
A Distributed Event Stream Processing Framework for
Materialized Views over Heterogeneous Data Sources

Mahesh B. Chaudhari#*1
#School of Computing, Informatics, and Decision Systems

Engineering
Arizona State University,

Tempe, AZ 85287-8809, USA
1mahesh.chaudhari@asu.edu

Supervised by Suzanne W. Dietrich*2
*Division of Mathematical and Natural Sciences

Arizona State University,
Phoenix, AZ 85069-7100, USA

2dietrich@asu.edu

ABSTRACT
Data-driven applications are becoming increasingly complex with
support for processing events and data streams in a loosely-
coupled distributed environment, providing integrated access to
heterogeneous structured data sources such as relational databases
and XML data. This paper provides the foundation for defining a
framework for materialized views over heterogeneous data
sources in an event stream processing environment. A prototype
using commercial off-the-shelf components illustrates a “proof of
concept” of the framework for investigating the research
challenges in the incremental view maintenance of materialized
views. Specifically, the paper explores LINQ as a materialized
view definition language for defining views over both relational
and XML structured data sources while respecting the native
format of the data sources to take advantage of the established
technology.

1. INTRODUCTION
Database applications are becoming increasingly dynamic,
requiring the monitoring of streaming data and events in a
distributed environment. In the past, research was individually
focused on continuous queries over streams [1, 12] and distributed
event processing [22]. In stream processing applications, data are
received continuously and ordered by their arriving timestamps
[4]. The streaming data, which generally arrives at a very high
rate, is processed using continuous queries with filtering
capabilities and access to the persistent data sources. In contrast to
streams, a primitive event is defined as an atomic and
instantaneous occurrence of interest at a given time [5].
Composite events detect complex and meaningful relationships
among the multiple occurrences of primitive events. In event
processing applications, active rules define the behavior of the
application in response to the occurrence of the events.

Although event processing and stream processing are similar in
the aspect of consuming the generated information, each
paradigm is designed for different functional purposes. Stream
processing involves the execution of continuous queries over a
large volume of data generated at a high rate to extract

meaningful information. Event processing typically deals with a
lower volume of data or primitive events to establish correlations
that form composite events. Thus, stream processing can serve as
a processing step before event processing by reducing the volume
of relevant data for the event handler. There are many dynamic
applications, in domains such as financial stock market
monitoring or criminal justice, which have a need to define events
over streaming data with access to heterogeneous data sources.
Thus, the integration of steams and events is now receiving
attention in the research community [2, 9, 15, 18].

The framework proposed in this paper uses event stream
processing as a fundamental paradigm. The distributed nature of
the framework with support for access to heterogeneous data
sources originated from an active database perspective to use
events and rules to build enterprise applications [29]. The
application of the proposed framework to heterogeneous data
sources results in a system that may be considered a dataspace
support platform [11] where data sources co-exist and the
framework provides the developer with an environment that
supports the challenges of building their application over
disparate and distributed data sources. Dataspaces differ from data
integration approaches [16] that semantically integrate the data
sources using a common mediated schema. This research is novel
in that it utilizes event stream processing within the framework of
the dataspace system.

The objective of this paper is to describe a framework for
investigating the incremental maintenance of materialized views
over structured data sources such as relational databases and
XML data for distributed event stream processing. Section II
provides an overview of a prototype environment built using the
Coral8 Event Stream Processor, SQL Server 2008, Oracle 11g
Server, XML documents and the C# programming language with
.NET framework 3.5. This work is in its initial stages and most of
the information in this paper is in its exploratory phase. Hence
Section III describes important research challenges and possible
research directions in solving the problems. The paper concludes
with a brief discussion of future research directions and expected
novel contributions of this loosely-coupled distributed event
stream processing framework.

2. DISTRIBUTED EVENT STREAM
PROCESSING ENVIRONMENT
The concept of a Distributed Event Stream Processing Agent
(DEPA) was first envisioned in [28] but not implemented. This
paper illustrates a proof of concept implementation of a
framework built using a DEPA as a fundamental building block,

13

uqxzhou
Typewritten Text
Copyright is held by the author/owner(s).
VLDB 2010 PhD Workshop, September 13, 2010, Singapore

establishing a foundation for research challenges involving the
incremental maintenance of materialized views over
heterogeneous distributed data sources within this framework.
Specifically, a DEPA can subscribe to different event or data
streams. DEPAs can handle data streams from different data
sources, including application event generators, the output from
continuous queries over sensor data, and streams of incremental
changes from databases, such as the Oracle Streams [23] or
Change Data Capture feature for SQL Server 2008 [21] for
monitoring database log files. The event or data streams can be
either in relational format or in a structured XML format.
Processing these events or data streams often requires access to
persistent data sources such as relational databases and XML
data.

The concept of streams has typically been associated with real-
time applications having strict low-latency requirements [27].
Such real-time stream processing applications rarely require
storing the incoming streaming data for historical reasoning. On
the other hand, passive systems continuously poll for conditions
of interest, adding overhead and latency. An active system can
reduce this additional overhead and latency by incorporating
event processing capabilities. In an event stream processing
environment, primitive or composite event definitions relying on
streaming data may tend to span for a longer duration of time,
thus adding latency to the overall system. To satisfy such event
definitions along with continuous queries with longer windows
may require storage of the in-coming streaming data for later
processing. Thus, an event stream processing active system
performs better than a passive polling-based system; however,
they do not tend to have strict latency requirements as purely
stream processing systems.

The main focus of this research is to explore the use of
materialized views over heterogeneous structured data sources in
such a distributed event stream processing environment as shown
in Figure 1. A materialized view is a query whose results are
computed when defined and stored in the database with
appropriate indices [14]. Upon reference to the view, the
materialized results are retrieved instead of recomputed. Each
DEPA maintains its own set of resources, such as data and event
streams, active rules, relational and structured XML data sources
to which the DEPA subscribes. Even though DEPAs
communicate with each other to exchange information, it is
crucial to define materialized views for each individual DEPA for
efficient stream processing, composite event detection, and the
execution of active rules. The vision is that each DEPA will have
a specific responsibility within the distributed system, which will
increase the probability of common subexpressions on which to
define materialized views for improving performance. Providing
materialized views closer to the specific responsibilities is
expected to reduce the overall latency of the event stream
processing system [27].

The DEPA prototype uses Coral8 as the event stream processor.
Coral8 has its own Continuous Computation Language (CCL) for
defining different data streams and event streams [8]. CCL has
SQL-like syntax and the streams can be either in relational or
XML format. Along with stream definitions, CCL also provides
the capability of defining continuous queries and composite
events with temporal and windowing capabilities over the streams

with access to external persistent data sources, such as relational
databases and XML documents.

Figure 1. DEPA Architecture

In this research project, the Language INtegrated Query (LINQ)
[3, 20] is being explored as the materialized view definition
language for the DEPAs. LINQ is a declarative, strongly-typed
query language and has syntax that is SQL-like with from, where,
and select clauses. An advantage of LINQ is that the same
language can query a collection of: objects in memory or an
object-oriented database, tuples in a relational table, or elements
in an XML document. Thus LINQ provides a unifying paradigm
to query heterogeneous data sources declaratively. This scenario
is likely for a DEPA, since the event and stream processing often
requires access to heterogeneous structured data sources at the
same time. Figure 2 illustrates a scenario for a LINQ query that
can process streaming data and events along with access to one
relational and one XML data source. However, there are research
challenges involved in using LINQ as a common platform to
access heterogeneous data sources.

Figure 2. Processing Streams using LINQ over heterogeneous

data sources
LINQ provides a layer of abstraction over the different data
sources. A LINQ query is represented internally as an expression
tree. The LINQ framework then uses a data-source specific LINQ
provider to automatically generate an equivalent query over that
data source. Also, the LINQ framework is fully extensible. There
are numerous third party LINQ providers available to query
different types of data sources, such as LINQ to Amazon, LINQ
to MySQL, Oracle, and PostgreSql [3]. At present, the default

14

LINQ provider supports for one persistent data source and the
remaining data sources have to be in-memory. However, for
DEPAs, it is necessary to access more than one persistent data
source through a single query. This research will use the
extensible features of the LINQ framework for optimization by
writing a LINQ provider that will access multiple persistent data
sources in the DEPA environment.

As a motivating example, consider a sample scenario in criminal
justice. Assume that the photo radar speeding tickets are streamed
over an XML stream (SpeedingTickets). The Motor Vehicle
Division (MVD) stores vehicle records in an XML file
(VehicleInfo) and the driver license information in a relational
database (LicenseInfo). The personal information (PersonalInfo) is
stored in an associated state-level relational database. In order to
process each speeding ticket, data is required from both the XML
file as well as the relational tables so that the speeding tickets can
be mailed directly to the vehicle owner’s home address. The
following LINQ query uses the speedingPlateNum from the
SpeedingTickets stream to process each violation:
var VehicleDetailInfo =
 from v in VehicleInfo.Vehicle
 from l in DBCon.LicenseInfo
 where l.LicenseNum.Equals(v.Owner.DriverLicense)

 &&
 speedingPlateNum.Equals(v.Info.PlateNum)
 from p in DBCon.PersonalInfo
 where p.SSN.Equals(l.SSN)
 select new {/* project needed fields */};

LINQ’s unifying paradigm also provides a candidate materialized
view definition language for the event stream processing
framework. In this inherently distributed and heterogeneous
environment, the use of materialized views, especially within a
DEPA, is an optimization technique that should be investigated.
For example, a materialized view that relates a vehicle with the
license and the personal information of its registered owner would
likely provide reuse opportunities. This materialized view
combines both relational and XML data sources as shown in
Figure 3. The data structure used to store the materialized view is
part of the proposed research.

Figure 3. Processing Streams using LINQ and Materialized

Views over heterogeneous data sources
Once the materialized view is registered with the system, the
original LINQ query can be rewritten to query the materialized
view instead of the original data sources [14]. The modified LINQ

query that accesses the materialized view ViewPersonVehicle is
shown below:
 var VehicleDetailInfo =
 from mv in DBCon.ViewPersonVehicle
 where speedingPlateNum.Equals(

 mv.VehicleInfoPlateNum)
 select new {/* project needed fields */};

The original LINQ query and its corresponding version using the
materialized view were implemented in the distributed event
stream processing prototype using the C# with .NET Framework
3.5, Coral8 Server 5.6.2, SQL Server 2008, and XML files stored
on a hard drive. As expected, query execution in the DEPA
environment using the materialized view shows significant
performance improvement.

3. RESEARCH CHALLENGES
One aspect of this research is to explore the feature of providing
materialized views local to the DEPAs for processing events and
data streams. There is a well-known trade-off with the use of
materialized views and their maintenance. The materialized view
must be updated when the data on which it depends has changed.
Rather than recomputing the entire view, an incremental strategy
is preferred to modify the materialized view based on the changes
to the underlying data sources [10, 13]. An important future
research direction is the investigation of incremental view
maintenance within this distributed event stream processing
framework.

Prior research on incremental view maintenance for
heterogeneous data sources has converted the different data
sources to one format, either the XML data was converted into
relational data [26] or the relational data was converted into XML
data [30]. Once all the sources were in one format, then the
materialized views were defined and established incremental view
maintenance approaches were used. However, these techniques
require the overhead of converting one source into another.
Additional mapping information is also required to reconstruct the
results from the converted format to the original source format.

The use of LINQ as a materialized view definition language
opens new alternatives to explore. LINQ orchestrates subqueries
over the underlying data sources, respecting the technology of
each data store. One question to investigate is whether this
orchestration of queries has advantages over the cost of
conversions. Currently, LINQ allows access to only one persistent
relational database and other data sources have to be in-memory.
Hence, this research will explore the extensibility of the LINQ
framework by investigating the implementation of a new LINQ
provider that can handle multiple persistent databases and in-
memory data sources through a single query.

Another challenge is the examination of incremental view
maintenance in this loosely-coupled distributed event stream
processing framework. The changes or deltas to the underlying
data sources can be modeled as streams in a DEPA. For example,
Oracle has Oracle Streams and SQL Server 2008 has Change Data
Capture to identify the changes occurring in the relational
database. For XML files, there are change detection algorithms to
capture the changes occurring in the XML documents [17, 31].
Future research will focus on using these deltas in their native
format as streams to incrementally update the materialized views.

15

The perspective of introducing agents for processing distributed
events and streams with access to heterogeneous structured data
sources introduces several research challenges:

1. Dependency analysis across different filtering queries to
identify common subexpressions as potential candidates for
materialized partial joins

An incremental approach to the evaluation of the resulting
language that integrates streams, events, and persistent data is
essential. In the DEPAs, the continuous queries, LINQ queries,
SQL queries, and composite event definitions are the different
query expressions accessing heterogeneous data sources. By
exploring multiple query optimization over these expressions,
common subexpressions can be detected as the potential
candidates for materialized views. The candidate materialized
views can represent partial joins across relational and XML data
sources.

Multiple query optimization and detecting common
subexpressions for Select-Project-Join (SPJ) queries have been
explored extensively for SQL queries [7, 24, 25, 32]. Multiple
query optimization reduces memory consumption and improves
performance when processing multiple queries. It is a well-known
fact that identifying common subexpressions is a NP-hard
problem and hence it can be addressed by using a heuristic
approach [7, 24]. The proposed research is going to explore
multiple query optimization over SQL queries, LINQ queries,
continuous queries and filter conditions in composite event
definitions.

For DEPAs, the continuous queries and event definitions are
defined using CCL. The Antlr based parser for CCL will provide
access to different subsections of the continuous queries and event
definitions. LINQ query is translated into an expression tree that
can be traversed to access its different sections. Similarly, the
SQL queries can be represented as directed acyclic graphs (DAG)
[25, 32] to have access to its different parts. The proposed
research will analyze these different tree representations to
develop a heuristics-based algorithm to detect common
subexpressions. The algorithm will require metadata-level access
to all the data sources. One of the assumptions for the project is
that each DEPA is designed to perform its own specific task
within the distributed framework. This assumption is expected to
increase the likelihood of identifying common subexpressions.
Thus, each DEPA maintains its own metadata repository over all
the subscribed persistent data sources and the different query
expressions.

Since the DEPAs are autonomic computing agents,
registering/unregistering data sources at run-time, the metadata
repository dynamically updates itself at run-time. The metadata
repository consists of two components. The persistent component
stores the access information and the corresponding run-time
classes provide dynamic access to the metadata. Along with
different query expressions, this metadata repository also provides
access to the already defined materialized views in the system to
avoid detection of duplicate candidates. The metadata repository
can be accessed at different access-levels and one DEPA can
share its metadata repository information with other DEPAs. In
order to facilitate such behavior, the metadata repository is
exposed in terms of services based on a Service-Oriented
Architecture (SOA). The metadata repository is stored in an

Oracle 11g database and the metadata services are implemented
using the Windows Communication Foundation (WCF) [19].
Details regarding the metadata repository and its services are
available in [6].

2. Techniques for selectively materializing the partial joins
over relational as well as XML data sources

The dependency analysis of the various query expressions will
identify common subexpressions as potential candidates for
materialized views. One research challenge will be the design of a
heuristic algorithm that will selectively choose partial joins over
heterogeneous data sources that will be beneficial to materialize,
using a cost-based approach in a distributed environment.

The proposed design for addressing research challenges 1 and 2 is
shown in Figure 4. This research is going to investigate LINQ as
the potential materialized view definition language. Once the
candidates are chosen, corresponding materialized views will be
defined in the system using LINQ and the original query
expressions will be rewritten to use the materialized views
instead. The metadata repository for all the registered data sources
will provide the necessary metadata-level information for the
query optimizer.

Figure 4. Multiple Query Optimizer

3. Incremental Evaluation and Materialized Views for
Integrating Streams, Events, and Persistent Data

Capturing of deltas or changes to the original data sources is
important in incremental view maintenance of the materialized
partial joins. Deltas can be captured for Oracle Server using
Oracle Streams or for SQL Server 2008 using the Change Data
Capture feature. For capturing changes occurring in XML
documents, there are various diff algorithms to generate deltas.
There are expected challenges for this proposed research with
respect to using native deltas to incrementally update the
materialized views over heterogeneous data sources as shown in
Figure 5.

16

Figure 5. Using Deltas in Native format for Incremental View

Maintenance

4. DISCUSSION
This paper has discussed the research challenges for the
incremental maintenance of materialized views in a distributed
event stream processing framework. The materialized views are
defined locally to the DEPAs that process the events and streams
to avoid frequent trips to the distributed data sources. A unique
aspect of this research is the use of LINQ (and its extensible
framework) as the materialized view definition language, which
supports querying the data and their deltas in their native formats.
The research challenges include the identification of common
subexpressions across a suite of related but disparate languages
and the selection of which common subexpressions should be
materialized as views to improve the performance of the
distributed system. These materialized views will then be
incrementally updated to reflect the changes in the underlying
data sources, which can be either in a relational or XML format.
The development of the incremental evaluation techniques for the
materialized views over heterogeneous data sources is expected to
improve the performance of today's increasingly complex
enterprise applications that require support for handling events
and streaming data.

5. ACKNOWLEDGMENTS
This material is based upon work supported by the National
Science Foundation under Grant No. 0915325.

6. REFERENCES
[1] Babu, S., and Widom, J., Continuous queries over data

streams, SIGMOD Rec., vol. 30, 2001, pp. 109-120.
[2] Barga, R. S., Goldstein, J., Ali, M. H., and Hong, M.,

Consistent streaming through time: A vision for event stream
processing, in CIDR, 2007, pp. 363-374.

[3] Calvert, C., and Kulkarni, D., Essential LINQ. Boston, MA:
Addison-Wesley, 2009.

[4] Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee,
S., Seidman, G., Stonebraker, M., Tatbul, N., and Zdonik, S.,
Monitoring streams: A new class of data management
applications, in Proc of VLDB, 2002, pp. 215-226.

[5] Chakravarthy, S., and Mishra, D., Snoop: an expressive
event specification language for active databases, Data
Knowl. Eng., vol. 14, 1994, pp. 1-26.

[6] Chaudhari, M. B., and Dietrich, S. W., Metadata Services for
Distributed Event Stream Processing Agents, in the 19th
International Conference on Software Engineering and Data
Engineering (SEDE2010), San Francisco, June 16-18, 2010,
pp. 307-312.

[7] Chen, F. F. and Dunham, M. H. 1998. Common
Subexpression Processing in Multiple-Query Processing.
IEEE Trans. on Knowl. and Data Eng. 10, 3 (May. 1998),
493-499.

[8] Coral8 Engine. (2009) Aleri Inc. [Online]. Available:
http://www.aleri.com/products/aleri-cep/coral8-engine,
accessed on March 10, 2010.

[9] Demers, A. J., Gehrke, J., Panda, B., Riedewald, M.,
Sharma, V., and White, W. M., Cayuga: A general purpose
event monitoring system, in CIDR, 2007, pp. 412-422.

[10] Dietrich, S. W., Maintenance of recursive views, in
Encyclopedia of Database Systems. L. Liu and M. T. Özsu,
Eds. Springer Verlag, 2009.

[11] Franklin, M., Halevy, A., and Maier, D., From databases to
dataspaces: a new abstraction for information management,
SIGMOD Rec. vol. 34, 4, 2005, pp.27-33.

[12] Golab, L., and Özsu, M. T., Issues in data stream
management, SIGMOD Rec., vol. 32, 2003, pp. 5-14.

[13] Gupta, A., and Mumick, I. S., Maintenance of materialized
views: Problems, techniques, and applications, in [14], 1999,
pp. 145-157.

[14] Gupta, A., and Mumick, I. S., Materialized Views
:Techniques, Implementations, and Applications. Cambridge,
Mass.: MIT Press, pp. 589, 1999.

[15] Jiang, Q., Adaikkalavan, R., and Chakravarthy, S.,
MavEStream: Synergistic integration of stream and event
processing, in Proc of ICDT '07, 2007, pp. 29.

[16] Lenzerini, M., Data integration: a theoretical perspective. In
Proceedings of the Twenty-First ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems
(Madison, Wisconsin, June 03 - 05, 2002), PODS '02, ACM,
New York, NY, 233-246.

[17] Leonardi, E., and Bhowmick, S. S., Detecting changes on
unordered XML documents using relational databases: A
schema-conscious approach, in Proc of CIKM ’05, 2005, pp.
509-516.

[18] Li, X., and Agrawal, G., Efficient evaluation of XQuery over
streaming data, in Proc of VLDB '05, 2005, pp. 265-276.

[19] Löwy, J., Programming WCF Services, Sebastopol, CA:
O’Reilly Media Inc., 2009.

[20] Microsoft Corporation. (2009) LINQ: .NET Language-
Integrated Query. [Online]. Available:
http://msdn.microsoft.com/en-us/library/bb308959.aspx,
accessed on March 17, 2010.

[21] Microsoft Corporation. (2009) Tracking Data Changes: SQL
Server 2008 Books Online. [Online]. Available:

17

http://msdn.microsoft.com/en-us/library/bb933994.aspx,
accessed on March 17, 2010.

[22] Mühl, G., Fiege, L., and Pietzuch, P., Distributed Event-
Based Systems. Berlin; New York: Springer-Verlag, pp. 384,
2006.

[23] Oracle Corporation. (2009) Oracle Streams - Features
Overview. [Online]. Available:
http://oracle.com/technology/products/dataint/htdocs/streams
_fo.html, accessed on March 23, 2010.

[24] Park, J., and Segev, A., Using Common Subexpressions to
Optimize Multiple Queries. In Proceedings of the Fourth
international Conference on Data Engineering (February 01
- 05, 1988), IEEE Computer Society, Washington, DC, 311-
319.

[25] Roy, P., Seshadri, S., Sudarshan, S., and Bhobe, S., Efficient
and extensible algorithms for multi query optimization,
SIGMOD Rec. 29, 2 (Jun. 2000), 249-260.

[26] Shanmugasundaram, J., Kiernan, J., and Shekita, E. J.,
Querying XML views of relational data, in Proc of VLDB
'01, 2001, pp. 261-270.

[27] Stonebraker, M., Çetintemel, U., and Zdonik, S., The 8
requirements of real-time stream processing, SIGMOD Rec.
34, 4 (Dec. 2005), 42-47.

[28] Urban, S., Dietrich, S., and Chen, Y., An XML framework
for integrating continuous queries, composite event

detection, and database condition monitoring for multiple
data streams, in Proc of Daghstul Seminar on Event
Processing, 2007, pp. 1-5.

[29] Urban, S. D., Dietrich, S. W., Na, Y., Jin, Y., Sundermier,
A., and Saxena, A., The IRules Project - Using Active Rules
for the Integration of Distributed Software Components, In
Proceedings of the IFIP Tc2/Wg2.6 Ninth Working
Conference on Database Semantics: Semantic Issues in E-
Commerce Systems (April 25 - 28, 2001), R. Meersman, K.
Aberer, and T. S. Dillon, Eds. IFIP Conference Proceedings,
vol. 239. Kluwer B.V., Deventer, The Netherlands, 255-275.

[30] Wang, L., Rundensteiner, E. A., and Mani, M., Updating
XML views published over relational databases: towards the
existence of a correct update mapping, Data Knowl. Eng.,
vol. 58, 2006, pp. 263-298.

[31] Wang, Y., DeWitt, D. J., and Cai, J. Y., X-diff: An effective
change detection algorithm for XML documents, in Proc of
ICDE’03, 2003, pp. 519-530.

[32] Zhou, J., Larson, P., Freytag, J., and Lehner, W., Efficient
exploitation of similar subexpressions for query processing,
In Proceedings of the 2007 ACM SIGMOD international
Conference on Management of Data (Beijing, China, June 11
- 14, 2007), SIGMOD '07, ACM, New York, NY, 533-544.

18

