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ABSTRACT

We introduce a method to transcribe music with the help 

of an instrument model. One of the most important and 

difficult problems in music transcription is polyphonic 

pitch estimation. Common pitch estimation algorithms 

reported in the literature tend to have errors in the 

following three situations: missing fundamental, missing 

harmonics, and shared frequencies. We believe an 

instrument model can make pitch estimation more robust 

in these three situations and thus can help to improve 

music transcription accuracy. We devise a spectrum 

subtraction algorithm to transcribe single and multiple 

instrument polyphonic music. 

1. INTRODUCTION

Automatic music transcription deals the transformation of 

acoustic musical signals into a symbolic representation 

such as MIDI or a musical score which in principle, could 

then be used to recreate the musical piece [12]. This has 

many applications. Music in the notation is useful in many 

applications. It is more compact to store and more 

efficient to process and transmit than acoustic audio. 

Transcription can be used as a visualization of media 

players, which displays the music score during the 

playback. It can also be used to monitor students playing 

musical instruments, by transcribing the music played by 

the student and evaluating it against the standard score. 

Transcription also plays an indispensable role in melody 

based music retrieval, such as query by humming [5]. 

2. PREVIOUS WORK 

Over the years, considerable work has been done in music 

transcription. Some of the earlier work [6][10] has been 

restricted to monophonic music. Marolt and Privosnik 

designed a system [11] to transcribe polyphonic piano 

music using a combination of partial track extraction, 

onset detection and note recognition. Another system to 

perform piano music transcription using a Hidden Markov 

Model approach has been presented by Raphael [3]. 

Martins and Ferreira [7] developed a general polyphonic 

music transcription using a combination of harmonic 

structure tracking and a post processing stage that 

attempts to identify the best trajectories to represent the 

true musical notes played. Goto [8][9] proposed an 

Expectation-Maximization algorithm based technique for 

estimating the fundamental frequency (F0) of melody and 

bass lines in real world musical audio signals and CD 

recordings. Tolonen and Karjalainen [13] have developed 

a multiple-F0 estimation of musical sounds in using a 

modified version of the unitary pitch model. Klapuri et al 

[1] proposed an iterative spectrum smoothing and 

subtraction algorithm for multiple pitch estimation of 

concurrent musical sounds, which is considered one of the 

best pitch estimation algorithms today. 

3. OUR METHOD 

The ability to transcribe polyphonic music usually 

depends on the pitch estimation module of the 

transcription system. However, we found that common 

polyphonic pitch estimation algorithms tend to have errors 

in the following three situations: 

missing fundamental 

missing harmonics 

shared frequencies 

Some earlier algorithms assume the fundamental 

exists, and consider all the frequency peaks in the 

spectrum as pitch candidates. These will not find sounds 

whose fundamental is missing.  

Some algorithms based on statistics consider a 

frequency as pitch only when there are enough harmonics 

to support the fundamental. Therefore they will not work 

in the case that some harmonics of the sound are missing.  

Sharing frequencies is one of the most difficult 

problems that polyphonic algorithms face. Algorithms 

often have trouble determining how much of the shared 

frequency belongs to each note. The simplest example is 

A3 and A4, whose frequencies are 220k and 440k (k=1, 2, 

3…) All the frequencies of A4 coincide with harmonics of 

A3. This ambiguity causes some algorithms to fail to 

detect A4, because all the frequencies of A4 can be 

considered as harmonics of A3. Klapuri et al [1] tried to 

solve this problem by applying the spectral smoothing 

principle. 

We believe that an instrument model which 

characterizes the harmonic structure [7] of the instrument 

can help our pitch estimation algorithm to be more robust 

in these three situations. 
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3.1. Instrument Model 

3.1.1. Building the Model 

The instrument model contains the harmonic structure 

information of the instruments used in the music. A 

sample from each instrument is required to build the 

model. An amplitude spectrum of each instrument sample 

is created using FFT. The amplitude spectrum is divided 

into semitone bands (say, 88 bands from A0 to C8), 

whose central frequency is the note frequency, and whose 

bandwidth is a semitone (half of a semitone higher and 

lower than the central frequency). The band energy 

spectrum is computed using the following formula: 
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where i is the band index, Z is the band energy (Z[1] is the 

energy of A0, Z[2] is the energy of A#0, etc), Y is the 

amplitude spectrum, LB(i) and UB(i) are the lower bound 

and upper bound of band i.

If the sample note is played at pitch i, Z[i] is the 

energy of the fundamental, which may be low or even 

zero. According the frequency relationship of the 

harmonics to the fundamental, the first, second, 

third…16th harmonics will lie in Z[i+12], Z[i+19], 

Z[i+24]…Z[i+48] respectively. Assuming the harmonics 

beyond the 16th harmonic are weak and can be ignored, 

this 49 number vector Z[i..i+48]=I[0..48] will carry the 

information of the harmonic structure, and characterize 

the feature of this instrument. We extract this feature 

vector for each instrument which is used in the music. The 

vector list is the instrument model. 

3.1.2. Use of the Model 

We assume the harmonic structure of the musical sound of 

the instrument is the same regardless of the pitch and 

transient of the sound. With an instrument feature vector 

I, the band energy spectrum of any note from that 

instrument can be easily generated. For a note with 

volume a and pitch p, the spectrum is simply obtained by 

magnifying the vector I by ratio a, and then shifting it to 

position p, as shown in the following formula: 
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This formula can be regarded as a “spectrum generation 

function”, with the form below: 
),,( paIFZ

3.2. Pitch Estimation Using Instrument Model 

3.2.1. Single-instrument Pitch Estimation 

Single-instrument pitch estimation with an instrument 

model refers to the pitch estimation of a frame in the 

single-instrument input music. More precisely, we define: 

Input: Music band energy spectrum ZM; Instrument 

feature vector I.

Output: Volume and pitch pairs (ai, pi), 1 i n, n is the 

number of notes, so that 
2
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minimized. Note that the number of notes n is also 

unknown.

This definition is based on the principle that if notes 

are correctly detected and their volumes and pitches are 

correctly estimated, their sum energy in each band should 

be equal or similar to the energy of the same band in the 

music. 

We devise a spectrum subtraction algorithm to solve 

the above problem. We start from the lowest note A0, and 

match the instrument feature vector I[0..48] to a section of 

the music spectrum ZM[1..49]. The volume of note A0 is 

estimated by finding such a coefficient a1 that ZM[1..49] 

approximately equals to a1I[0..48] (minimum sum square 

error). If a1 is greater than a threshold, the note (a1, 1) is 

created. Otherwise that note is considered absent in the 

music. If the note (a1, 1) is created, its spectrum is 

estimated as F(I, a1, 1)=a1I[0..48], which is subtracted 

from the music spectrum ZM[1..49]. Then we slide the 

instrument feature spectrum I[0..48] to match the 

remainder music spectrum ZM[2..50], to estimate the 

volume of note A#0. If it satisfies the conditions and the 

note is created, its spectrum is subtracted from the music 

spectrum as well. This “match, subtract, slide” process 

continues until the volumes of all the 88 notes are 

estimated. 

We start to match from low pitch to high pitch 

because a higher pitch band may contain the energies 

from the harmonics of lower pitch notes. By matching the 

lower pitch first, these energies which belong to the lower 

pitch notes can be subtracted from the spectrum before 

higher pitch is matched. 

In each match, we are trying to find a coefficient ai to 

minimize the error between ZM[i..i+48] and aiI[0..48]. 

This can be solved by standard linear regression [4]: 
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In practice, we find that the fundamental and lower 

harmonics are more stable then higher harmonics, which 

is more important in the match. In order to estimate the 

volume ai more accurately, we apply a weighted linear 

regression: 
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where W is a weight vector. Higher weights are given to 

the fundamental and lower harmonics, for example, 
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W[0]=0.6, W[12]=0.3, W[19]=0.1, and W[k]=0 when k 0,

k 12, k 19.

Our algorithm is more robust in the three situations 

mentioned at the beginning of Section 3. In the case of 

missing fundamental, the fundamental can still be located 

correctly by matching the harmonics in the music 

spectrum with the harmonics in the instrument feature 

vector. The case of missing harmonics is the same. In the 

case of shared frequencies, after the lower pitch note is 

detected, the amount of frequency components that only 

belong to that note is removed from the spectrum. 

Therefore the higher pitch note can still be detected. 

3.2.2. Multi-instrument Pitch Estimation 

Multi-instrument pitch estimation with instrument model 

is defined as the following: 

Input: Music band energy spectrum ZM; Instrument 

feature vectors I1, I2, …, Im, m is the number of 

instruments used in the music. 

Output: Volume, pitch and instrument pairs (ai, pi, qi),

1 i n, n is the number of notes, so that 
2

1
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 is minimized. 

Our spectrum subtraction algorithm for single-

instrument can be easily extended to multi-instrument. 

Based on the fact that several instruments can play notes 

of the same pitch, in each match i, the section of music 

spectrum ZM[i..i+48] is matched with linear combination 

of all the instrument feature vectors in the model I1, I2, …, 

Im, in order to find out the volumes ai,1, ai,2, …, ai,m, so 

that the error between ZM[i..i+48] and 
m

j

jji Ia
1
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minimized. The match can be solved by standard linear 

regression or weighted linear regression similarly. 

3.3. System Implementation 

We developed a complete, workable music transcription 

system based on our pitch estimation algorithm, which 

transcribes polyphonic music, outputs a note table and 

generates a MIDI file. The input music and instrument 

sample wave files are re-sampled at 22 kHz 16-bit. An 

8192 point FFT is used to create amplitude spectra of the 

music and the instrument samples. Blackman window is 

applied to each frame, and the frame shift is 512 samples. 

Therefore the frequency resolution is 2.69 Hz and the time 

resolution is 23ms. Band energy spectra are computed 

amplitude spectra. Instrument feature vectors are 

extracted. For each frame in the music spectrograph, our 

spectrum subtraction algorithm is used to estimate the 

pitch. After that, a common onset detector is used to 

detect the onset of the notes. From each onset location, 

subsequent frames are tracked until the note volume fades 

below a threshold, to compute the duration of the note. 

Then a potential note is created in the note table. An 

example of the output note table is shown in Table 1. 

Onset

(frame 

index) 

Duration 

(frame 

number) 

Volume 

a

Pitch 

p

Instrument

q

25 33 1.1084 40 1 

77 32 0.6753 44 2 

129 32 1.1368 44 1 

129 29 0.6714 47 2 

Table 1: A sample note table 

The note table is then converted into an MIDI file, which 

can be played back directly. Our transcription module is 

written in Matlab and our conversion module is 

implemented in C++. 

3.4. System Evaluation 

We use the following method to evaluate our system. A 

music MIDI file which contains the ground truth notes is 

created manually. The music MIDI file is played back 

with Microsoft Wavetable Synthesizer and recorded into a 

wave file. Microsoft Wave Table is also used to generate 

instrument sample wave files. Then the music wave file 

along with the instrument wave files is given to our 

system, and an output MIDI file is obtained. Finally the 

notes in the output MIDI file are compared with those in 

the input MIDI file. 

The pitch range of notes in our manually created 

MIDI files is from A2 to C8, due to our FFT frequency 

resolution. The number of simultaneous notes 

(polyphony) is from 1 to 10. The instruments used are 

piano and clarinet, which have a stable harmonic 

structure.

In [2], Klapuri has compared his test results in pitch 

estimation from [1] against other various systems such as 

[8] and [13] and shown it to be better. Thus in this work, 

we evaluate our system using Klapuri’s results as a 

baseline. We also use NER (note error rate) to measure 

the pitch estimation accuracy of our system. NER is 

defined as the number of errors in divided by the number 

of ground truth notes. A note is considered correctly 

detected of the pitch is correct, regardless of the volume. 

Each of the three situations is considered as one error: 

detecting an extra note (insertion error), detecting one 

fewer note (deletion error) and detecting a note of 

different pitch (substitution error). 

Through our tests, we find that the NER of our system 

with polyphony from 1 to 10 is 0%, 0%, 0%, 1.1%, 1.7%, 

3.8%, 4.9%, 6.1%, 8.3%, 11%, respectively, which is 

lower than those of Klapuri’s system. Their NER with 

polyphony from 1 to 6 is 2.1%, 2.4%, 3.8%, 8.1%, 12%, 

18%, respectively. This is shown in Figure 1. 
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Figure 1: Accuracy comparison between our system 

and Klapuri’s System

This result shows that, when the sounds in the music 

have stable harmonic structure, the accuracy of music 

transcription can be improved by using the instrument 

model, which serves as prior knowledge. It is to be noted 

that our test set consists of only two instruments of stable 

harmonic structure as compared to Klapuri’s test set 

which consists of 26 different musical instruments and 

sung vowels. Therefore, we conclude from our test results 

that our system though more restrictive, shows a much 

higher performance for instruments having a stable 

harmonic structure.  

Further, the time complexity of our system is very 

low, which is suitable for real-time applications. If we 

divide the amplitude spectrum to m bands, there are m

matches in the pitch estimation of a single frame. If the 

music is n frame long, there are mn matches in total. Since 

m is a constant, the time complexity is O(n), which is 

linear to the length of the music. 

4. CONCLUSION AND FUTURE WORK 

In this paper we proposed a new method to transcribe 

music using an instrument model. The instrument model 

makes our polyphonic pitch estimation more accurate and 

robust. Our test result shows that this new method 

outperforms the other methods in the case of stable 

harmonic structure. 

Our current pitch estimation algorithm extracts only 

one feature vector from each instrument, and uses it to 

match the band energy spectrum in the music. This is 

based on the assumption that the harmonic structure of an 

instrument is the same regardless of the pitch and 

transient. However, we find that the harmonic structure 

does change slightly with pitch and time. In the future, we 

will try to build a pitch and time varying instrument 

model, in order to achieve even higher music transcription 

accuracy.

Moreover, our current system requires the user to 

input the instrument samples, and then use these samples 

to build the instrument model. We will research on how to 

analyze the harmonic structures of the instruments directly 

from the music, so that the instrument model can be built 

from the music itself. 
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