

 Zhu and Wang 71

With the growing popularity of the MPEG- 1 Audio
Layer 3 (MP3) format, handheld devices such as
personal digital assistants (PDAs) and mobile
phones have become important entertainment
platforms. Unlike conventional audio equipment,
mobile devices are characterized by limited pro-
cessing power, battery life, and memory, as well as
other constraints. Therefore, music- processing
tasks like beat detection must be implemented
using low- complexity algorithms to cope with the
constraints of these mobile devices.

This article presents a scheme of complexity-
scalable beat detection of popular (“pop”) music
recordings that can run on different platforms,
particularly battery- powered handheld devices. We
show a user- friendly and platform- adaptive scheme
such that the detector complexity can be adjusted to
match the constraints of the device and user re-
quirements. The proposed algorithm provides both
theoretical and practical contributions, because we
use the number of Huffman bits from the com-
pressed bitstream without requiring any decoding as
the sole feature for onset detection. Furthermore,
we provide an effi cient and robust graph- based beat-
induction algorithm. By applying the beat detector
to compressed rather than uncompressed audio, the
system execution time can be reduced by almost
three orders of magnitude.

We have implemented and tested the algorithm
on a PDA platform. Experimental results show that
our beat detector offers signifi cant advantages over
other existing methods in execution time while
maintaining satisfactory detection accuracy.

Motivation

After a decade of explosive growth, mobile devices
today have become important entertainment plat-
forms alongside desktop computers and servers.
Many applications such as games have been moved

to handheld devices, where soundtrack tempo plays
a key role in controlling relevant game parameters,
such as the speed of the game (Holm et al. 2005). For
 content- based audio / video synchronization (Den-
man et al. 2005), the musical beat is the primary
information source used as the anchor for timing.
The beat of a piece of pop music is defi ned as the
sequence of almost equally spaced phenomenal
impulses. The beat is the simplest yet fundamental
semantic information we perceive when listening
to pop music. Groupings and strong / weak relation-
ships form the rhythm and meter of the music
(Scheirer 1998).

The beat- tracking process typically organizes mu-
sical audio signals into a hierarchical beat structure
of three levels: quarter note, half note, and measure
(Goto 2001), as shown in Figure 1. Beats at the
 quarter- note level correspond to periodic “beats” or
“pulses” at a simple level, and those at the half- note
level and the measure level correspond to the over-
all “rhythm,” which is associated with grouping,
hierarchy, and a strong / weak dichotomy. Pop- music
beat detection is a subset of the beat- detection prob-
lem, which has been solved with detection accuracy
as the primary if not the sole objective. In this ar-
ticle, we focus on beat detection in recorded audio
rather than real- time beat tracking.

Currently, most beat- detection methods are im-
plemented on a personal computer or server. Based
on our experiments, we fi nd that it is diffi cult to
scale down the complexity of existing methods to
run on portable platforms such as PDAs and mobile
phones, where processing power, memory, and
battery life become critical constraints. Although
some recent results show that beat tracking can be
implemented in a mobile phone after major optimi-
zations (Seppanen et al. 2006), running such a
complex algorithm taxes battery life, which is not
desirable. Because software applications running on
 battery- powered portable platforms are gaining
popularity, algorithms for content processing such
as beat detection must be designed to match both
the constraints of the device resources and the users’
expectations.

Jia Zhu and Ye Wang
Department of Computer Science
National University of Singapore
3 Science Drive 2, Singapore 117543
{zhujia, wangye}@comp.nus.edu.sg

Complexity- Scalable Beat
Detection with MP3 Audio
Bitstreams

Computer Music Journal, 32:1, pp. 71–87, Spring 2008
© 2008 Massachusetts Institute of Technology.

72 Computer Music Journal

greatly limits their application, because it is not
easy to obtain complete MIDI representations of
real- world acoustic signals. Such models suffer from
the scaling- up problem (Kitano 1993). Recent sys-
tems work with PCM audio bitstreams. Representa-
tive works in this category include Scheirer (1998),
Goto (2001), Dixon (2001; 2003), and Shenoy et al.
(2004). Some of these algorithms are able to track
the whole hierarchical beat structure in pop music.
Owing to the popularity of compressed audio for-
mats such as MP3, a beat- detection technique using
features from partially decoded compressed audio
has been proposed in Wang and Vilermo (2001).
Other related works on compressed- domain audio /
video processing can be found in Tzanetakis and
Cook (2000) and Pfeiffer and Vincent (2001). The
work presented in Tzanetakis and Cook (2000) uses
sub- band samples extracted prior to the synthesize
fi lterbank in an MPEG- 2 Audio Layer 3 decoder to
calculate features such as spectral centroid, spectral
rolloff, and so on, which are used in audio classifi ca-
tion and segmentation. To the best of our knowl-
edge, our work is the fi rst to achieve beat detection
without decoding; that is, the beat detection is
based on features computed directly from the com-
pressed bitstream without even performing entropy
decoding. [Editor’s note: The initial manuscript was
submitted on 12 November 2006.]

System Overview

A diagram of our system is shown in Figure 2.
Depending on the decoding level, we have imple-
mented the proposed beat detectors in three do-
mains: the compressed- domain beat detector
(CBD), which is the main focus of this article; the
 transform- domain beat detector (TBD); and the
PCM- domain beat detector (PBD). In comparison to
existing work, our system allows an automatic se-
lection of beat detector (CBD, TBD, or PBD) based
on the availability of computing resources, as well
as manual selection by the user. We have imple-
mented our scheme to operate on the MP3 audio
format because of its popularity.

Extracting features from PCM audio or transform-
domain data has been proposed in previous work

To identify users’ requirements, we conducted
surveys of students from schools and universities;
these students constitute an important segment of
the mobile- entertainment market. Our initial sur-
vey results indicate that system- execution time,
detection accuracy, and battery life are critical per-
formance criteria for mobile- device users. This im-
plies that existing methods, which generally focus
on detection accuracy at the cost of computational
complexity, are apparently unable to meet users’
expectations of mobile platforms. In addition, our
survey showed that execution time, defi ned as the
interval between program start and the reception of
beat information, should not be more than a few
seconds, preferably less than 2 sec. Furthermore,
many users complained about having to process
music on a desktop platform before beat informa-
tion could be used on portable devices. Our tech-
niques have been designed with considerations of
the tradeoff between users’ requirements (e.g.,
detection accuracy and execution speed) and device
resource constraints. We show in this article that
the compressed and transform domains are both
excellent alternatives to the domain of uncom-
pressed, pulse- code- modulated (PCM) audio, be-
cause they allow low complexity and high detection
accuracy in beat detection on a mobile platform.

Related Work

Automatic beat detection has a history of almost
two decades; a fairly comprehensive review is given
in Gouyon and Dixon (2005). Early beat- detection
systems such as those of Povel and Essens (1985),
Rosenthal (1992), and Large and Kolen (1994) do not
operate on real- world acoustic signals, but rather on
symbolic data such as MIDI. Their reliance on MIDI

Figure 1. Hierarchical beat
structure. (The 4 / 4 time
signature prevalent in
popular music is assumed.)

 Zhu and Wang 73

Compressed- Domain Beat Detection

In an MP3 bitstream, some parameters are readily
available without decoding, including window type,
part2_3_length (Huffman code length), global gain,
etc. (Wang et al. 2003). Figure 3 shows different
features extracted from a compressed bitstream and
the corresponding waveform.

Because our objective was to design beat detection
for pop music, we selected certain of these param-
eters on the basis of the following criteria: (1) the
feature is well correlated to signal energy; (2) the
feature exhibits good self- similarities; (3) the feature
depends mainly on the music or the acoustic signals

(Scheirer 1998; Dixon 2001; Goto 2001). A system
presented in Wang and Vilermo (2001) tracks beats
at the quarter- note level in the transform domain.
However, it has remained unknown whether it is
possible to directly detect beats from a compressed
bitstream without partial decoding. In this article,
we investigate the possibility of detecting the whole
hierarchical beat structure.

As with most beat detectors dealing with pop
music, we assume that the time signature is 4 / 4 and
the tempo is almost constant across the entire piece
of music and roughly between 70 and 160 beats per
minute (BPM). Our test data is music from commer-
cial compact discs with a sampling rate of 44.1 kHz.

Figure 2. A systematic
overview of complexity-
scalable beat detectors in
three different domains:
 compressed- domain beat

detector (CBD), transform-
domain beat detector
(TBD), and PCM- domain
beat detector (PBD).

74 Computer Music Journal

Figure 3. Extracted
 compressed- domain data
from a pop- music excerpt
sampled from a commer-
cial CD: (a) original

waveform; (b) window
types; (c) part2_3_length;
(d) scale factor bits;
(e) global gain; and (f)
annotated beat times.

7.85 7.9 7.95 8 8.05

x 10
4

−1

−0.5

0

0.5

1
waveform

time (ms)

6020 6040 6060 6080 6100 6120 6140 6160 6180
0

1

2

3

4
window type

MP3 granule index

(a)

(b)

6020 6040 6060 6080 6100 6120 6140 6160 6180

800

1000

1200

1400

1600

part2_3_length

MP3 granule index

6020 6040 6060 6080 6100 6120 6140 6160 6180
0

10

20

30

40

50

60

70

sclf bits

MP3 granule index

(c)

(d)

6020 6040 6060 6080 6100 6120 6140 6160 6180
160

165

170

175

180

185

190
global gain

MP3 granule index

7.85 7.9 7.95 8 8.05

x 10
4

0

0.2

0.4

0.6

0.8

1

annotated beats

time (ms)

(e)

(f)

 Zhu and Wang 75

consist of multi- band data, whereas compressed-
domain data seem to reveal only full- band charac-
teristics. In other words, we can achieve better
detection accuracy by using multi- band processing
with increased complexity. However, if instant
results are needed, a single- band approach can offer
signifi cantly reduced complexity with reduced de-
tection accuracy.

Onset Detection

The CBD calculates the input data length from
part2_3_length. Onset candidates are selected using
a simple threshold thr:

 thr a meani = ×

where i is the granule index, and a is an empirically
determined constant value. During the system
evaluation, we noted that the beat- detection accu-
racy is not particularly sensitive to the choice of a,
because the proposed beat- induction algorithm is
robust to the inaccuracy of onset detector. The
window for calculation is {i – 34, i + 34}. Thus, the
window size is 69 granules, which corresponds to
approximately 900 msec. The selected window size

that are compressed, and not on the encoder that
has produced the data, which renders window type
data unsuitable for beat detection, for example;
and (4) the feature’s MP3 data fi eld has separate
values for each granule. (In an MP3 bitstream, the
primary temporal unit is a frame, which is further
divided into two granules. Some data fi elds are
shared by both granules in an MP3 frame, whereas
others have separate values for each granule. We
prefer the latter type because it gives a better time
resolution.)

In practice, we have used the following quantita-
tive measures for feature selection. For each data
type in the compressed domain, we created a se-
quence s by extracting the value from each granule.
Then another sequence b was generated as follows:

b i ki k±
= =1 0 1 2 if there is an annotated beat at granule , { , , }

b i k ki = ± =0 0 1 2 if there is no annotated beat at granule , { , , }

(An annotated beat is one that has been previously
specifi ed by a human listener, as explained later.)
We calculated the cross- correlations rb,s between b
and s at delay 0. Table 1 lists the results of this
method for fi ve songs. After checking all the pos-
sible parameters in the compressed MP3 bitstream,
we found that the part2_3_length is well correlated
with the onsets and is therefore a good proxy for
onset, because it is a high- level indication of the
“innovation” or “uniqueness” in each data unit (i.e.,
granule). The CBD uses part2_3_length (see Figure
4) as input data. All beat detectors have two main
blocks: onset detection and beat induction, which
are presented next.

Transform- domain features are generally more
reliable for beat detection than are compressed-
 domain features, because transform- domain features

Table 1. Results of the Cross- Correlation Method

 Global Part2_3_ Full- Band
Song No. Gain Length Energy

1 0.002 0.228 0.326
2 0.036 0.194 0.253
3 –0.043 0.184 0.184
4 0.004 0.217 0.188
5 –0.009 0.218 0.264
Average –0.002 0.208 0.243

Figure 4. Locations of
part2_3_length in a
compressed bitstream for
(a) single- channel and
(b) dual- channel audio.
For dual- channel audio,
we extract part2_3_length
from only the left channel.

"111111111111"

12 bits
synch. pattern 40 bits

part2_3_length
(granule 1)

12 bits 106 bits

part2_3_length
(granule 2)

12 bits

(b)

"111111111111"

12 bits
synch. pattern 38 bits

part2_3_length
(granule 1)

12 bits 47 bits

part2_3_length
(granule 2)

12 bits

(a)

76 Computer Music Journal

tion rank(ES, e); this function returns the rank of e
if e ∈ ES, and –1 otherwise. If e is the head of ES,
that is, e = head(ES), then rank(ES, e) returns 1; if e
is the tail of ES, that is, e = tail(ES), then rank(ES, e)
returns the size of ES. A reverse operation get
returns the element given a rank, namely, get(ES,
rank(ES, e)) = e if e ∈ ES. Succ(ES, e) returns the
successive element of e in ES. We formulate the
beat- induction problem as shown in Table 2.

Intuitively, the input set O contains all the
detected onsets of a piece of music, the output
value d is the anticipated quarter- note length, and
the output set B contains all the beats. QMIN and
QMAX are the smallest and largest possible
 quarter- note lengths allowed by the algorithm,
respectively. In our current implementation, QMIN =
375 msec, and QMAX = 923 msec, which correspond
to tempi ranging from 65 to 160 BPM. The devia-
tion, ε, is set to 25 msec. Because we work with
MP3 granules instead of units of msec in the com-
pressed domain, the corresponding parameters in
the compressed domain (for a sampling rate of
44.1 KHz) are QMIN = 28 granules, QMAX = 72 gran-
ules, and ε = 2 granules.

Next, we introduce another data structure called
a pattern. A pattern is defi ned to be an ordered
event set with an associated pair (s, d). A pattern P
meets the following conditions: (1) P ⊆ O, where O
is the ordered event set containing all the onsets; (2)
|P| ≥ 1 and head(P) = s; (3) for every consecutive pair
(i, j) of P, if there is any, diff(i, j) ∈ {d – ε, d + ε}; and
(4) there does not exist another ordered event set S

is the same as the one used in Wang et al. (2003) for
onset detection. Granule i is considered to contain
an onset if the following conditions are met:

 f thr
f f
i i

i i k

>
>

⎧
⎨
⎩ ±

 condition
 condition
()
()

1
2

where fi is the ith feature obtained from half- wave
rectifi cation, and k ∈ {1 . . . 17}. Condition 2 ensures
that any two onsets are at least two granules (ap-
proximately 26 msec) apart from each other. This
implies at most one onset can be detected within
any period of 50 msec. We denote this property as
onset property and use it in beat induction.

It should be noted that the onset detector is
selected mainly for its simplicity and for the char-
acteristics of the feature. Many of the methods in
Bello et al. (2005) are simply not applicable to
 compressed- domain features.

Beat Induction

The beat- induction process determines beat times
based on onset times from the previous step. Our
beat- induction algorithm is designed to be robust
enough to work with input onsets that have low
accuracy. Unlike the onsets detected from a PCM
bitstream, features extracted from a compressed
bitstream are generally much noisier.

We use a data structure called an Ordered Event
Set, which is composed of an ordered set of distinct
events, denoted (S, ≤R), to store onsets or beats. Two
events are distinct if and only if they do not occur
simultaneously. The relation ≤R is defi ned as fol-
lows: i ≤R j if and only if event i occurs earlier than
or at the same time as event j. It is obvious that
relation ≤R is anti- symmetric and transitive. An
ordered pair (i, j) of an ordered event set ES satisfi es
i, j ∈ ES ∧ i ≤R j ∧ i ≠ j. A pair (i, j) of ES is a consecu-
tive pair if (i, j) is an ordered pair and there is no
element e such that (i, e) and (e, j) are ordered pairs
of ES. The difference of an ordered pair (i, j), denoted
by diff(i, j), is the absolute value of the time differ-
ence between the occurrence of event i and that of
event j.

Because elements in ES are distinct and ordered,
we can get the rank of an element e with the opera-

Table 2. Formulation of the Beat- Induction Problem

Input: An ordered event set O

Output: A pair (d, B) that satisfi es three conditions

Condition 1: d is a real number and QMIN ≤ d ≤ QMAX,
where QMIN and QMAX are constants; B is
an ordered event set

Condition 2: For every consecutive pair (i, j) of B,
diff(i, j) ∈ [d – ε, d + ε]

Condition 3: For any pair (d', B') that satisfi es condi-
tions 1 and 2 and is not identical to (d, B),
|O ∩ B'| < |O ∩ B|

 Zhu and Wang 77

detects a coarse QNL, and the second stage detects a
fi ne QNL. In the fi rst stage, we use nine bins that
cover the interval {QMIN, QMAX}, each of which spans
fi ve granules. After the normal histogram proce-
dure, the center of the bin with the maximum num-
ber of elements is taken as the coarse QNL, cqnl. In
the second stage, we only consider inter- onset inter-
vals in the range {cqnl – 2, cqnl + 2}. We use fi ve bins,
each of which spans one granule, and then perform
the histogram procedure again. The granule index
represented by the bin with the maximum number
of elements is taken as the fi ne QNL. An example of
the histogram method is shown in Figure 6.

To further speed up this procedure, we can use
just a small segment, for example, the fi rst half-
 minute, of the whole song as an input to the histo-
gram. However, we did not use this method in our
experiment, because it might fail if there are large
gaps between successive onsets over the whole song.
Furthermore, experimental results have shown that
our two- stage histogram method is fast enough.

After the quarter- note length is detected, the next
step is to compute beat times based on the quarter
note length qnl. Our objective is to create an or-
dered event set B such that for every consecutive
pair (i, j) of B, diff(i, j) ∈ {qnl – ε, qnl + ε], and |B ∩ O|
is maximum. To solve this problem, we propose a
 graph- based approach. We fi rst introduce the con-
cept of compatibility.

A pattern A is defi ned to be compatible with
pattern B with lapse d (d > ε) if and only if the
following condition holds:

tail B head A lapse A lapse B d and

diff tail B head A
ROUND diff tail B head A d

d d

R() (), () () ,

((), ())
(((), ()) /)

[,].

≤ = =

∈ − +ε ε

Here, ROUND is an operation that rounds its
parameter to the nearest integer. If A is compatible
with B with lapse d, we denote Ad

→c
B. The compat-

ibility relation satisfi es the following property:

 A B B A
c c

d d
→ →∧ never holds

This property can be proved using contradiction;
the proof is straightforward and is hence omitted
here. Figure 7 gives an example of compatibility.

The graph- based approach starts with the collection

such that P ⊂ S, and S also meets conditions 1, 2,
and 3.

Figure 5 provides an intuitive illustration of a
pattern. We claim that the associated pair (s, d) of a
pattern uniquely identifi es the specifi c pattern.
This can be proved as follows. Suppose there are
two patterns P1 and P2 with the same associated
pair (s, d). Then head(P1) = head(P2) = s, according
to condition 2. Because there is at most one onset
within the interval {t – ε, t + ε], where t is arbitrary,
according to the onset property, we have diff(s, x) ∈
{d – ε, d + ε} ∧ diff(s, y) ∈ {d – ε, d + ε] → x = y, which
implies that the second element of P1 is identical to
that of P2 according to condition 3.

If |P1| = |P2|, then using the same argument in-
ductively for the rest of the elements in P1 and P2,
we can infer that all of them are identical, that is,
get(P1, k) is identical to get(P2, k) for k ∈ {1, 2, . . . ,
|P1|}, and thus P1 and P2 have the same pattern. If
|P1| ≠ |P2|, we can assume |P1| < |P2| without loss of
generality. Then get(P1, k) is identical to get(P2, k)
for k ∈ {1, 2, . . . , |P1|}. This implies that P1 ⊂ P2,
which contradicts condition 4. Hence, a pattern can
be uniquely identifi ed by its associated pair. If a
pattern P has an associated pair (s, d), we denote d
as the lapse of P, that is, lapse(P) = d. The procedure
for extracting the pattern given the associated pair
(s, d) is straightforward. The initial status of the
pattern P is {s}. For each onset o, if diff(tail(P), o) ∈
{d – ε, d + ε}, we add o into P, that is, P ← P ∪ {o}.

The beat- induction algorithm begins by detecting
the anticipated quarter- note length (QNL). The
procedure is an inter- onset interval, histogram-
based method, commonly used in beat detectors
like those described by Gouyon et al. (2006). We
improve these methods with emphasis on speed and
tolerance of inaccurate onsets. To achieve prompt
detection of the anticipated QNL, we carry out the
histogram method in two stages. The fi rst stage

Figure 5. Two patterns can
be identifi ed from the
onsets on axis (a) and are
denoted on axis (b) and
axis (c).

(a)

(b)

(c)

78 Computer Music Journal

of all patterns with lapse qnl from the onsets, where
qnl is the quarter- note length. The procedure shown
below extracts all patterns with a prescribed lapse
by a single iteration through the ordered set of all
onsets. In that procedure, we use another ordered
event set (L, ≤R'), which has the same properties and
operations as (S, ≤R) as the data structure to store all
the patterns. The relation ≤R' is defi ned by Li ≤R' Lj if
and only if head(Li) ≤R head(Lj). The algorithm is
shown in Figure 8.

Figure 6. The two- stage
histogram method is
carried out in the com-
pressed domain and in the
PCM domain, respectively,
with the same input song.

In the PCM domain, the
fi rst histogram has 10 bins,
with a resolution of 50
msec, and the second his-
togram has 50 bins, with a
resolution of 1 msec. The

 quarter- note length de-
tected in the compressed
domain is 54 granules
(707.4 msec), whereas
that in the PCM domain
is 709 msec.

30 35 40 45 50 55 60 65 70
0

50

100

150

200

250

300

350
Compressed domain, first stage

granules
53 54 55 56 57

0

50

100

150

200
Compressed domain, second stage

granules

400 550 700 850
0

100

200

300

400

500
PCM domain, first stage

msec
660 680 700 720 740
0

20

40

60

80

100
PCM domain, second stage

msec

Figure 7. Pattern II is
compatible with pattern I.
Neither pattern I nor
pattern II is compatible
with pattern III.

Length of a quarter note:

Pattern I

Pattern II

Pattern III

Figure 7

Figure 6

 Zhu and Wang 79

Figure 8. Procedure for
collecting patterns.

Procedure: CollectAllPatterns(O, qnl)

Input: The ordered event set O containing all the

onsets, and the detected quarter-note length qnl.

Output: An ordered event set L containing all the

patterns with lapse qnl.

L ← ∅

Initialize a flag array F of the same size as O, with

all elements being 0

for each element e’ in O

 e ← e’

 if F[rank(O, e)] = 0

 then initialize a new empty pattern P

 P ← P ∪ {e}

 F[rank(O, e)] ← 1

 es ← succ(O, e)

 while diff(es, tail(O)) > 0

 do if diff(es, e) ∈ [qnl – ε, qnl + ε]

 then P ← P ∪ {es}

 F[rank(O, es)] ← 1

 e ← es

 if diff(es, e) > qnl + ε

 then break

 es ← succ(O, es)

 L ← L ∪ {P}

80 Computer Music Journal

and y such that diff(x, b1) = diff(b1, b2) = . . . = diff(bk,
y) = d, we can infer that d ∈ [qnl – ε, qnl + ε]. This
will ensure that the tempo is maintained across the
interpolated beats.

The worst- case running time of our beat- induction
algorithm is O(n3

1), where n1 is the total number of
detected onsets. However, in practice, the algo-
rithm usually performs much faster than O(n3

1). The
actual running time is max(O(n2

1), O(n3
2)), where n2 is

the total number of patterns, because the Bellman-
Ford algorithm has a cubic time complexity. Be-
cause n1 >> n2 in almost all cases, and n3

1 >> n2
1 when

n1 is large, it follows that max(O(n2
1), O(n3

2)) << O(n3
1).

Hence, the actual running time is much less than
O(n3

1). The memory consumption of our beat-
 induction algorithm is max(O(n1), O(n2

2)). We use a
bit array to implement the compatibility matrix. A
16- bit integer is used to represent each onset. (Note
that in the compressed domain, we work with MP3
granule indices, which can be represented as 16- bit
integers.) Thus, the hidden constant in the Big- O
notation of memory consumption is small.

Our onset detection and beat induction are illus-
trated in Figure 9.

Transform / PCM- Domain Beat Detection

Both TBD and PBD have three general steps: onset
detection, beat induction, and bar detection. The

After collecting the patterns, we create a compat-
ibility matrix CM with dimension |L| × |L| as follows:

 CM i j if get L i get L j
otherwise

i j Lc
qnl

[][] (,) (,);
,

, | |= ⎧
⎨
⎩

≤ ≤→1
0

, for any 1

CM can be viewed as the adjacent matrix of a
graph G = (V, E), where V[G] ={x | x ∈ Ζ ∧ x ≥ 0 ∧ ∃p,
x = rank(L, p)}, E[G] = {(j, k) | j, k ∈ V[G] ∧ CM[j, k] =
1}. By the compatibility property, the graph is
directed and acyclic: (i, j) ∈ E[G] if and only if
get(L, i)q

→
nl
cget(L, j).

The problem is transformed to fi nding a path p =
{v0, v1, . . . , vk}, where v0, v1, . . . , vk ∈ V[G], such
that Σk

i = 0 pattern_count(get(L, vi)) is maximized. To
solve the problem, we fi rst convert graph G into
another directed acyclic but weighted graph G' = (V,
E), on which we can apply the Bellman- Ford algo-
rithm. The new graph G' is obtained by adding a
dummy vertex dummy = |V[G]| + 1 to the vertex
set of G, and creating edges from the dummy vertex
to every other vertex in G'. Thus, V[G'] = V[G] ∪
{dummy}, and E[G'] = E[G] ∪ {(dummy, k) | k ∈
V[G]}. The weight of an edge (j, k) in G', denoted by
w (j, k), is assigned by pattern_count(get(L, k)). The
negation allows us to apply the Bellman- Ford algo-
rithm, which fi nds the path that originates from the
dummy vertex with minimal total weights instead
of maximum total weights. Based on the output
path of the Bellman- Ford algorithm, we collect the
patterns represented by the vertices on the path and
store the elements of those patterns in an ordered
event set B. Then B contains partial beats.

The next step is to obtain the complete beats. The
rest of the beats are interpolated based on the partial
beats in B. Interpolation is done as follows. For every
consecutive pair (x, y) in B, if diff(x, y) ∉ [qnl – ε,
qnl + ε], then x and y do not appear in the same
pattern; x is the tail of one pattern P1, and y is the
head of another pattern P2. We can also infer P2 is
compatible with P1 with lapse qnl. Based on the
defi nition of compatibility, we have

 diff x y
ROUND diff x y qnl

qnl qnl(,)
((,) /)

[,]∈ − +ε ε

Therefore, if we insert k = (ROUND(diff(x, y) /
qnl) – 1) number of beats b1, b2, . . . , bk between x

Figure 9. (a) Part2_3_length
(solid line) and threshold
(dashed line); (b) detected
onsets; (c) detected beats
after beat induction.

3000 3100 3200 3300 3400 3500 3600
500

1000

1500

2000

3000 3100 3200 3300 3400 3500 3600
0

0.5

1

3000 3100 3200 3300 3400 3500 3600
0

0.5

1

MP3 granule index

(a)

(b)

(c)

 Zhu and Wang 81

the jth MDCT coeffi cient decoded in the ath short
window of granule n (when granule n contains three
short windows), N1 is the lower bound index, and N2
is the upper bound index of band b. Full- band en-
ergy is calculated by adding all the sub- band ener-
gies for each granule.

Energy values of the four sub- bands and the full-
band form fi ve vectors of features. We carry out a
procedure similar to that described in Wang et al.
(2003) on the fi ve vectors of features to detect on-
sets. The procedure chooses onset candidates from
each feature vector using a threshold- based method,
and the onset candidates from the fi ve feature
vectors are converged using a weighted- average
method.

Note that the onsets detected by this method,
like those detected by CBD, have the onset prop-
erty, which renders them valid as input to the beat-
induction algorithm presented earlier.

Bar Detection

Our bar- detection algorithm uses the idea of de-
tecting chord changes, similar to the algorithm
described in Goto (2001), which detects bar infor-
mation in the PCM domain. We have modifi ed that
algorithm to work in the transform domain. Our
TBD calculates chord- change probabilities at each
 quarter- note boundary. The calculation of chord-
change probabilities at each eighth- note boundary
is omitted in our implementation. A histogram is
formed by

 H n f X if
i q n gap n

q n gap n

(,) ([])
() ()

() ()

=
= +

+ −

∑ 2
1

where Xf[i] is the fth MDCT coeffi cient decoded at
granule i, q(n) is the granule index mapped from the
nth beat time, q(n + 1) is the granule index mapped
from beat time (n + 1), and gap(n) = (q(n + 1) – q(n))/5.

We consider only the frequency range of 1–1,000
Hz, which is supposed to contain the frequencies of
dominant tones (Goto 2001). Thus, only the fi rst 27
MDCT frequency lines for long windows and the
fi rst nine MDCT frequency lines for short windows
are used to create the histogram.

fi rst two of these steps are analogous to the corre-
sponding steps of CBD, which does not include bar
detection. The onset detector is different in each of
these three domains, although the onset detectors
for TBD and PBD are similar. In comparison with
the onset detector for TBD, the onset detector for
PBD requires an additional fast Fourier transform
(FFT) operation for frequency analysis, which is
detailed in Shenoy et al. (2004). We use the same
beat- induction algorithm for beat detectors in all
three domains. The onset detection and bar detec-
tion for TBD are discussed in this section.

Onset Detection

The onset detector for TBD uses the threshold- by-
band method. It fi rst divides the modifi ed discrete
cosine transform (MDCT) frequency lines into four
sub- bands. The division for long windows is 1–3,
4–25, 26–85, and 86–576. (These numbers indicate
the indices of MDCT frequency lines.) The corre-
sponding frequency intervals are thus 0–115 Hz,
116–957 Hz, 958–3,254 Hz, and 3,255–22,050 Hz.
For short windows, we try to match the frequency
intervals with those for long windows as closely as
possible. The division for short windows is 1, 2–9,
10–29, and 30–192, corresponding to frequency in-
tervals of 0–114 Hz, 115–1,033 Hz, 1,034–3,330 Hz,
and 3,331–22,050 Hz. This approach is similar to
that described by Wang and Vilermo (2001); how-
ever, unlike that approach, we employ all sub- band
information.

Next, energy from each band is calculated for
each granule. The energy Eb[n] of band b (b = 1, 2, 3,
or 4) in granule n is calculated as

 E n
X n

X n
b

j
j N

N

a j
j N

N

a

[]
[]

[],

=
()

()⎛
⎝⎜

⎞
⎠⎟

⎧

⎨
⎪⎪

⎩
⎪
⎪

=

==

∑

∑∑

2

2

1

3
1

2

1

2

where the fi rst relation applies to granules that con-
tain a long window, and the second relation applies
to granules that contain short windows. Also, Xj[n]
is the jth MDCT coeffi cient decoded at granule n
(when granule n contains a long window), Xa,j[n] is

82 Computer Music Journal

Evaluation Method

The test music for the all three detectors—CBD,
TBD, and PBD—is identical and is all sampled from
commercial CDs. Three music students from our
university manually annotated beat times. They
fi rst worked individually on all the test samples,
and then the individual annotations were averaged
to get the fi nal annotations. The annotated beat
times and system- generated beat times were sent to
an evaluator program. The evaluator program used a
variation of the evaluation method proposed in Goto
and Muraoka (1997), which we briefl y summarize as
follows.

A system- generated beat time sequence is de-
noted as ts, and an annotated beat- time sequence is
denoted as ta. Before we calculate the normalized
deviation at each detected beat, we carry out the
following procedure to match ts with ta. First, we
fi nd in ts the element sf that is closest to the fi rst
element of ta. Suppose the index of sf in ts is τ, the
length of ta is la, and that of ts is ls. We remove the
fi rst τ – 1 elements and the last ls – la – τ + 1 ele-
ments from ts. Figure 10 gives a simple example of
this procedure.

The normalized deviation at detected beat n, d(n),
is calculated as

 d n

Ts n Ta n
Ta n Ta n

if Ts n Ta n

Ta n Ts n
Ta n Ta n

if Ts n Ta n
[]

([] [])
[] []

 [] []

([] [])
[] []

 [] []
=

⋅ −
+ −

≥

⋅ −
− −

<

⎧

⎨
⎪⎪

⎩
⎪
⎪

2
1

2
1

The mean α and standard deviation β of the se-
quence formed by d[2], . . . , d[size – 1], where size
is the size of sequence Ta, are then calculated. We
also calculate
 � =

< <
max([])

1 i size
d i

We accept Ts as a correct beat sequence if α < 0.1,
β < 0.15, and γ < 0.5.

For TBD, the correctness of detected bars is also
examined. If the detected quarter- note information

To solve the mismatch of different frequency res-
olutions between long and short windows, a com-
promise method is applied, as follows. Because
there are three windows in a granule of short win-
dow type, we pick the fi rst nine MDCT frequency
lines in each of the three windows, and we order
them as follows:

 X n a w n a na[()] [], { , , }3 1 1 2 3 1 9⋅ − + = ∈ ≤ ≤ and

where wa[n] is the nth MDCT frequency line in
short window a in one granule. The ordered fre-
quency lines constitute 27 lines, which are used in
our histogram calculation in the same way as the
fi rst 27 frequency lines are in a long window.

After calculating the histogram, we follow the
same procedure described in Goto (2001) to calcu-
late the chord- change probabilities at each beat
time. The chord- change probabilities are used to
infer bar boundaries. In particular, we calculate four
values, S1, S2, S3, and S4:

 S T k i ii
k

bn

= ⋅ + ∈
=

−

∑ (), { , , , }
/

4 1 2 3 4
0

4 1

In the above equation, bn is the total number of
beats, and function T is defi ned recursively as

 T n W T n W C n n
otherwise

() () ()= ⋅ − + ⋅ >⎧
⎨
⎩

1 4 2 4
0

where the C(n) are the chord- change probabilities cal-
culated at beat n, and W1 and W2 are two constants.
Suppose ix is an integer such that ix = arg1 ≤ i ≤ 4 max(Si);
then beat 4k + ix marks the start of bar (k + 1), where
k ∈ {0, 1, 2, . . . , bn / 4–1}.

Evaluation

We use libmad, a highly optimized, open- source
MP3 decoder, for our system implementation and
evaluation. We carefully selected 25 pop songs to
provide suffi cient sampling variety, and we encoded
each song at a bit rate of 128 kbps. Pop- music beat
detection in the PCM domain is a relatively
straightforward task; we investigated the perfor-
mance degradation of the TBD and CBT relative to
our PBD baseline (Shenoy et al. 2004), which can
detect beats in the selected 25 songs correctly.

Figure 10. In this example,
the fi rst two beat times
and the last beat time in ts
are removed so that ts is
matched with ta.

ta
ts

sf

 Zhu and Wang 83

to detection accuracy and the corresponding execu-
tion time.

Execution Time

The three beat detectors were implemented on an
HP iPAQ hx4700 PDA running Microsoft Windows
Mobile 2003 SE. (The iPAQ hx4700 uses the Intel
PXA270 processor with a clock speed of 624 MHz
and has 64 MB of SDRAM and 128 MB of ROM.)
Owing to the low quality of compressed- domain
features, the proposed beat detector must be per-
formed offl ine in the compressed domain. The
average execution times in the three domains are
presented in Figure 12. We normalize the execution

fails in the evaluation, then the detected half notes
and bars are all rejected; otherwise, we fi nd in se-
quence Ta a beat b1 that marks the start of a bar and
in sequence Ts, as well as a beat b2 that also marks
the start of a bar. Suppose the index of b1 in Ta is i1,
and the index of b2 in Ts is i2. If (i1 – i2) modulo 4 is
0, we accept the detected half notes and bars; other-
wise, if (i1 – i2) modulo 4 is 2, we accept the detected
half notes and reject the detected bars; if not, both
the detected half notes and bars are rejected.

Detection Accuracy

The evaluation results are listed in Table 3. Fig-
ure 11 shows the average performance with respect

Table 3. Experimental Results

Song Title Artist CBD TBD

 q q h w

Back to You Bryan Adams × √ √ ×
Breathless The Corrs √ √ √ √
Burn Tina Arena √ √ √ √
Crush Jennifer Paige √ √ √ √
Drops of Jupiter Train √ √ √ √
Heal the World Michael Jackson √ √ √ √
I Can’t Tell You Why Eagles × √ √ √
It Must Have Been Love Roxette √ √ √ √
I Want to Know What Love Is Foreigner √ √ √ √
Losing My Religion R.E.M. √ √ √ √
Mmmbop Hanson √ √ × ×
One U2 √ × × ×
One of Us Joan Osborne √ √ × ×
Road to Hell Chris Rea √ √ √ √
Seasons in the Sun Westlife √ √ √ √
Smooth Santana √ √ √ √
Someday Michael Learns To Rock √ √ √ √
Stayin’ Alive Bee Gees √ √ √ √
The Way It Is Bruce Hornsby √ √ √ ×
Time of Your Life Green Day × × × ×
I Knew I Loved You Savage Garden √ √ √ ×
Viva Forever Spice Girls √ √ × ×
Walking Away Craig David √ √ √ √
Whenever, Wherever Shakira × √ √ √
You Make Loving Fun Fleetwood Mac √ √ × ×

Number of songs tracked, from a total of 25 21 23 19 16

84 Computer Music Journal

onds. The average beat detection time is about
1 second for CBD, 12 seconds for TBD, and 13
minutes for PBD. These results show that the
 compressed- or transform- domain processing
provides a signifi cant advantage for mobile plat-
forms, whereas PBD is more suitable for desktop
or server platforms.

Applicability to Other Formats

To evaluate dependency on the input audio format,
we also implemented the proposed algorithm with
the Advanced Audio Coding (AAC) decoder at a
constant bit rate of 128 kbps. The detection perfor-
mance is signifi cantly lower than that with MP3.

time by dividing the actual execution time by the
duration of the input song (in minutes).

The experimental results show that beat induc-
tion takes roughly the same amount of time in the
three operation domains. The main difference lies
in the onset detection, which is the dominant factor
that causes the vast difference between CBD and
PDB in terms of execution time. The execution
time of CBD is negligible in comparison to MP3
decoding. The execution time of TBD is comparable
to MP3 decoding. PBD requires a signifi cantly
longer execution time compared to MP3 decoding,
mainly due to an extra time- frequency transform.

In summary, the average duration of the 25 test
songs is about 4 minutes. The average decoding
time per song from MP3 to PCM is about 21 sec-

Figure 11. Performance
comparison: execution
time of (a) CBD, (b) TBD,
and (c) PBD as compared
to MP3 decoding time; (d)
detection accuracy versus
execution time in the three
domains.

0

1

2

3

4

5

N
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

ti
m

e
(s

ec
)

(a)

MP3 decoding Onset detection

Beat Induction

0

1

2

3

4

5

N
o

rm
al

iz
ed

 e
x

ec
u

ti
o

n

ti
m

e
(s

ec
)

(b)

MP3 decoding Onset detection

Beat Induction

0

0.5

1

1.5

2

2.5

3

N
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

ti
m

e
(m

in
)

(c)

MP3 decoding Onset detection

Beat Induction

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

PBD TB D C BD

(d)

Detection accuracy Normalized execution time

 Zhu and Wang 85

Concluding Remarks

We have presented a complexity- scalable beat-
 detection method that considers user expectations
and the resource constraints of mobile devices. The
algorithm was implemented and tested on a tar-
geted PDA platform. Experimental results show
that the compressed- and transform- domain pro-
cessing are particularly suitable for mobile applica-
tions, providing a satisfactory tradeoff between
detection accuracy and execution speed.

Most of the errors with AAC bitstreams are π- errors
(Goto and Muraoka 1997). We believe that the main
reason for the difference is that the time resolution
of AAC is much lower, which results in a lower
feature quality. The difference is illustrated in
Figure 13. This implies that the proposed method
may not be directly applicable to other audio for-
mats. Given the popularity of MP3, this is not
overly restrictive. It will be interesting to investi-
gate how sensitive the algorithm is to the bitrate of
MP3 fi les.

Figure 12. Normalized
execution time for each
song by the three
detectors.

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

x 10
4

Song index

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e
(u

ni
t:

m
se

c/
m

in
)

Compressed−domain beat detector
Transform−domain beat detector
PCM−domain beat detector

86 Computer Music Journal

Denman, H., et al. 2005. “Exploiting Temporal Discon-
tinuities for Event Detection and Manipulation in
Video Streams.” Proceedings of the 2005 International
Workshop on Multimedia Information Retrieval.
New York: Association for Computing Machinery,
pp. 183–192.

Dixon, S. 2001. “Automatic Extraction of Tempo and Beat
from Expressive Performances.” Journal of New Music
Research 30(1):39–58.

Dixon, S. 2003. “On the Analysis of Musical Expressions
in Audio Signals.” International Society for Optical
Engineering 5021(2):122–132.

Goto, M. 2001. “An Audio- Based Real- Time Beat Track-
ing System for Music With or Without Drum- Sounds.”
Journal of New Music Research 30(2):159–171.

Goto, M., and Y. Muraoka. 1997. “Issues in Evaluating
Beat Tracking Systems.” Working Notes of the 1997 In-
ternational Joint Conference on Artifi cial Intelligence

Because the TBD can provide a good tradeoff be-
tween detection accuracy (comparable to the PBD)
and execution speed (comparable to the CBD), we
are working on optimizing the TBD to make it more
suitable for mobile devices. In the future, we plan to
transport our beat detectors to different hardware
(e.g., mobile phones) and software platforms (e.g.,
Symbian). Another avenue of future work is to de-
sign algorithms by taking into account the con-
straints of power consumption of mobile platforms.

References

Bello, J. P., et al. 2005. “A Tutorial on Onset Detection
in Music Signals.” IEEE Transactions on Speech and
Audio Processing 13(5):1035–1047.

Figure 13.
 Compressed- domain
feature comparison
between MP3 and AAC.

0 50 100 150 200 250 300 350 400 450
0

500

1000

1500

2000

2500

AAC frame index

#b
its

 p
er

 fr
am

e

0 100 200 300 400 500 600 700 800
0

500

1000

1500

2000

MP3 granule index

#b
its

 p
er

 g
ra

nu
le

 Zhu and Wang 87

Scheirer, E. 1998. “Tempo and Beat Analysis of Acoustic
Musical Signals.” Journal of the Acoustical Society of
America 103(1):588–601.

Seppanen, J., et al. 2006. “Joint Beat and Tatum Tracking
from Music Signals.” Proceeding of the Seventh Inter-
national Conference on Music Information Retrieval.
Victoria, Canada: University of Victoria, pp. 23–28.

Shenoy, A., et al. 2004. “Key Determination of Acoustic
Musical Signals.” Proceedings of the 2004 Interna-
tional Conference on Multimedia and Expo. New
York: Institute of Electrical and Electronics Engineers,
pp. 1771–1774.

Tzanetakis, G., and P. Cook. 2000. “Sound Analysis Using
MPEG Compressed Audio,” Proceedings of the 2000
International Conference on Acoustic, Speech, and
Signal Processing. New York: Institute of Electrical and
Electronics Engineers, pp. 761–764.

Wang, Y., and M. Vilermo. 2001. “A Compressed Do-
main Beat Detector Using MP3 Audio Bitstreams.”
Proceedings of the 2001 ACM Multimedia Conference.
New York: Association for Computing Machinery,
pp. 194–202.

Wang, Y., et al. 2003. “Parametric Vector Quantization
for Coding Percussive Sounds in Music.” Proceedings
of the 2003 International Conference on Acoustic,
Speech, and Signal Processing. New York: Institute of
Electrical and Electronics Engineers, pp. 652–655.

Workshop on Issues in AI and Music—Evaluation and
Assessment, pp. 9–16.

Gouyon, F., and S. Dixon. 2005. “A Review of Automatic
Rhythm Description Systems.” Computer Music Jour-
nal 29(1):34–54.

Gouyon, F., et al. 2006. “An Experimental Comparison
of Audio Tempo Induction Algorithms.” IEEE Trans-
actions on Audio Speech and Language Processing
14(5):1832–1844.

Holm, J., et al. 2005. “Personalizing Game Content
Using Audio- Visual Media.” Proceedings of the 2005
International Conference on Advances in Computer
Entertainment Technology. New York: Association for
Computing Machinery, pp. 298–301.

Kitano, H. 1993. “Challenges of Massive Parallelism.”
Proceedings of the 1993 International Joint Conference
on Artifi cial Intelligence. San Francisco, California:
Morgan Kaufmann, pp. 813–834.

Large, E., and J. F. Kolen. 1994. “Resonance and the
Perception of Musical Meter.” Connection Science
6:177–208.

Pfeiffer, S., and T. Vincent. 2001. “Formalisation of
MPEG- 1 Compressed Domain Audio Features.”
Technical Report 01 / 196, CSIRO Mathematical and
Information Sciences, Australia.

Povel, D. J., and P. Essens. 1985. “Perception of Temporal
Patterns.” Music Perception 2:411–440.

Rosenthal, D. F. 1992. “Machine Rhythm: Computer
Emulation of Human Rhythm Perception.” PhD thesis,
Department of Architecture, MIT.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Sheridan distiller settings. No subset fonts.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

