<td>.013</td>
</tr>
<tr>
<td>MUSICAL</td>
<td>.013</td>
</tr>
</tbody>
</table>

Topic 82

<table>
<thead>
<tr>
<th>word</th>
<th>prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LITERATURE</td>
<td>.031</td>
</tr>
<tr>
<td>POEM</td>
<td>.028</td>
</tr>
<tr>
<td>POET</td>
<td>.020</td>
</tr>
<tr>
<td>PLAYS</td>
<td>.019</td>
</tr>
<tr>
<td>POEMS</td>
<td>.019</td>
</tr>
<tr>
<td>PLAY</td>
<td>.015</td>
</tr>
<tr>
<td>LITERARY</td>
<td>.013</td>
</tr>
<tr>
<td>WRITERS</td>
<td>.013</td>
</tr>
<tr>
<td>DRAMA</td>
<td>.012</td>
</tr>
<tr>
<td>WROTE</td>
<td>.012</td>
</tr>
<tr>
<td>POETS</td>
<td>.011</td>
</tr>
<tr>
<td>WRITER</td>
<td>.011</td>
</tr>
<tr>
<td>SHAKESPEARE</td>
<td>.010</td>
</tr>
<tr>
<td>WRITTEN</td>
<td>.009</td>
</tr>
<tr>
<td>STAGE</td>
<td>.009</td>
</tr>
</tbody>
</table>

Topic 166

<table>
<thead>
<tr>
<th>word</th>
<th>prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAY</td>
<td>.136</td>
</tr>
<tr>
<td>BALL</td>
<td>.129</td>
</tr>
<tr>
<td>GAME</td>
<td>.065</td>
</tr>
<tr>
<td>PLAYING</td>
<td>.042</td>
</tr>
<tr>
<td>HIT</td>
<td>.032</td>
</tr>
<tr>
<td>PLAYED</td>
<td>.031</td>
</tr>
<tr>
<td>BASEBALL</td>
<td>.027</td>
</tr>
<tr>
<td>GAMES</td>
<td>.025</td>
</tr>
<tr>
<td>BAT</td>
<td>.019</td>
</tr>
<tr>
<td>RUN</td>
<td>.019</td>
</tr>
<tr>
<td>THROW</td>
<td>.016</td>
</tr>
<tr>
<td>BALLS</td>
<td>.015</td>
</tr>
<tr>
<td>TENNIS</td>
<td>.011</td>
</tr>
<tr>
<td>HOME</td>
<td>.010</td>
</tr>
<tr>
<td>CATCH</td>
<td>.010</td>
</tr>
<tr>
<td>FIELD</td>
<td>.010</td>
</tr>
</tbody>
</table>

Unsupervised learning. Topics are learned without any training data.
• Document #29795
 ... he was interested in another kind of music. He wanted to play the cornet. And he wanted to play Jazz ...

• Document #1883
 ... the actors must have the right playhouses and the playhouses must have the right audiences. We must remember that plays exist to be performed ...
What Was Different?

• Strength of probabilistic approach
• Results are more “interpretable”
 – Resulting “numbers” are probabilities
• Resilient to input noise
 – Noise unavoidable for Web data
 – Outliers do not throw off the algorithm
• Apply probabilistic approach to other problems
 – Source modeling, user modeling, ...
Thoughts on Our Review Process

• Terrible track record on papers on this topic
 – Where was the original PageRank paper published?

• Inherent challenge in working on this topic
 – Difficulty in providing quantifiable evidence

• What can we do to a better job?
Thank You

• We have done great work to build and support the constantly expanding Web and the users
• Many interesting challenges ahead
• Careful evaluation of our review process seem necessary
 – Support and encourage researchers who want to make an impact