
Provenancebased Trustworthiness Assessment
in Sensor Networks

HyoSang Lim
Department of Computer

Science,
Purdue University, USA

hslim@cs.purdue.edu

YangSae Moon
Department of Computer

Science,
Kangwon National University,

South Korea
ysmoon@kangwon.ac.kr

Elisa Bertino
Department of Computer

Science,
Purdue University, USA

bertino@cs.purdue.edu

ABSTRACT
As sensor networks are being increasingly deployed in decision-
making infrastructures such as battlefield monitoring systems and
SCADA(Supervisory Control and Data Acquisition) systems, mak-
ing decision makers aware of the trustworthiness of the collected
data is a crucial. To address this problem, we propose a system-
atic method for assessing the trustworthiness of data items. Our
approach uses the data provenance as well as their values in com-
puting trust scores, that is, quantitative measures of trustworthiness.
To obtain trust scores, we propose a cyclic framework which well
reflects the inter-dependency property: the trust score of the data
affects the trust score of the network nodes that created and ma-
nipulated the data, and vice-versa. The trust scores of data items
are computed from their value similarity and provenance similar-
ity. The value similarity comes from the principle that “the more
similar values for the same event, the higher the trust scores”. The
provenance similarity is based on the principle that “the more dif-
ferent data provenances with similar values, the higher the trust
scores”. Experimental results show that our approach provides
a practical solution for trustworthiness assessment in sensor net-
works.

1. INTRODUCTION
Advances in hardware and network technologies enable the de-

velopment of large-scale sensor networks in a large variety of novel
applications, like supervisory systems, e-health, and e-surveillance.
In near future, sensor networks will be deployed everywhere and
consist of thousands to millions of tiny sensor nodes as we can see
from the Smart Dust project [7] which aims to create grain-of-sand
sized sensors. In such new environments, sensor networks collect
large amounts of data that can convey important information for
critical decision making. Thus, being able to assess the trustwor-
thiness of the collected data and making decision makers aware of
the trustworthiness of these data become crucial.

A possible approach to this problem is to associate a trust score
with each data item. Such score provides an indication about the
trustworthiness of the data item and can be used for data compari-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
DMSN’10, September 13, 2010, Singapore
.

son or ranking. For example, even though the meaning of absolute
scores varies depending on the application or parameter settings, if
a data item has the highest trust score in a data set, then we can say
that the data item is the most trustworthy compared with the other
data items in the set. Also, as indicators about data trustworthiness,
trust scores can be used together with other factors (e.g., informa-
tion about contexts and situations, past data history) for deciding
about the use of data items. A critical element in solutions to as-
sign trust score to data is the method for computing the data trust
scores. The goal of this paper is to develop such a method for data
collected in sensor networks. Our approach is based on the con-
cept of provenance, as provenance gives important evidence about
the origin of the data, that is, where and how the data is generated.
Provenance provides knowledge about how the data came to be in
its current state - where the data originated, how it was generated,
and the operations it has undergone since its creation.

Our method is based on the principle that the more trustwor-
thy data a source provides, the more trusted the source is consid-
ered. There is thus an interdependency between network nodes and
data items with respect to the assessment of their trust scores, i.e.,
the trust score of the data affects the trust score of the network
nodes that created and manipulated the data, and vice-versa. To re-
flect such interdependency in computing trust scores, we propose a
cyclic framework that generates: (1) trust scores of data items from
those of network nodes and (2) trust scores of network nodes from
those of data items. Trust scores are gradually evolved in our cyclic
framework.

Our framework works as follows. Trust scores are initially com-
puted based on the values and provenance of data items; we refer
to these trust scores as implicit trust scores. To obtain these trust
scores, we use two types of similarity functions: value similarity
inferred from data values, and provenance similarity inferred from
data provenances. Value similarity is based on the principle that the
more data items referring to the same real-world event have simi-
lar values, the higher the trust scores of these items are. We thus
propose a systematic approach for computing trust scores based
on value similarity under the distribution of collected data. Prove-
nance similarity is based on the observation that different prove-
nances of similar data values may increase the trustworthiness of
data items. In other words, different provenances provide more in-
dependent data items. In the paper we thus present a formal model
for computing the provenance similarity and integrating it into the
data similarity.

We have implemented the cyclic framework for computing trust
scores. Through extensive experiments, we first show that our
method works correctly in sensor networks and the cyclic frame-
work gradually evolves trust scores by reflecting changes in sensing



value changes. These experimental results show that our approach
provides a practical solution for trustworthiness assessment in sen-
sor networks.

The rest of the paper is organized as follows. Section 2 mod-
els sensor networks and data provenances. Section 3 proposes the
cyclic framework for generating trust scores of data items and net-
work nodes based on their values and provenance. Section 4 re-
ports the experimental results. We finally summarize and conclude
the paper in Section 5.

2. DATA PROVENANCE AND ITS REPRE
SENTATION

Networks are usually modeled as graphs. We thus model the
physical (sensor) network as a graph of G(N,E), where the set of
nodes, N , and the set of edges, E, are defined as follows:

• N = {ni | ni is a network node of whose identifier is i.}: a
set of network nodes

• E = {ei,j | ei,j is an edge connecting nodes ni and nj .}: a
set of edges connecting nodes

Figure 1 (a) shows an example of a sensor network.

Regarding the network nodes in N , we categorize them into three
types according to their roles.

Definition 1. A terminal node generates a data item and sends
it to one or more intermediate or server nodes. An intermediate
node receives data items from one or more terminal or intermedi-
ate nodes, and it passes them to intermediate or server nodes; it
may also generate an aggregated data item from the received data
items and send the aggregated item to intermediate or server nodes.
A server node receives data items and evaluates the user queries
based on those items. 2

Without loss of generality, we assume that in G there is only one
server node, denoted by ns. To simplify the presentation, we only
consider a single numeric value as a data item. However, we can
easily extend our solution to multiple attributes by separately as-
signing independent scores to each attribute or by exploiting multi-
attribute distributions. In this paper, we also only focus on han-
dling selection and aggregation which are the most used operations
in sensor networks. We will explore additional other operations in
our future work.server nodeintermediate nodes

terminalnodes
sn sn

1tn 2tn 3tn 4tnin
d

3d1d 2d 4d
sn

tn
d sn

tn
inan bn1d 2d

d
(a) A physical sensor network (b) A simple provenance (c) An aggregate provenance (d) An exception

Figure 1: A physical sensor network and data provenance ex-
amples.

We now define the provenance of a data item d, denoted as pd.
The provenance pd records where and how the data item d was
generated and how it was passed to the server ns.

Definition 2. The provenance pd of a data item d is a rooted
tree satisfying the following properties: (1) pd is a subgraph of the
physical sensor network G(N,E); (2) the root node of pd is the
server node ns; (3) for two nodes ni and nj of pd, ni is a child of
nj if and only if ni has passed the data item d to nj . 2

We categorize intermediate nodes in data provenance into two
types based on their operations. The simple nodes are internal node
having only one child. The simple nodes simply pass data items
from their children to their parents. Simple nodes are typically used
in ad-hoc sensor networks to relay data items to a server in order
to address the insufficient capability of data transmission. The ag-
gregate node are internal nodes having two or more children nodes.
They receive multiple data items from their multiple children, gen-
erate aggregated data items, and pass them to their parents.

Figures 1 (b) and 1 (c) show some examples of the two different
data provenances. As shown in the figures, data provenances are
subgraphs of the physical sensor network of Figure 1 (a), and they
are trees rooted at the server node ns. In Figure 1 (b) every interme-
diate node in the provenance pd is a simple node, which means that
the data item d is generated in a terminal node nt and simply passed
to the server ns. We call this type provenance a simple provenance,
which can be represented as a simple path. On the other hand, in
Figure 1 (c) an internal node ni is an aggregate node, which means
that ni generates a new data item d by aggregating multiple data
items d1, . . . , d4 from nt1 , . . . , nt4 and passes d to the server ns.
We call this type provenance an aggregate provenance, which is
represented as a tree rather than a simple path.

According to Definition 2, a data provenance should be a tree.
However, there could be cycles and thus the provenance is not a
tree such as the example in Figure 1 (d). We do not consider this
case because of two reasons. First, it rarely occurs in real environ-
ments. Second, tree similarity can be computed in O(n3log n) [6];
in contrast, computing graph similarity is known as an NP-hard
problem [5] (refer to Section 3 for details). We note that basically
there is no much difference between tree-shaped and graph-shaped
provenances (Only minor changes are required to support graph-
based provenance).

3. PROVENANCEBASED TRUST SCORE
COMPUTATION

In this section, we present our cyclic framework for computing
trust scores of data items and network nodes.

3.1 Cyclic Framework for Incremental Up
date of Trust Scores

We derive our cyclic framework based on the interdependency [1,
3] between data items and their related network nodes. The inter-
dependency means that the trust scores of data items affect the trust
scores of network nodes, and similarly the trust scores of network
nodes affect those of the data items. In addition, the trust scores
need to be continuously evolved in the stream environment since
new data items continuously arrive to the server. Thus, a cyclic
framework is adequate to reflect the interdependency and continu-
ous evolution properties. Figure 2 shows the cyclic framework ac-
cording to which the trust scores of data items and the trust scores
of network nodes are continuously updated. Note that we consider
a sensor network where there are multiple sensors for monitoring
an event (i.e., we can get multiple independent observations for an
event), and thus trust scores are computed for the data items con-
cerning the same event in a given streaming window.

As shown in Figure 2, we maintain three different types of trust
scores, current, intermediate, and next trust scores to reflect the in-



Current trust scores of nodes (    )Next trust scores of nodes (    ) Intermediate trust scores of nodes (    )+ Current trust scores of data items (    ) Intermediate trust scores of data items (    )Next trust scores of data items (    )
A set of data items of the same event in a current window+1 235 4

6 ns ns)
ns

ds ds)ds
Figure 2: A cyclic framework of computing trust scores of data
items and network nodes.

terdependency and continuous evolution properties in the computa-
tion of the trust scores. The trust scores of data items and network
nodes well reflect those properties as many as cycles are repeated.
We explain the detailed computation process for the trust scores of
data items and network nodes in Section 3.3 and 3.2, respectively.

It is important to note that these scores are mainly indicators,
to be used for example for comparison purpose. For example, let
s1 and s2 be trust scores of data d1 and d2. If s1 > s2, d1 is
more trustworthy than d2. The meaning of absolute scores varies
depending from the specific applications or parameter values.

3.2 Computing Trust Scores of Network Nodes
For a network node n whose current score is sn, we are about

to compute its next score s̄n. In more detail, the trust score of n
was computed as sn in the previous cycle, and we now recompute
the trust score as s̄n using a set of recent data items in a streaming
window in order to determine how the trust score has to evolve in a
new cycle. We compute the next score based on the following two
principles: 1) the intermediate score ŝn reflects the trust scores of
its related data items based on the interdependency property; 2) the
next score s̄n reflects its current and intermediate scores sn and ŝn
to gradually evolve the trust scores of network nodes.

We now show how to compute ŝn and s̄n. First, let Dn be a set
of data items that are issued from or passed through n in the given
streaming window. That is, all data items in Dn are identified as re-
lated to the same event, and they are issued from or passed through
the network node n. We adopt the idea that “higher scores for data
items (∈ Dn) result in higher scores for their related node (n)” [1,
2]. Thus, ŝn is simply computed as the average of s̄d’s (d ∈ Dn),
which are the next trust scores of data items in Dn:

ŝn =

∑
d∈Dn

s̄d

|Dn|
(1)

In Eq. (1) we note that the trust score of a network node is deter-
mined by the trust scores of its related data items, and this satisfies
the first principle, that is, interdependency property. Also, the next
score s̄n is computed as a weighted-sum of sn and ŝn:

s̄n = cnsn + (1− cn)ŝn,

where cn is a given constant of 0 ≤ cn ≤ 1. (2)

In Eq. (2) we note that this satisfies the second principle, i.e., the
consideration of current and intermediate scores.

The constant cn in Eq. (2) represents how fast the trust score is
evolved as the cycle is repeated. For example, if cn has a larger
value, especially if cn > 1

2
, we consider sn to be more important

than ŝn, and this means that the previously accumulated historic
score (sn) is more important than the latest trust score (ŝn) recently
computed from data items in Dn. On the other hand, if cn has a
smaller value, especially if cn < 1

2
, we consider the latest score ŝn

to be more important than the historic score sn. In summary, if cn

is large, the trust score will be evolved slowly; in contrast, if cn is
small, the trust score will be evolved fast.1

3.3 Computing Trust Scores of Data Items
Basically we compute the trust score of a data item d using its

value vd and provenance pd. In this paper, we model the distribu-
tions of data items in the same event as a normal (Gaussian) dis-
tribution. In more detail, for data items in a set D of data items
related to the same event, we model the distribution of D as a prob-

ability density function f(x) = 1

σ
√
2π

e
− (x−µ)2

2σ2 , where x is the
attribute value vd of a data item d (∈ D), and µ and σ2 are mean
and variance of D respectively. We use the normal distribution
since it well reflects natural phenomena. Especially, values sensed
for one purpose in general follow a normal distribution [4, 8], and
thus this distribution is a reasonable choice for modeling stream-
ing data items in sensor networks. However, we note that the nor-
mal distribution assumption is not a limit of our solution. We just
use the distribution for estimating similarities among data values
in the trust score computation. We can adopt other distributions,
histograms, or correlation information with simple changes to the
data similarity models.

3.3.1 Current trust score sd

For a data item d, we first compute its current score sd based
on current scores of network nodes in its provenance pd (see 1⃝
in Figure 2). This process reflects the interdependency property
because we use the trust scores of network nodes for those of data
items. In Section 2 we have explained the two different types of
provenance: one is the simple provenance with a path structure; the
other is the aggregate provenance with a tree structure. According
to this classification, in what follows we first show how to compute
the current score sd for the simple provenance and then extend it
for the aggregate provenance.

In the case of the simple provenance (like in Figure 1 (b)), we can
represent it as pd = (n1, n2, . . . , nk = ns), that is, as a sequence
of network nodes that d passes through. In this case, we deter-
mine the current score sd on the minimum among the scores of all
nodes in pd. This is based on an intuition that, if a data item passes
through network nodes in a sequential order, its trust score might
be dominated by the worst node with the smallest trust score2. That
is, we compute sd as follows:

sd = min{sni | ni ∈ pd} (3)
If a data item d has an aggregate provenance pd, we need to con-

sider the tree structure (like in Figure 1 (c)) to compute its current
score sd. For an aggregate node, we first obtain a representative
score by aggregating the current scores of its child nodes and then
use this aggregate score as the current score of the child nodes. We
use an average score of child nodes as their aggregated score3. By
recursively executing this aggregation process, we simplify a tree
into a simple path of aggregated scores, and we finally compute the
current score sd by taking their minimum score as in Eq. (3).

Algorithm 1 shows a recursive solution for computing the current
score sd from its provenance pd, which can be either a simple or
1In the experiment we set cn = 1

2 to equally reflect the importance of sn and ŝn,
and we assume that the first value of sn is set to 1.
2We can also use an average score or weighted average score of network nodes to
compute the current score. In this case, we obtain the score by simply changing the
minimum function to the average or weighted average function in Eq. (3).
3According to the aggregate operation applied to the aggregate node, we can use dif-
ferent methods. That is, for AVG we can use an average of children, but for MIN or
MAX we can use a specific score of a network node that produces a resulting minimum
or maximum value. An aggregation itself, however, represents multiple nodes, and we
thus use the average score of child nodes as their representative score.



aggregate provenance. To obtain the current score sd of a data item
d, we simply call CompCurrentScore(ns) where ns is the root node
of pd.

Algorithm 1 CompCurrentScore (ni: a tree node in pd)
1: if ni is a simple node (i.e., ni has only one child) then
2: Let nj be the child node of ni; // an edge ei,j connects two nodes.
3: return MIN(sni

, CompCurrentScore(nj ));
4: else if ni is an aggregate node with k children then
5: Let nj1 , . . . , njk

be k child nodes of ni;
6: return MIN(sni

, AVG(CompCurrentScore(nj1 ), . . .,
7: CompCurrentScore(njk

)));
8: else // ni is a leaf node.
9: return sni

;
10: end-if

3.3.2 Intermediate trust score ŝd

An intermediate trust score ŝd of a data item d is computed from
the latest set of data items of the same event with d in the current
streaming window (see 2⃝ in Figure 2). Let D be the set of data
items in the same event with d. In general, if set D changes, i.e.,
a new item is added to D or an item is deleted from D, we recom-
pute the trust scores of the data items in D. We obtain ŝd through
the initial and adjusting steps. In the initial step, we use the value
similarity of data items in computing an initial value of ŝd. In the
adjusting step, we use the provenance similarity to adjust the initial
value of ŝd by considering provenances of data items.

(1) Initial score of ŝd based on value similarity
Based on our normal distribution model, we observe that, for a set
D of a single event, its mean µ is the most representative value
that well reflects the value similarity. This is because the mean is
determined by the majority values, and obviously those majority
values are similar to the mean in the normal distribution. Thus, we
conclude that the mean has the highest trust score; if the value of
a data item is close to the mean, its trust score is relatively high; if
the value is far from the mean, its trust score is relatively low.

Based on those observations, we propose a method to compute
the intermediate score sd in the initial step. In obtaining ŝd, we
assume that vd ≥ µ. We can easily extend our method to the case
of vd ≤ µ, and we thus omit that case for simplicity.

As intermediate score ŝd, we use the cumulative probability of
the normal distribution. In this method, we use “1 − the amount
of how far vd is from the mean” as the initial score of ŝd, and here
“the amount of how far vd is from the mean” can be thought as the
cumulative probability of vd. Thus, as in Eq. (4), we obtain the
initial ŝd as the integral area of f(x).

ŝd = 2

(
0.5−

∫ vd

µ

f(x) dx

)
= 1−

∫ vd

2µ−vd

f(x) dx = 2

∫ ∞

vd

f(x) dx (4)

Figure 3 shows how to compute the integral area for the initial in-
termediate score sd. In the figure, the shaded area represents the
initial score of ŝd, which is obviously in (0,1]. Here, the score ŝd
increases as vd is close to µ.

According to our data similarity model, if a sensor suddenly gen-
erates a data value which is different from the mean, this data value
will initially receive a low trust score. However, in this case, the
system provides users with an explanation about why the trust score
is so low. There could be two possible reasons for the trust score
of a data generated by a sensor to be low: 1) the observation by
the sensor is quite different from the other observations of the same

( )( )
2 ddvvµ −

= µ − − µ
µ dv

 ( )dv f x dx
µ∫

  0.5 ( ) ( )d dv vf x dx f x dx∞

µ
− =∫ ∫x

( )f x
Figure 3: Computing the intermediate score of ŝd.

event; 2) the observation is currently the only observation for the
event. In the former case, users can safely conclude that the data
value is wrong. In the latter case, users can take different actions.
They can just wait for the arrival of new data concerning this event.
Or they can activate additional sensors (for example we may as-
sume that not all sensors are always activated in order to save en-
ergy), that in turn will result in more data to be generated. If the
initial observation is actually true, other sensors will send similar
observations shortly, and then, the cyclic framework will automati-
cally reflect this situation by increasing the trust scores of the initial
data value.

(2) Adjusted score of ŝd based on provenance similarity
We need to adjust the intermediate score ŝd by reflecting the prove-
nance similarity of data items. To achieve this, we let a set of
provenances in D be P and the similarity function between two
data provenances pi, pj (∈ P ) be sim(pi, pj)

4. Here, the similar-
ity function sim(pi, pj) returns a similarity value in [0, 1], and can
be computed from the tree or graph similarity [5, 6]. Computing
graph similarity, however, is known to be an NP-hard problem [5],
and we thus use the tree similarity [6], which is an edit distance-
based similarity measure.

Our approach to take into account provenance similarity in com-
puting the intermediate score ŝd is based on some intuitive observa-
tions. In the following, notation ‘∼’ means “is similar to”, and no-
tation � means “is not similar to.” Given two data items d, t ∈ D,
their values vd, vt, and their provenances pd, pt ∈ P ,

• if pd ∼ pt and vd ∼ vt, the provenance similarity makes a
small positive effect on ŝd;

• if pd ∼ pt and vd � vt, the provenance similarity makes a
large negative effect on ŝd;

• if pd � pt and vd ∼ vt, the provenance similarity makes a
large positive effect on ŝd;

• if pd � pt and vd � vt, the provenance similarity makes a
small positive effect on ŝd;

Based on the above observations, we introduce a measure of ad-
justable similarity to reflect the provenance similarity in adjusting
ŝd. Given two data items d, t (∈ D), we first define the adjustable
similarity between d and t, denoted by ρd,t, as follows:

ρd,t =

{
1 − sim(pd, pt), if dist(vd, vt) < δ1; // positive effect
−sim(pd, pt), if dist(vd, vt) > δ2; // negative effect
0, otherwise. // no effect

(5)

In Eq. (5), dist(vd, vt) is a distance function between vd and vt; δ1
is a threshold indicating when vd and vt are to be treated as simi-
lar; δ2 is a threshold indicating when vd and vt are to be treated as
4Data items in the same event may have similar provenances, so we may assume that
the number of possible provenances for an event is finite and actually small. Thus, for
real-time processing purposes, we can materialize all sim(pi, pj)’s in advance and
maintain them in memory.



dissimilar5. The adjustable similarity ρd,t in Eq. (5) well reflects
the effect of provenance and value similarities. That is, if vd and
vt are similar, ρd,t has a positive value of “1 − sim(pd, pt)” de-
termined by the provenance similarity; in contrast, if they are not
similar, ρd,t has a negative value of “−sim(pd, pt).” To consider
adjustable similarities of all data items in D, we now obtain their
sum ρd as follows:

ρd =
∑

t∈D,t ̸=d

ρd,t (6)

We then adjust the value vd by considering ρd and use the ad-
justed value, denoted by v̄d, to compute ŝd instead of vd. In more
detail, we first normalize ρd into [−1, 1] using its maximum and
minimum similarities, ρmax and ρmin. The normalized value of ρd,
denoted by ρ̄d, is thus computed as follows:

ρ̄d = 2
ρd − ρmin

ρmax − ρmin
− 1, where ρmax = max{ρt| t ∈ D}

and ρmin = min{ρt| t ∈ D} (7)

We then adjust the data value vd to a new value v̄d as follows:

v̄d = min{vd − ρ̄d(cp · σ), µ},
where cp is a constant greater than 0. (8)

Figure 4 shows how the value vd changes to v̄d based on the ad-
justable similarity ρ̄d in the framework of a normal distribution.
As shown in the figure, if ρ̄d > 0, i.e., if the provenance simi-
larity makes a positive effect, vd moves to the left in the distribu-
tion graph, i.e., the intermediate score ŝd increases; in contrast, if
ρ̄d < 0, i.e., if the provenance similarity makes a negative effect,
vd moves to the right in the graph, i.e., ŝd decreases. In Eq. (8), cp
represents the important factor of provenance similarity in comput-
ing the intermediate score. That is, as cp increases, the provenance
similarity becomes more important. We use 0.2 as the default value
of cp, i.e., we move the data value vd in ±20% range of the stan-
dard deviation σ.

2 dvµ − µ dv x
( )f x ( )d pcρ ⋅ σdv dv

( )0dif ρ > ( )0dif ρ <

Figure 4: The effect of the provenance similarity on a data
value.

By using the adjusted data value v̄d, we finally recompute the
intermediate score ŝd. By simply changing vd to v̄d, we can also
obtain Eq. (9) from Eq. (4) in which the integral area for the inter-
mediate score may increase or decrease by the provenance similar-
ity.

ŝd = 2

∫ ∞

v̄d

f(x) dx = 1−
∫ v̄d

2µ−v̄d

f(x) dx (9)

5In the experiment we set δ1 and δ1 to 20% and 80% of the average distance, respec-
tively.

3.3.3 Next trust score s̄d

For a data item d we eventually compute its next trust score s̄d
by using the current score sd and the intermediate score ŝd. In ob-
taining s̄d, we use sd for the interdependency property since sd is
computed from network nodes, and we exploit ŝd for the contin-
uous evolution property since ŝd is obtained from the latest set of
data items. Similar to computing the next score s̄n of a network
node n in Eq. (2), we compute s̄d as follows:

s̄d = cdsd + (1− cd)ŝd,

where cd is a given constant of 0 ≤ cd ≤ 1. (10)

As shown in Eq. (10), the next score s̄d is gradually evolved from
the current and intermediate scores sd and ŝd. We also note that
s̄d will be used to compute the intermediate scores (i.e., ŝn) of
network nodes in the next computation cycle (see 4⃝ in Figure 2)
for the interdependency and continuous evolution principles.

Like constant cn used in computing sn for a network node n in
Eq. (2), constant cd in Eq. (10) represents how fast the trust score
evolves as the cycle is repeated. If cd is large, the trust scores of
data items evolve slowly; in contrast, if cd is small, they evolve
fast.6

In this section, instead of calibrating our model with real data
sets, we present general principles for choosing parameter values (e.g.,
confidence ranges control the tradeoff between the number and
quality of results, cn controls how fast scores are evolved). We
believe these principles can be used in most applications.

4. EXPERIMENTAL EVALUATION
In this section, we present our performance evaluation. In what

follows, we first describe the experimental environment, and then
present the experimental results.

4.1 Experimental Environment
The goal of our experiments is to evaluate the efficiency and ef-

fectiveness of our approach for the computation of trust scores. To
evaluate the efficiency, we measure the elapsed time for processing
a data item with our cyclic framework in the context of a large scale
sensor network and a large number of data items. To evaluate the
effectiveness, we simulate an injection of incorrect data items into
the network and show that trust scores rapidly reflect this situation.

We simulate a sensor network for the experiments. For simplic-
ity, we model our sensor network as an f -ary complete tree whose
fanout and depth are f and h, respectively. We vary the values of f
and h to control the size of sensor networks for assessing the scal-
ability of our framework. We also set the number of unique events
to Nevent.

We use synthetic data that has a single attribute whose values
follow a normal distribution with mean µi and variance σi

2 for
each event i (1 ≤ i ≤ Nevent). To generate data items, for each
event, we assign Nassign leaf nodes of the sensor network with an
interleaving factor Ninterleave . This means that the data items for
an event are generated at Nassign leaf nodes and the interval be-
tween the assigned nodes is Ninterleave (e.g., if Ninterleave = 0,
then Nassign nodes are exactly adjacent with each other). To simu-
late the incorrect data injection, we randomly choose an event and
a node assigned for the event, and then, generate a random value.

For computing the similarity between two provenances pi and pj
(i.e., sim(pi,pj)), we use a path edit distance defined as follows:

sim(pi, pj) = 1 −
1

h

h∑
k=1

node distance between pi and pj at the k-th level
total number of nodes at the k-th level

6In the experiment we set cd = 1
2 to equally reflect the importance of sd and ŝd.



Here, the node distance is defined as the number of nodes between
two nodes at the same level.

All the experiments have been conducted on a PC with a 2.2GHz
Core2 Duo processor and 2GB RAM running Windows/XP. The
program code has been written in Java with JDK 1.6.0. Table 1
summarizes the experimental parameters and their default values.
In all experiments we use the default values unless mentioned oth-
erwise.

Table 1: Summary of notation.
Symbols Definitions Default
h height of the sensor network 5
f fanout of the sensor network 8
Nevent # of unique events 1000
Nassign # of nodes assigned for an event 30
Ninterleave interleaving factor 1
ω size of window for each event 20

As can be seen in Table 1 we only vary some application insen-
sitive parameters. The other parameters (e.g., weights, thresholds)
may be more sensitive to application contexts (e.g., data distribu-
tions, attack patterns). We will consider these parameters in the
context of specific applications in our future work.

4.2 Experimental Results
(1) Computation efficiency: We measured the elapsed time for pro-
cessing a data item. Figure 5 reports the elapsed times for different
values of h’s and ω’s.

0

2

4

6

8

10

12

14

3 4 5 6 7

el
ap

se
d

 ti
m

e 
/ 

a 
da

ta
 it

em
 (

m
s)

height, h

1

10

100

10 20 40 80

el
ap

se
d

 ti
m

e 
/ 

a 
da

ta
 it

em
 (

m
s)

window size, ω(a) Varying height of the sensor network (b) Varying the window size
Figure 5: Elapsed times for computing trust scores.

From Figure 5 (a), we can see that the elapsed time increases
as h increases. The reason is that, as h increases, the length of
provenance also increases. However, the increasing rate is not high;
for example, the elapsed time increases only by 9.7% as h varies
from 5 to 6. The reason is that the additional operations for longer
provenance linearly increase when computing the trust scores for
both data items and network nodes. For the data items, only sd
and ŝd are affected by the length of the provenance, i.e., an addi-
tional iteration is required to compute the weighted sum for sd and
a provenance similarity comparison for ŝd. For the network nodes,
the computation cost increases linearly with the height (not with
the total number of nodes), since we consider a very small number
of network nodes related to the provenance of the new data item.

From Figure 5(b), we can see that the elapsed time increases
more sharply as ω increases. The reason is that the number of sim-
ilarity comparisons (not an iteration) for ŝd linearly increases as ω
increases. However, we can see that the performance is still ade-
quate for handling high data input rates; for example, when ω is 80,
the system can process 25 data items per second.
(2) Effectiveness: To assess the effectiveness of our approach, we
injected incorrect data items into the sensor network, and then ob-
served the change of trust scores of data items. Figure 6 shows the
trend in trust score changes for different values of the interleaving

factor Ninterleave . Here, Ninterleave affects the similarity of prove-
nances for an event, i.e., if Ninterleave increases, the provenance
similarity decreases.

Figure 6 (a) shows the changes in the trust scores when incor-
rect data items are injected. The figure shows that the trust scores
change more rapidly when Ninterleave is smaller. This trend is ex-
plained by the principle “different values with similar provenance
result in a large negative effect.” In contrast, Figure 6 (b) shows
the changes when the correct data items are generated again. In
this case, we can see that the trust scores are modified more rapidly
when Ninterleave is larger. This trend is explained by the principle
“similar values with different provenance result in a large positive
effect.”

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100 120

tr
us

t s
co

re
s

number of iterations

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0 20 40 60 80 100 120

tr
us

t s
co

re
s

number of iterations(a) With untrustworthy data items (b) With trustworthy data items
Ninterleave = 0Ninterleave = 4 Ninterleave = 0Ninterleave = 4

Figure 6: Changes of trust scores for incorrect data items.

5. CONCLUSIONS
In this paper we propose a systematic method for computing and

evolving the trustworthiness levels of data items/network nodes.
We first introduce a cyclic framework of computing actual trust
scores of data items and network nodes based on the interdepen-
dency between data and network nodes. We then provide a formal
method for computing trust scores based on the value and prove-
nance similarities of data items. Through extensive experiments,
we show that our cyclic framework works well in sensor networks.

As future work, we plan to: (1) consider multiple dependent at-
tributes and multi-attributes in-network operations and (2) consider
other probability distributions instead of normal distributions.

Acknowledgements: The work of Elisa Bertino and Hyo-Sang
Lim has been partially supported by Northrop Grumman as part
of the NGIT Cybersecurity Research Consortium and by the NSF
Grant N.0964294 “NeTS: Medium: Collaborative Research: A
Comprehensive Approach for Data Quality and Provenance in Sen-
sor Networks”.

6. REFERENCES
[1] E. Bertino, C. Dai, H.-S. Lim, and D. Lin, “High-Assurance Integrity

Techniques for Databases,” In Proc. of the 25th British Nat’l Conf. on
Databases, Cardiff, UK, pp. 244-256, July 2008.

[2] C. Dai, D. Lin, E. Bertino, and M. Kantarcioglu, “An Approach to Evaluate
Data Trustworthiness Based on Data Provenance,” In Proc. of the 5th VLDB
Workshop on Secure Data Management, Auckland, New Zealand, pp. 82-98,
Aug. 2008.

[3] C. Dai et al., “Query Processing Techniques for Compliance with Data
Confidence Policies,” In Proc. of the 6th VLDB Workshop on Secure Data
Management, Lyon, France, pp. 49-67, 2009.

[4] E. Elnahrawy and B. Nath, “Cleaning and Querying Noisy Sensors,” In Proc.
of the 2nd ACM Int’l Conf. on Wireless Sensor Networks and Applications,
San Diego, California, pp. 78-87, Sept. 2003.

[5] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the
Theory of NP-Completeness, 1990.

[6] P. N. Klein, “Computing the Edit-distance between Unrooted Ordered Trees,”
In Proc. of the 6th Annual European Symposium on Algorithms (ESA), Venice,
Italy, pp 91-102, Aug. 1998.

[7] Smart Dust Project, http://robotics.eecs.berkeley.edu /∼pister/SmartDust/.
[8] M. Rabbat and R. Nowak, “Distributed Optimization in Sensor Networks,” In

Proc. of the 3rd Int’l Symp. on Information Processing in Sensor Networks,
Berkeley, California, pp. 20-27, Apr. 2004.


