


 Zhu and Wang 71

With the growing popularity of the MPEG- 1 Audio 
Layer 3 (MP3) format, handheld devices such as 
personal digital assistants (PDAs) and mobile 
phones have become important entertainment 
platforms. Unlike conventional audio equipment, 
mobile devices are characterized by limited pro-
cessing power, battery life, and memory, as well as 
other constraints. Therefore,  music- processing 
tasks like beat detection must be implemented 
using low- complexity algorithms to cope with the 
constraints of these mobile devices.

This article presents a scheme of  complexity- 
scalable beat detection of popular (“pop”) music 
recordings that can run on different platforms, 
particularly  battery- powered handheld devices. We 
show a user- friendly and  platform- adaptive scheme 
such that the detector complexity can be adjusted to 
match the constraints of the device and user re-
quirements. The proposed algorithm provides both 
theoretical and practical contributions, because we 
use the number of Huffman bits from the com-
pressed bitstream without requiring any decoding as 
the sole feature for onset detection. Furthermore, 
we provide an effi cient and robust  graph- based beat- 
induction algorithm. By applying the beat detector 
to compressed rather than uncompressed audio, the 
system execution time can be reduced by almost 
three orders of magnitude.

We have implemented and tested the algorithm 
on a PDA platform. Experimental results show that 
our beat detector offers signifi cant advantages over 
other existing methods in execution time while 
maintaining satisfactory detection accuracy.

Motivation

After a decade of explosive growth, mobile devices 
today have become important entertainment plat-
forms alongside desktop computers and servers. 
Many applications such as games have been moved 

to handheld devices, where soundtrack tempo plays 
a key role in controlling relevant game parameters, 
such as the speed of the game (Holm et al. 2005). For 
 content- based audio / video synchronization (Den-
man et al. 2005), the musical beat is the primary 
information source used as the anchor for timing. 
The beat of a piece of pop music is defi ned as the 
sequence of almost equally spaced phenomenal 
impulses. The beat is the simplest yet fundamental 
semantic information we perceive when listening 
to pop music. Groupings and strong / weak relation-
ships form the rhythm and meter of the music 
(Scheirer 1998).

The beat- tracking process typically organizes mu-
sical audio signals into a hierarchical beat structure 
of three levels: quarter note, half note, and measure 
(Goto 2001), as shown in Figure 1. Beats at the 
 quarter- note level correspond to periodic “beats” or 
“pulses” at a simple level, and those at the half- note 
level and the measure level correspond to the over-
all “rhythm,” which is associated with grouping, 
hierarchy, and a strong / weak dichotomy. Pop- music 
beat detection is a subset of the beat- detection prob-
lem, which has been solved with detection accuracy 
as the primary if not the sole objective. In this ar-
ticle, we focus on beat detection in recorded audio 
rather than real- time beat tracking.

Currently, most beat- detection methods are im-
plemented on a personal computer or server. Based 
on our experiments, we fi nd that it is diffi cult to 
scale down the complexity of existing methods to 
run on portable platforms such as PDAs and mobile 
phones, where processing power, memory, and 
battery life become critical constraints. Although 
some recent results show that beat tracking can be 
implemented in a mobile phone after major optimi-
zations (Seppanen et al. 2006), running such a 
complex algorithm taxes battery life, which is not 
desirable. Because software applications running on 
 battery- powered portable platforms are gaining 
popularity, algorithms for content processing such 
as beat detection must be designed to match both 
the constraints of the device resources and the users’ 
expectations.
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greatly limits their application, because it is not 
easy to obtain complete MIDI representations of 
real- world acoustic signals. Such models suffer from 
the  scaling- up problem (Kitano 1993). Recent sys-
tems work with PCM audio bitstreams. Representa-
tive works in this category include Scheirer (1998), 
Goto (2001), Dixon (2001; 2003), and Shenoy et al. 
(2004). Some of these algorithms are able to track 
the whole hierarchical beat structure in pop music. 
Owing to the popularity of compressed audio for-
mats such as MP3, a beat- detection technique using 
features from partially decoded compressed audio 
has been proposed in Wang and Vilermo (2001). 
Other related works on  compressed- domain audio / 
video processing can be found in Tzanetakis and 
Cook (2000) and Pfeiffer and Vincent (2001). The 
work presented in Tzanetakis and Cook (2000) uses 
sub- band samples extracted prior to the synthesize 
fi lterbank in an MPEG- 2 Audio Layer 3 decoder to 
calculate features such as spectral centroid, spectral 
rolloff, and so on, which are used in audio classifi ca-
tion and segmentation. To the best of our knowl-
edge, our work is the fi rst to achieve beat detection 
without decoding; that is, the beat detection is 
based on features computed directly from the com-
pressed bitstream without even performing entropy 
decoding. [Editor’s note: The initial manuscript was 
submitted on 12 November 2006.]

System Overview

A diagram of our system is shown in Figure 2. 
Depending on the decoding level, we have imple-
mented the proposed beat detectors in three do-
mains: the  compressed- domain beat detector 
(CBD), which is the main focus of this article; the 
 transform- domain beat detector (TBD); and the 
PCM- domain beat detector (PBD). In comparison to 
existing work, our system allows an automatic se-
lection of beat detector (CBD, TBD, or PBD) based 
on the availability of computing resources, as well 
as manual selection by the user. We have imple-
mented our scheme to operate on the MP3 audio 
format because of its popularity.

Extracting features from PCM audio or  transform- 
domain data has been proposed in previous work 

To identify users’ requirements, we conducted 
surveys of students from schools and universities; 
these students constitute an important segment of 
the  mobile- entertainment market. Our initial sur-
vey results indicate that  system- execution time, 
detection accuracy, and battery life are critical per-
formance criteria for  mobile- device users. This im-
plies that existing methods, which generally focus 
on detection accuracy at the cost of computational 
complexity, are apparently unable to meet users’ 
expectations of mobile platforms. In addition, our 
survey showed that execution time, defi ned as the 
interval between program start and the reception of 
beat information, should not be more than a few 
seconds, preferably less than 2 sec. Furthermore, 
many users complained about having to process 
music on a desktop platform before beat informa-
tion could be used on portable devices. Our tech-
niques have been designed with considerations of 
the tradeoff between users’ requirements (e.g., 
detection accuracy and execution speed) and device 
resource constraints. We show in this article that 
the compressed and transform domains are both 
excellent alternatives to the domain of uncom-
pressed,  pulse- code- modulated (PCM) audio, be-
cause they allow low complexity and high detection 
accuracy in beat detection on a mobile platform.

Related Work

Automatic beat detection has a history of almost 
two decades; a fairly comprehensive review is given 
in Gouyon and Dixon (2005). Early beat- detection 
systems such as those of Povel and Essens (1985), 
Rosenthal (1992), and Large and Kolen (1994) do not 
operate on real- world acoustic signals, but rather on 
symbolic data such as MIDI. Their reliance on MIDI 

Figure 1. Hierarchical beat 
structure. (The 4 / 4 time 
signature prevalent in 
popular music is assumed.)
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Compressed- Domain Beat Detection

In an MP3 bitstream, some parameters are readily 
available without decoding, including window type, 
part2_3_length (Huffman code length), global gain, 
etc. (Wang et al. 2003). Figure 3 shows different 
features extracted from a compressed bitstream and 
the corresponding waveform.

Because our objective was to design beat detection 
for pop music, we selected certain of these param-
eters on the basis of the following criteria: (1) the 
feature is well correlated to signal energy; (2) the 
feature exhibits good self- similarities; (3) the feature 
depends mainly on the music or the acoustic signals 

(Scheirer 1998; Dixon 2001; Goto 2001). A system 
presented in Wang and Vilermo (2001) tracks beats 
at the  quarter- note level in the transform domain. 
However, it has remained unknown whether it is 
possible to directly detect beats from a compressed 
bitstream without partial decoding. In this article, 
we investigate the possibility of detecting the whole 
hierarchical beat structure.

As with most beat detectors dealing with pop 
music, we assume that the time signature is 4 / 4 and 
the tempo is almost constant across the entire piece 
of music and roughly between 70 and 160 beats per 
minute (BPM). Our test data is music from commer-
cial compact discs with a sampling rate of 44.1 kHz.

Figure 2. A systematic 
overview of  complexity- 
scalable beat detectors in 
three different domains: 
 compressed- domain beat 

detector (CBD),  transform- 
domain beat detector 
(TBD), and PCM- domain 
beat detector (PBD).
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Figure 3. Extracted 
 compressed- domain data 
from a pop- music excerpt 
sampled from a commer-
cial CD: (a) original 

waveform; (b) window 
types; (c) part2_3_length; 
(d) scale factor bits; 
(e) global gain; and (f) 
annotated beat times.
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consist of  multi- band data, whereas  compressed- 
domain data seem to reveal only full- band charac-
teristics. In other words, we can achieve better 
detection accuracy by using  multi- band processing 
with increased complexity. However, if instant 
results are needed, a  single- band approach can offer 
signifi cantly reduced complexity with reduced de-
tection accuracy.

Onset Detection

The CBD calculates the input data length from 
part2_3_length. Onset candidates are selected using 
a simple threshold thr:

 thr a meani = ×

where i is the granule index, and a is an empirically 
determined constant value. During the system 
evaluation, we noted that the beat- detection accu-
racy is not particularly sensitive to the choice of a, 
because the proposed beat- induction algorithm is 
robust to the inaccuracy of onset detector. The 
window for calculation is {i – 34, i + 34}. Thus, the 
window size is 69 granules, which corresponds to 
approximately 900 msec. The selected window size 

that are compressed, and not on the encoder that 
has produced the data, which renders window type 
data unsuitable for beat detection, for example; 
and (4) the feature’s MP3 data fi eld has separate 
values for each granule. (In an MP3 bitstream, the 
primary temporal unit is a frame, which is further 
divided into two granules. Some data fi elds are 
shared by both granules in an MP3 frame, whereas 
others have separate values for each granule. We 
prefer the latter type because it gives a better time 
resolution.)

In practice, we have used the following quantita-
tive measures for feature selection. For each data 
type in the compressed domain, we created a se-
quence s by extracting the value from each granule. 
Then another sequence b was generated as follows:

b i ki k±
= =1 0 1 2 if there is an annotated beat at granule , { , , }

b i k ki = ± =0 0 1 2 if there is no annotated beat at granule , { , , }

(An annotated beat is one that has been previously 
specifi ed by a human listener, as explained later.) 
We calculated the  cross- correlations rb,s between b 
and s at delay 0. Table 1 lists the results of this 
method for fi ve songs. After checking all the pos-
sible parameters in the compressed MP3 bitstream, 
we found that the part2_3_length is well correlated 
with the onsets and is therefore a good proxy for 
onset, because it is a high- level indication of the 
“innovation” or “uniqueness” in each data unit (i.e., 
granule). The CBD uses part2_3_length (see Figure 
4) as input data. All beat detectors have two main 
blocks: onset detection and beat induction, which 
are presented next.

Transform- domain features are generally more 
reliable for beat detection than are  compressed-
 domain features, because  transform- domain features 

Table 1. Results of the Cross- Correlation Method

 Global  Part2_3_ Full- Band
Song No. Gain Length Energy

1 0.002 0.228 0.326
2 0.036 0.194 0.253
3 –0.043 0.184 0.184
4 0.004 0.217 0.188
5 –0.009 0.218 0.264
Average –0.002 0.208 0.243

Figure 4. Locations of 
part2_3_length in a 
compressed bitstream for 
(a)  single- channel and 
(b) dual- channel audio. 
For dual- channel audio, 
we extract part2_3_length 
from only the left channel.
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tion rank(ES, e); this function returns the rank of e 
if e ∈ ES, and –1 otherwise. If e is the head of ES, 
that is, e = head(ES), then rank(ES, e) returns 1; if e 
is the tail of ES, that is, e = tail(ES), then rank(ES, e) 
returns the size of ES. A reverse operation get 
returns the element given a rank, namely, get(ES, 
rank(ES, e)) = e if e ∈ ES. Succ(ES, e) returns the 
successive element of e in ES. We formulate the 
beat- induction problem as shown in Table 2.

Intuitively, the input set O contains all the 
detected onsets of a piece of music, the output 
value d is the anticipated  quarter- note length, and 
the output set B contains all the beats. QMIN and 
QMAX are the smallest and largest possible 
 quarter- note lengths allowed by the algorithm, 
respectively. In our current implementation, QMIN = 
375 msec, and QMAX = 923 msec, which correspond 
to tempi ranging from 65 to 160 BPM. The devia-
tion, ε, is set to 25 msec. Because we work with 
MP3 granules instead of units of msec in the com-
pressed domain, the corresponding parameters in 
the compressed domain (for a sampling rate of 
44.1 KHz) are QMIN = 28 granules, QMAX = 72 gran-
ules, and ε = 2 granules.

Next, we introduce another data structure called 
a pattern. A pattern is defi ned to be an ordered 
event set with an associated pair (s, d). A pattern P 
meets the following conditions: (1) P ⊆ O, where O 
is the ordered event set containing all the onsets; (2) 
|P| ≥ 1 and head(P) = s; (3) for every consecutive pair 
(i, j) of P, if there is any, diff(i, j) ∈ {d – ε, d + ε}; and 
(4) there does not exist another ordered event set S 

is the same as the one used in Wang et al. (2003) for 
onset detection. Granule i is considered to contain 
an onset if the following conditions are met:

 f thr
f f
i i

i i k

>
>

⎧
⎨
⎩ ±

 condition 
 condition 
( )
( )

1
2

where fi is the ith feature obtained from half- wave 
rectifi cation, and k ∈ {1 . . . 17}. Condition 2 ensures 
that any two onsets are at least two granules (ap-
proximately 26 msec) apart from each other. This 
implies at most one onset can be detected within 
any period of 50 msec. We denote this property as 
onset property and use it in beat induction.

It should be noted that the onset detector is 
selected mainly for its simplicity and for the char-
acteristics of the feature. Many of the methods in 
Bello et al. (2005) are simply not applicable to 
 compressed- domain features.

Beat Induction

The beat- induction process determines beat times 
based on onset times from the previous step. Our 
beat- induction algorithm is designed to be robust 
enough to work with input onsets that have low 
accuracy. Unlike the onsets detected from a PCM 
bitstream, features extracted from a compressed 
bitstream are generally much noisier.

We use a data structure called an Ordered Event 
Set, which is composed of an ordered set of distinct 
events, denoted (S, ≤R), to store onsets or beats. Two 
events are distinct if and only if they do not occur 
simultaneously. The relation ≤R is defi ned as fol-
lows: i ≤R j if and only if event i occurs earlier than 
or at the same time as event j. It is obvious that 
relation ≤R is anti- symmetric and transitive. An 
ordered pair (i, j) of an ordered event set ES satisfi es 
i, j ∈ ES ∧ i ≤R j ∧ i ≠ j. A pair (i, j) of ES is a consecu-
tive pair if (i, j) is an ordered pair and there is no 
element e such that (i, e) and (e, j) are ordered pairs 
of ES. The difference of an ordered pair (i, j), denoted 
by diff(i, j), is the absolute value of the time differ-
ence between the occurrence of event i and that of 
event j.

Because elements in ES are distinct and ordered, 
we can get the rank of an element e with the opera-

Table 2. Formulation of the Beat- Induction Problem

Input:  An ordered event set O

Output:  A pair (d, B) that satisfi es three conditions

Condition 1:   d is a real number and QMIN ≤ d ≤ QMAX, 
where QMIN and QMAX are constants; B is 
an ordered event set

Condition 2:   For every consecutive pair (i, j) of B, 
diff(i, j) ∈ [d – ε, d + ε]

Condition 3:   For any pair (d', B') that satisfi es condi-
tions 1 and 2 and is not identical to (d, B), 
|O ∩ B'| < |O ∩ B|
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detects a coarse QNL, and the second stage detects a 
fi ne QNL. In the fi rst stage, we use nine bins that 
cover the interval {QMIN, QMAX}, each of which spans 
fi ve granules. After the normal histogram proce-
dure, the center of the bin with the maximum num-
ber of elements is taken as the coarse QNL, cqnl. In 
the second stage, we only consider  inter- onset inter-
vals in the range {cqnl – 2, cqnl + 2}. We use fi ve bins, 
each of which spans one granule, and then perform 
the histogram procedure again. The granule index 
represented by the bin with the maximum number 
of elements is taken as the fi ne QNL. An example of 
the histogram method is shown in Figure 6.

To further speed up this procedure, we can use 
just a small segment, for example, the fi rst half-
 minute, of the whole song as an input to the histo-
gram. However, we did not use this method in our 
experiment, because it might fail if there are large 
gaps between successive onsets over the whole song. 
Furthermore, experimental results have shown that 
our two- stage histogram method is fast enough.

After the  quarter- note length is detected, the next 
step is to compute beat times based on the quarter 
note length qnl. Our objective is to create an or-
dered event set B such that for every consecutive 
pair (i, j) of B, diff(i, j) ∈ {qnl – ε, qnl + ε], and |B ∩ O| 
is maximum. To solve this problem, we propose a 
 graph- based approach. We fi rst introduce the con-
cept of compatibility.

A pattern A is defi ned to be compatible with 
pattern B with lapse d (d > ε) if and only if the 
following condition holds:

 
tail B head A lapse A lapse B d and

diff tail B head A
ROUND diff tail B head A d

d d

R( ) ( ),  ( ) ( ) ,  

( ( ), ( ))
( ( ( ), ( )) / )

[ , ].

≤ = =

∈ − +ε ε

Here, ROUND is an operation that rounds its 
parameter to the nearest integer. If A is compatible 
with B with lapse d, we denote Ad

→c
B. The compat-

ibility relation satisfi es the following property:

 A B B A
c c

d d
→ →∧  never holds

This property can be proved using contradiction; 
the proof is straightforward and is hence omitted 
here. Figure 7 gives an example of compatibility.

The  graph- based approach starts with the collection 

such that P ⊂ S, and S also meets conditions 1, 2, 
and 3.

Figure 5 provides an intuitive illustration of a 
pattern. We claim that the associated pair (s, d) of a 
pattern uniquely identifi es the specifi c pattern. 
This can be proved as follows. Suppose there are 
two patterns P1 and P2 with the same associated 
pair (s, d). Then head(P1) = head(P2) = s, according 
to condition 2. Because there is at most one onset 
within the interval {t – ε, t + ε], where t is arbitrary, 
according to the onset property, we have diff(s, x) ∈ 
{d – ε, d + ε} ∧ diff(s, y) ∈ {d – ε, d + ε] → x = y, which 
implies that the second element of P1 is identical to 
that of P2 according to condition 3.

If |P1| = |P2|, then using the same argument in-
ductively for the rest of the elements in P1 and P2, 
we can infer that all of them are identical, that is, 
get(P1, k) is identical to get(P2, k) for k ∈ {1, 2, . . . , 
|P1|}, and thus P1 and P2 have the same pattern. If 
|P1| ≠ |P2|, we can assume |P1| < |P2| without loss of 
generality. Then get(P1, k) is identical to get(P2, k) 
for k ∈ {1, 2, . . . , |P1|}. This implies that P1 ⊂ P2, 
which contradicts condition 4. Hence, a pattern can 
be uniquely identifi ed by its associated pair. If a 
pattern P has an associated pair (s, d), we denote d 
as the lapse of P, that is, lapse(P) = d. The procedure 
for extracting the pattern given the associated pair 
(s, d) is straightforward. The initial status of the 
pattern P is {s}. For each onset o, if diff(tail(P), o) ∈ 
{d – ε, d + ε}, we add o into P, that is, P ← P ∪ {o}.

The beat- induction algorithm begins by detecting 
the anticipated  quarter- note length (QNL). The 
procedure is an  inter- onset interval,  histogram- 
based method, commonly used in beat detectors 
like those described by Gouyon et al. (2006). We 
improve these methods with emphasis on speed and 
tolerance of inaccurate onsets. To achieve prompt 
detection of the anticipated QNL, we carry out the 
histogram method in two stages. The fi rst stage 

Figure 5. Two patterns can 
be identifi ed from the 
onsets on axis (a) and are 
denoted on axis (b) and 
axis (c).

(a)

(b)

(c)



78 Computer Music Journal

of all patterns with lapse qnl from the onsets, where 
qnl is the  quarter- note length. The procedure shown 
below extracts all patterns with a prescribed lapse 
by a single iteration through the ordered set of all 
onsets. In that procedure, we use another ordered 
event set (L, ≤R'), which has the same properties and 
operations as (S, ≤R) as the data structure to store all 
the patterns. The relation ≤R' is defi ned by Li ≤R' Lj if 
and only if head(Li) ≤R head(Lj). The algorithm is 
shown in Figure 8.

Figure 6. The two- stage 
histogram method is 
carried out in the com-
pressed domain and in the 
PCM domain, respectively, 
with the same input song. 

In the PCM domain, the 
fi rst histogram has 10 bins, 
with a resolution of 50 
msec, and the second his-
togram has 50 bins, with a 
resolution of 1 msec. The 

 quarter- note length de-
tected in the compressed 
domain is 54 granules 
(707.4 msec), whereas 
that in the PCM domain 
is 709 msec.
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Figure 8. Procedure for 
collecting patterns.

Procedure: CollectAllPatterns(O, qnl) 

Input: The ordered event set O containing all the 

onsets, and the detected quarter-note length qnl. 

Output: An ordered event set L containing all the 

patterns with lapse qnl. 

L ← ∅ 

Initialize a flag array F of the same size as O, with 

all elements being 0  

for each element e’ in O 

 e ← e’ 

 if F[rank(O, e)] = 0        

     then initialize a new empty pattern P 

           P ← P ∪ {e} 

           F[rank(O, e)] ← 1 

   es ← succ(O, e) 

   while diff(es, tail(O)) > 0 

    do if diff(es, e) ∈ [qnl – ε, qnl + ε] 

          then P ← P  ∪ {es} 

     F[rank(O, es)] ← 1 

     e ← es  

    if diff(es, e) > qnl + ε 

     then break 

    es ← succ(O, es) 

   L ← L ∪ {P} 
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and y such that diff(x, b1) = diff(b1, b2) = . . . = diff(bk, 
y) = d, we can infer that d ∈ [qnl – ε, qnl + ε]. This 
will ensure that the tempo is maintained across the 
interpolated beats.

The  worst- case running time of our beat- induction 
algorithm is O(n3

1), where n1 is the total number of 
detected onsets. However, in practice, the algo-
rithm usually performs much faster than O(n3

1). The 
actual running time is max(O(n2

1), O(n3
2)), where n2 is 

the total number of patterns, because the  Bellman- 
Ford algorithm has a cubic time complexity. Be-
cause n1 >> n2 in almost all cases, and n3

1 >> n2
1 when 

n1 is large, it follows that max(O(n2
1), O(n3

2)) << O(n3
1). 

Hence, the actual running time is much less than 
O(n3

1). The memory consumption of our beat-
 induction algorithm is max(O(n1), O(n2

2)). We use a 
bit array to implement the compatibility matrix. A 
16- bit integer is used to represent each onset. (Note 
that in the compressed domain, we work with MP3 
granule indices, which can be represented as 16- bit 
integers.) Thus, the hidden constant in the Big- O 
notation of memory consumption is small.

Our onset detection and beat induction are illus-
trated in Figure 9.

Transform / PCM- Domain Beat Detection

Both TBD and PBD have three general steps: onset 
detection, beat induction, and bar detection. The 

After collecting the patterns, we create a compat-
ibility matrix CM with dimension |L| × |L| as follows:

 CM i j if get L i get L j
otherwise

i j Lc
qnl

[ ][ ]  ( , )  ( , );
,

, | |= ⎧
⎨
⎩

≤ ≤→1
0

 
 

,  for any 1

CM can be viewed as the adjacent matrix of a 
graph G = (V, E), where V[G] ={x | x ∈ Ζ ∧ x ≥ 0 ∧ ∃p, 
x = rank(L, p)}, E[G] = {(j, k) | j, k ∈ V[G] ∧ CM[j, k] = 
1}. By the compatibility property, the graph is 
directed and acyclic: (i, j) ∈ E[G] if and only if 
get(L, i)q

→
nl
cget(L, j).

The problem is transformed to fi nding a path p = 
{v0, v1, . . . , vk}, where v0, v1, . . . , vk ∈ V[G], such 
that Σk

i = 0 pattern_count(get(L, vi)) is maximized. To 
solve the problem, we fi rst convert graph G into 
another directed acyclic but weighted graph G' = (V, 
E), on which we can apply the  Bellman- Ford algo-
rithm. The new graph G' is obtained by adding a 
dummy vertex dummy = |V[G]| + 1 to the vertex 
set of G, and creating edges from the dummy vertex 
to every other vertex in G'. Thus, V[G'] = V[G] ∪ 
{dummy}, and E[G'] = E[G] ∪ {(dummy, k) | k ∈ 
V[G]}. The weight of an edge (j, k) in G', denoted by 
w (j, k), is assigned by pattern_count(get(L, k)). The 
negation allows us to apply the  Bellman- Ford algo-
rithm, which fi nds the path that originates from the 
dummy vertex with minimal total weights instead 
of maximum total weights. Based on the output 
path of the  Bellman- Ford algorithm, we collect the 
patterns represented by the vertices on the path and 
store the elements of those patterns in an ordered 
event set B. Then B contains partial beats.

The next step is to obtain the complete beats. The 
rest of the beats are interpolated based on the partial 
beats in B. Interpolation is done as follows. For every 
consecutive pair (x, y) in B, if diff(x, y) ∉ [qnl – ε, 
qnl + ε], then x and y do not appear in the same 
pattern; x is the tail of one pattern P1, and y is the 
head of another pattern P2. We can also infer P2 is 
compatible with P1 with lapse qnl. Based on the 
defi nition of compatibility, we have

 diff x y
ROUND diff x y qnl

qnl qnl( , )
( ( , ) / )

[ , ]∈ − +ε ε

Therefore, if we insert k = (ROUND(diff(x, y) / 
qnl) – 1) number of beats b1, b2, . . . , bk between x 

Figure 9. (a) Part2_3_length 
(solid line) and threshold 
(dashed line); (b) detected 
onsets; (c) detected beats 
after beat induction.
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the jth MDCT coeffi cient decoded in the ath short 
window of granule n (when granule n contains three 
short windows), N1 is the lower bound index, and N2 
is the upper bound index of band b. Full- band en-
ergy is calculated by adding all the sub- band ener-
gies for each granule.

Energy values of the four sub- bands and the full- 
band form fi ve vectors of features. We carry out a 
procedure similar to that described in Wang et al. 
(2003) on the fi ve vectors of features to detect on-
sets. The procedure chooses onset candidates from 
each feature vector using a  threshold- based method, 
and the onset candidates from the fi ve feature 
vectors are converged using a  weighted- average 
method.

Note that the onsets detected by this method, 
like those detected by CBD, have the onset prop-
erty, which renders them valid as input to the beat- 
induction algorithm presented earlier.

Bar Detection

Our bar- detection algorithm uses the idea of de-
tecting chord changes, similar to the algorithm 
described in Goto (2001), which detects bar infor-
mation in the PCM domain. We have modifi ed that 
algorithm to work in the transform domain. Our 
TBD calculates  chord- change probabilities at each 
 quarter- note boundary. The calculation of  chord- 
change probabilities at each  eighth- note boundary 
is omitted in our implementation. A histogram is 
formed by

 H n f X if
i q n gap n

q n gap n

( , ) ( [ ])
( ) ( )

( ) ( )

=
= +

+ −

∑ 2
1

where Xf[i] is the fth MDCT coeffi cient decoded at 
granule i, q(n) is the granule index mapped from the 
nth beat time, q(n + 1) is the granule index mapped 
from beat time (n + 1), and gap(n) = (q(n + 1) – q(n))/5.

We consider only the frequency range of 1–1,000 
Hz, which is supposed to contain the frequencies of 
dominant tones (Goto 2001). Thus, only the fi rst 27 
MDCT frequency lines for long windows and the 
fi rst nine MDCT frequency lines for short windows 
are used to create the histogram.

fi rst two of these steps are analogous to the corre-
sponding steps of CBD, which does not include bar 
detection. The onset detector is different in each of 
these three domains, although the onset detectors 
for TBD and PBD are similar. In comparison with 
the onset detector for TBD, the onset detector for 
PBD requires an additional fast Fourier transform 
(FFT) operation for frequency analysis, which is 
detailed in Shenoy et al. (2004). We use the same 
beat- induction algorithm for beat detectors in all 
three domains. The onset detection and bar detec-
tion for TBD are discussed in this section.

Onset Detection

The onset detector for TBD uses the  threshold- by- 
band method. It fi rst divides the modifi ed discrete 
cosine transform (MDCT) frequency lines into four 
sub- bands. The division for long windows is 1–3, 
4–25, 26–85, and 86–576. (These numbers indicate 
the indices of MDCT frequency lines.) The corre-
sponding frequency intervals are thus 0–115 Hz, 
116–957 Hz, 958–3,254 Hz, and 3,255–22,050 Hz. 
For short windows, we try to match the frequency 
intervals with those for long windows as closely as 
possible. The division for short windows is 1, 2–9, 
10–29, and 30–192, corresponding to frequency in-
tervals of 0–114 Hz, 115–1,033 Hz, 1,034–3,330 Hz, 
and 3,331–22,050 Hz. This approach is similar to 
that described by Wang and Vilermo (2001); how-
ever, unlike that approach, we employ all sub- band 
information.

Next, energy from each band is calculated for 
each granule. The energy Eb[n] of band b (b = 1, 2, 3, 
or 4) in granule n is calculated as

 E n
X n

X n
b

j
j N

N

a j
j N

N
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where the fi rst relation applies to granules that con-
tain a long window, and the second relation applies 
to granules that contain short windows. Also, Xj[n] 
is the jth MDCT coeffi cient decoded at granule n 
(when granule n contains a long window), Xa,j[n] is 
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Evaluation Method

The test music for the all three detectors—CBD, 
TBD, and PBD—is identical and is all sampled from 
commercial CDs. Three music students from our 
university manually annotated beat times. They 
fi rst worked individually on all the test samples, 
and then the individual annotations were averaged 
to get the fi nal annotations. The annotated beat 
times and  system- generated beat times were sent to 
an evaluator program. The evaluator program used a 
variation of the evaluation method proposed in Goto 
and Muraoka (1997), which we briefl y summarize as 
follows.

A  system- generated beat time sequence is de-
noted as ts, and an annotated beat- time sequence is 
denoted as ta. Before we calculate the normalized 
deviation at each detected beat, we carry out the 
following procedure to match ts with ta. First, we 
fi nd in ts the element sf that is closest to the fi rst 
element of ta. Suppose the index of sf in ts is τ, the 
length of ta is la, and that of ts is ls. We remove the 
fi rst τ – 1 elements and the last ls – la – τ + 1 ele-
ments from ts. Figure 10 gives a simple example of 
this procedure.

The normalized deviation at detected beat n, d(n), 
is calculated as

 d n

Ts n Ta n
Ta n Ta n

if Ts n Ta n

Ta n Ts n
Ta n Ta n

if Ts n Ta n
[ ]

( [ ] [ ])
[ ] [ ]

 [ ] [ ]

( [ ] [ ])
[ ] [ ]

 [ ] [ ]
=

⋅ −
+ −

≥

⋅ −
− −

<

⎧

⎨
⎪⎪

⎩
⎪
⎪

2
1

2
1

The mean α and standard deviation β of the se-
quence formed by d[2], . . . , d[size – 1], where size 
is the size of sequence Ta, are then calculated. We 
also calculate
 � =

< <
max( [ ])

1 i size
d i

We accept Ts as a correct beat sequence if α < 0.1, 
β < 0.15, and γ < 0.5.

For TBD, the correctness of detected bars is also 
examined. If the detected  quarter- note information 

To solve the mismatch of different frequency res-
olutions between long and short windows, a com-
promise method is applied, as follows. Because 
there are three windows in a granule of short win-
dow type, we pick the fi rst nine MDCT frequency 
lines in each of the three windows, and we order 
them as follows:

 X n a w n a na[ ( ) ] [ ], { , , }3 1 1 2 3 1 9⋅ − + = ∈ ≤ ≤ and 

where wa[n] is the nth MDCT frequency line in 
short window a in one granule. The ordered fre-
quency lines constitute 27 lines, which are used in 
our histogram calculation in the same way as the 
fi rst 27 frequency lines are in a long window.

After calculating the histogram, we follow the 
same procedure described in Goto (2001) to calcu-
late the  chord- change probabilities at each beat 
time. The  chord- change probabilities are used to 
infer bar boundaries. In particular, we calculate four 
values, S1, S2, S3, and S4:

 S T k i ii
k

bn

= ⋅ + ∈
=

−

∑ ( ), { , , , }
/

4 1 2 3 4
0

4 1

In the above equation, bn is the total number of 
beats, and function T is defi ned recursively as

 T n W T n W C n n
otherwise

( ) ( ) ( )= ⋅ − + ⋅ >⎧
⎨
⎩

1 4 2 4
0

where the C(n) are the  chord- change probabilities cal-
culated at beat n, and W1 and W2 are two constants. 
Suppose ix is an integer such that ix = arg1 ≤ i ≤ 4 max(Si); 
then beat 4k + ix marks the start of bar (k + 1), where 
k ∈ {0, 1, 2, . . . , bn / 4–1}.

Evaluation

We use libmad, a highly optimized, open- source 
MP3 decoder, for our system implementation and 
evaluation. We carefully selected 25 pop songs to 
provide suffi cient sampling variety, and we encoded 
each song at a bit rate of 128 kbps. Pop- music beat 
detection in the PCM domain is a relatively 
straightforward task; we investigated the perfor-
mance degradation of the TBD and CBT relative to 
our PBD baseline (Shenoy et al. 2004), which can 
detect beats in the selected 25 songs correctly.

Figure 10. In this example, 
the fi rst two beat times 
and the last beat time in ts 
are removed so that ts is 
matched with ta.

ta
ts

sf
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to detection accuracy and the corresponding execu-
tion time.

Execution Time

The three beat detectors were implemented on an 
HP iPAQ hx4700 PDA running Microsoft Windows 
Mobile 2003 SE. (The iPAQ hx4700 uses the Intel 
PXA270 processor with a clock speed of 624 MHz 
and has 64 MB of SDRAM and 128 MB of ROM.) 
Owing to the low quality of  compressed- domain 
features, the proposed beat detector must be per-
formed offl ine in the compressed domain. The 
average execution times in the three domains are 
presented in Figure 12. We normalize the execution 

fails in the evaluation, then the detected half notes 
and bars are all rejected; otherwise, we fi nd in se-
quence Ta a beat b1 that marks the start of a bar and 
in sequence Ts, as well as a beat b2 that also marks 
the start of a bar. Suppose the index of b1 in Ta is i1, 
and the index of b2 in Ts is i2. If (i1 – i2) modulo 4 is 
0, we accept the detected half notes and bars; other-
wise, if (i1 – i2) modulo 4 is 2, we accept the detected 
half notes and reject the detected bars; if not, both 
the detected half notes and bars are rejected.

Detection Accuracy

The evaluation results are listed in Table 3. Fig-
ure 11 shows the average performance with respect 

Table 3. Experimental Results

Song Title Artist CBD TBD  

  q q h w

Back to You Bryan Adams × √ √ ×
Breathless The Corrs √ √ √ √
Burn Tina Arena √ √ √ √
Crush Jennifer Paige √ √ √ √
Drops of Jupiter Train √ √ √ √
Heal the World Michael Jackson √ √ √ √
I Can’t Tell You Why Eagles × √ √ √
It Must Have Been Love Roxette √ √ √ √
I Want to Know What Love Is Foreigner √ √ √ √
Losing My Religion R.E.M. √ √ √ √
Mmmbop Hanson √ √ × ×
One U2 √ × × ×
One of Us Joan Osborne √ √ × ×
Road to Hell Chris Rea √ √ √ √
Seasons in the Sun Westlife √ √ √ √
Smooth Santana √ √ √ √
Someday Michael Learns To Rock √ √ √ √
Stayin’ Alive Bee Gees √ √ √ √
The Way It Is Bruce Hornsby √ √ √ ×
Time of Your Life Green Day × × × ×
I Knew I Loved You Savage Garden √ √ √ ×
Viva Forever Spice Girls √ √ × ×
Walking Away Craig David √ √ √ √
Whenever, Wherever Shakira × √ √ √
You Make Loving Fun Fleetwood Mac √ √ × ×

Number of songs tracked, from a total of 25  21 23 19 16
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onds. The average beat detection time is about 
1 second for CBD, 12 seconds for TBD, and 13 
minutes for PBD. These results show that the 
 compressed-  or  transform- domain processing 
provides a signifi cant advantage for mobile plat-
forms, whereas PBD is more suitable for desktop 
or server platforms.

Applicability to Other Formats

To evaluate dependency on the input audio format, 
we also implemented the proposed algorithm with 
the Advanced Audio Coding (AAC) decoder at a 
constant bit rate of 128 kbps. The detection perfor-
mance is signifi cantly lower than that with MP3. 

time by dividing the actual execution time by the 
duration of the input song (in minutes).

The experimental results show that beat induc-
tion takes roughly the same amount of time in the 
three operation domains. The main difference lies 
in the onset detection, which is the dominant factor 
that causes the vast difference between CBD and 
PDB in terms of execution time. The execution 
time of CBD is negligible in comparison to MP3 
decoding. The execution time of TBD is comparable 
to MP3 decoding. PBD requires a signifi cantly 
longer execution time compared to MP3 decoding, 
mainly due to an extra time- frequency transform.

In summary, the average duration of the 25 test 
songs is about 4 minutes. The average decoding 
time per song from MP3 to PCM is about 21 sec-

Figure 11. Performance 
comparison: execution 
time of (a) CBD, (b) TBD, 
and (c) PBD as compared 
to MP3 decoding time; (d) 
detection accuracy versus 
execution time in the three 
domains.
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Concluding Remarks

We have presented a  complexity- scalable beat-
 detection method that considers user expectations 
and the resource constraints of mobile devices. The 
algorithm was implemented and tested on a tar-
geted PDA platform. Experimental results show 
that the  compressed-  and  transform- domain pro-
cessing are particularly suitable for mobile applica-
tions, providing a satisfactory tradeoff between 
detection accuracy and execution speed.

Most of the errors with AAC bitstreams are π- errors 
(Goto and Muraoka 1997). We believe that the main 
reason for the difference is that the time resolution 
of AAC is much lower, which results in a lower 
feature quality. The difference is illustrated in 
Figure 13. This implies that the proposed method 
may not be directly applicable to other audio for-
mats. Given the popularity of MP3, this is not 
overly restrictive. It will be interesting to investi-
gate how sensitive the algorithm is to the bitrate of 
MP3 fi les.

Figure 12. Normalized 
execution time for each 
song by the three 
detectors.
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Denman, H., et al. 2005. “Exploiting Temporal Discon-
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Video Streams.” Proceedings of the 2005 International 
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Because the TBD can provide a good tradeoff be-
tween detection accuracy (comparable to the PBD) 
and execution speed (comparable to the CBD), we 
are working on optimizing the TBD to make it more 
suitable for mobile devices. In the future, we plan to 
transport our beat detectors to different hardware 
(e.g., mobile phones) and software platforms (e.g., 
Symbian). Another avenue of future work is to de-
sign algorithms by taking into account the con-
straints of power consumption of mobile platforms.
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