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ABSTRACT

With the rapid pace of modern life, millions of people suffer
from sleep problems. Music therapy, as a non-medication
approach to mitigating sleep problems, has attracted in-
creasing attention recently. However the adaptability of mu-
sic therapy is limited by the time consuming task of choos-
ing suitable music for users. Inspired by this observation,
we discuss the concept of a domain specific music recom-
mendation system, which automatically recommends music
for users according to their sleep quality. The proposed sys-
tem requires multidisciplinary efforts including automated
sleep quality measurement and content-based music similar-
ity measure. As a first step, we focus on the automated
sleep quality measurement in this paper. An EEG-based
approach is proposed to measure user’s sleep quality. The
advantages of our approach over standard Polysomnography
(PSG) method are: 1) it measures sleep quality by recogniz-
ing three sleep categories rather than six sleep stages, thus
higher accuracy can be expected; 2) three sleep categories
are recognized by analyzing Electroencephalography (EEG)
signal only, so the user experience is improved because he is
attached with fewer sensors during sleep. We conduct exper-
iments based on a standard data set. Our approach achieves
high accuracy and shows promising potential for the music
recommendation system.
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1. INTRODUCTION

Nowadays millions of people are affected by sleep prob-
lems, many of whom remain undiagnosed. At present mu-
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Figure 1: EEG-based music rating in the proposed
recommendation system

sic therapy offers an alternative healing method, which im-
proves sleep quality by playing back music at bed time. Mu-
sic therapy research has indicated that music does have ben-
eficial effects on sleep for children [17], young people [8] and
older adults [10]. During the process of music therapy, peo-
ple are asked to listen to a list of music, which is pre-selected
by music therapist. In spite of its clear benefits towards
sleep quality, current approach is difficult to be widely used
because it is a time consuming task for music therapist to
produce a personalized music list. Based on this observa-
tion, we introduce a domain specific music recommendation
system, which automatically recommends music for user ac-
cording to his sleep quality.

The proposed recommendation system consists of two main
components: EEG-based music rating and content-based
music recommendation. After music is played back at
bed time, the former component will monitor user’s sleep
quality. Music items will be rated according to user’s sleep
quality, as figure 1 shows. The music items associated with
good sleep quality are used as queries in the music recom-
mendation component. The music which are similar to the
query items will be recommended to the user by conduct-
ing music similarity analysis. As the first step towards the
proposed recommendation system, we focus on automated
sleep quality measurement which is the major task in the
EEG-based music rating component.

Normal sleep physiology consists of Non Rapid Eye Move-
ment (NREM) and Rapid Eye Movement (REM). NREM is
subdivided into four stages: stages 1 (S1), stage 2 (S2), stage
3 (S3) and stage 4 (S4). S3 and S4 are also called deep sleep.
A healthy person will experience about 5 complete sleep cy-



cles per night. [1]. S1 is the first stage in a sleep cycle. S2
is the second stage. Then S3 and S4 will occur in the cycle
consecutively. After the completion of four stages of NREM,
these four stages will reverse rapidly and then followed by

REM, as Figure 2 shows.
Wake —
| |
Stage 1 ‘ % |
Stage 2 v WVA” q

. . . L
0 1 2 3 4 5 6 7 8
time [hours]

Figure 2: Typical sleep cycles of one night

=

Deep sleepr

Given the sleep cycles over night, three main parameters
can be calculated to measure sleep quality: sleep latency,
sleep efficiency and percentage of deep sleep. Specifically,
sleep latency is the time that it takes to finish the tran-
sition from wakefulness to the first sleep stage. Sleep ef-
ficiency is the ratio of time spent asleep to the time spent
in bed. Percentage of deep sleep is the ratio of deep
sleep to the all sleep stages. To calculate these parame-
ters, we do not need to recognize every sleep stages in sleep
cycles. It is enough if three sleep categories can be dis-
tinguished: wakefulness, deep sleep (S3,54), and other sleep
stages (S1,52,REM). Consequently, the problem of sleep qual-
ity measurement is converted into how to recognize these
three sleep categories.

Based on the analysis of current PSG techniques in Sec-
tion 2, we proposed to recognize the three sleep categories
from EEG signal only. The details of our approach is pre-
sented in Section 3. Section 4 discuses the experiment re-
sults. Conclusions are given in Section 5.

2. RELATED WORKS

Now Polysomnography (PSG) technique is widely used
in hospital to monitor patients’ sleep cycles. First devel-
oped in 1960s [15], this method, also known as sleep scoring,
has become a golden standard in sleep studies. While users
are sleeping, three physiological signals are monitored: Elec-
troencephalography (EEG), Electrooculography (EOG), and
Electromyography (EMG). Based on the analysis of these
three signals, six sleep stages can be recognized by human
expert: wakefulness, S1, S2, S3, S4 and RAM [16]. These
stages are usually scored on 30-second epoch.

The standard PSG approach utilizes 9 sensors to moni-
tor the required signals: EEG, EOG and EMG [3]. In this
setup, users may feel uncomfortable during sleep because
so many sensors are attached on their face and scalp. To
improve the user experience, we use fewer signal channels
to recognize sleep stages. As discussed in Section 1, to cal-
culate sleep quality parameters, we just need to recognize
three categories: wakefulness, deep sleep and other stages.
On the account of the fact that EOG and EMG are mainly
used to distinguish between REM and S1, these two signals
may not contribute much in the calculation of sleep quality.
Consequently, we recognize the three sleep categories from
EEG signal only. This approach is also approved by Sleep
Doctors of Hospital.

Two nice survey papers were published about computer-
ized PSG analysis that is how to automatically recognize
sleep stages from physiological signals [12, 13]. Based on

literature, automated PSG analysis can achieve reasonable
accuracy compare to human scoring. Current automated
scoring systems can be mainly categorized into two families:
rule-based expert system and classifier-based system.

Peter Anderer et al. [2] developed an expert system to
recognize six sleep stages (W,S1,52,53,54, REM) from three
signals (EEG,EMG,EOG). A decision tree is built based on
10 linear discriminant analysis classifiers. The 80% agree-
ment between expert system scoring and human scoring
was achieved. The commercial package, BioSleep of Oxford
BioSignals Company, is a typical classifier-based system [11].
Auto regressive coefficients are extracted as feature vectors
from EEG segment, then a neural network classifier is used
to classify each EEG segment into different sleep stages. The
BioSleep package obtains reasonable results with the com-
parison of human scoring in the third-part evaluation [9].

Based on the survey in literature, most of existing works
intend to provide a service of sleep scoring for clinic applica-
tion. The main differences between our approach and these
works are that our approach is specifically designed for a
multimedia application rather than clinic one. In particu-
lar, we balance the user experience and system accuracy, a
EEG-based approach is proposed to recognize three sleep
categories.

3. EEG-BASED SLEEP QUALITY MEASURE-

MENT

To measure sleep quality, we need to recognize three sleep
stage categories: wakefulness, deep sleep, and other sleep
stages. To recognize these three sleep categories, we extract
spectral power feature from each 30-seconds EEG epoch.
LibSVM package [4] is used to build a SVM classifier to
classify each EEG epoch into one of the three categories.
Additionally, as discussed in Section 1, the transition of
sleep stages follows the trend of sleep cycles. For exam-
ple, if current epoch belongs to deep sleep, then the next
epoch probably also belongs to deep sleep. However, SVM
classifier treats each 30-second epoch independently, thus it
does not take the advantage of correlations between nearby
epochs. Consequently, we further model the sleep transition
as a Markov chain. A matrix will be learned from training
data to indicate the transition probability between different
sleep stages, as Figure 3 illustrates. Based on this matrix
the classification results are further refined. The probability
estimated by SVM classifier for each epoch is processed by
a dynamic programming algorithm.

3.1 Feature Extraction

EEG is the summation of electrical signal generated by
millions of neurons in the brain. It was first recorded by
Richard in 1875 [5], now has been widely used in PSG stud-
ies. EEG signal is usually divided into five different fre-
quency bands: delta (0.5-2 Hz), theta (2-7 Hz), alpha (8-12
Hz), beta (12-20 Hz) and fast beta (20-40 Hz). According
to previous studies, spectral powers of EEG in different fre-
quency bands highly relate to sleep stages. In particular,
some sleep stages are recognized by the presence of EEG
signal in the specific frequency band. Spectral power in spe-
cific frequency band of EEG is a well-known pattern in PSG
studies [16]. For example, deep sleep is recognized by the
present of high amplitude delta wave of EEG. One epoch
will be scored as wakefulness when alpha wave presents in



EEG. Consequently, we use spectral power extracted from
five frequency bands as the feature vector. As sleep stage is
usually scored based on 30-second epoch, feature vector is
generated for each 30-second EEG epoch.

3.2 Classification by SVM

Platt et al. [14] presented a work to convert the results of
binary SVM into posterior probabilities. Later this work is
extended to estimate multi-class SVM probabilities by com-
bining the output of multiple one-against-one binary classi-
fiers [18]. With this technique, we use a multi-class SVM
classifier to estimate P(z|F}), the probability of epoch t be-
longing to sleep stage x. F} is the feature vector extracted
from epoch t. We also define C(t,z) = P(z|F}). C(t,z) will
be used in the following section.

In SVM classification, epoch t is scored as the stage which
could maximize the probability C(¢, x), as following equation

shows: Y(t) = argmax C(t, z),
where 1 (t) is the label generated by classifier for epoch t.

3.3 Sleep Stage Transition Modeling

As SVM classifier treats each epoch independently, it does
not utilize the correlation between epochs. To take the ad-
vantage of sequential information, we model the transition
of sleep stages as a discrete time Markov chain. The effec-
tiveness of this modeling has been proved by Gibellato [6].
The property of Markov chain can be formalized in equa-
tion 1. It is also called first-order Markov assumption, the
stage of current epoch just depends on the stage of previous
epoch.

PT(Xt = Ithtfl = CL‘t717Xt72 = Tt—2y- -+, X1 = rl)

= PT(Xt = CL‘t|Xt71 = ‘thl) =Py 2y, (1)

where X; indicates the sleep stage of epoch t; P, ,z, in-
dicates the transition probability from stage x:—1 to stage
Xt.

As x has three possible stages, there are nine possible
values for P, ,z,. These nine values construct a 3 by 3
matrix which indicates the transition probability between
three stages. This matrix is learned from training data as
follows:

Count(s, j)
S0, Count(i, k)
where Count(i, j) counts the transitions from stage i to stage
j. The calculation of this matrix is also illustrated in Fig-
ure 3.

P =

3.4 Dynamic Programming for Post-processing

Based on the probability generated by SVM and the tran-
sition matrix learned from training data, a dynamic pro-
gramming (DP) algorithm is designed to score each epoch
in the way that optimum overall posterior probability can
be obtained. The subproblem of dynamic programming is
defined in Equation 2, which presents the maximum overall
probability from the first epoch to current epoch ¢, where
current epoch is scored as stage v.

(2)

L(t,v) =

max
1, HTE—1

t
{PT(X1 = X1, ,thl = xt71,Xt = U)HC(Z,XZ)

=1
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Table 1: Accuracy in 10-fold cross-validation
Recording | st7022j0 st7052j0 st7121j0 st7132j0
SVM | 88.4% 93.9% 90.9% 92.7%

Because first-order Markov assumption is hold, Equation 2
can be simplified as follows:

L(t,v) = max {L(t — 1,u)Pr(X; = v|Xi—1 = u)} C(t,v)

Thus L(t,v) can be calculated on top of L(t—1,-), and this
forms an optimal substructure for the subproblem. There-
fore, a dynamic programming algorithm can be designed to
find the optimum solution.

To eliminate the float point overflow problem, logarithm
probability is used: S(t,v) = In L(¢,v). For the first epoch,
we define S(1,v) = InC(1,v).

S(t,v) = InC(1,v) t=1
Y07 maxu{S(t—1,u) +In Py} +InC(t,v) t>1

In backtracing, variable a(t,v) is defined to record the opti-
mum sleep stage of previous epoch.

a(t,v) = argmax{S(t — 1,u) + In P,y + In C(¢,v)}

The process of backtracing is shown in the following for-

mulation:
o) = {

where ¢ is the refined classification labels which result in the
maximum overall posterior probability.

alt+1,6(t+1))
arg max, S(n, v)

t<mn
t=n

4. EVALUATIONS

The automated sleep quality measurement consists of two
phases. First, SVM classifier categorizes EEG epoch into
one of three classes: wakefulness, deep sleep, and other sleep
stages. Second, a dynamic programming algorithm is used
to refine the results of SVM by utilizing the sequential in-
formation. Two experiments are respectively conducted to
evaluate the classifier and the post-process algorithm.

Experiments are conducted based on the Sleep EDF Database,

which is selected from the PhysioBank that is a large achieve
of digital recording for biomedical research community [7].
Four recordings which were obtained from healthy subjects
in the hospital are used. Three signals (EEG, EOG and
EMG) were monitored during night with good signal qual-
ity. Only the EEG channel (Fpz-Cz) is utilized in our ex-
periment. This data set is annotated by human expert ac-
cording to PSG standard [15]. Human annotation is used as
the ground truth in our experiments.

4.1 Sleep Stage Classification

In the first experiment, we evaluate the accuracy of SVM
classifier. Four sleep recordings of Sleep EDF Database are
divided into 30-second epochs, and 3874 epochs are gener-
ated in total. The spectral power feature is extracted from
each epoch. 10-fold cross-validation is conducted based on
the feature vectors of each recording. The classifier achieves
the average accuracy up to 93.9%, as described in Table 1.

4.2 Post Processing

In the second experiment, we evaluate the performance
of DP algorithm. As DP algorithm utilizes sequential infor-
mation, it processes on continuous epochs. Consequently,



Table 2: Accuracy in experiment 2

Recording | st7022j0 st7052j0 st7121j0  st7132j0
SVM 87.5% 92.7% 93.4% 94.2%
SVM+DP 89.3% 95.8% 96.8% 99.3%

each recording is divided into two continuous parts, one for
training and one for testing. The first 400 epochs of each
recording are used to train the SVM model and learn the
transition matrix. The rest epochs are testing data. The
experiment conducted on one recording is demonstrated in
Figure 3. Based on the experiment results showed in Ta-
ble 2, DP algorithm stably improves the accuracy in each
recording. Comparing the sleep cycle generated by classifier
and DP algorithm, in spite of the improvement in accuracy,
DP algorithm also generates a more smooth sleep cycle than
the SVM classifier, as Figure 3 shows.
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Figure 3: Experiment over the recording of st7052j0

S. CONCLUSIONS

In this paper, we discussed the concept of a domain spe-
cific music recommendation system, which automatically rec-
ommends music for users according to their sleep quality.
One important problem in the proposed recommendation
system is how to automatically monitor users’ sleep qual-
ity at night. To address this problem, we first investigate
sleep physiology and traditional PSG approach in literature.
Considering that standard PSG system may make users feel
uncomfortable, we specifically design an approach to rec-
ognize three sleep categories from EEG signal only. Then
three parameters, sleep latency, sleep efficiency and percent-
age of deep sleep, can be calculated to measure sleep quality.
The experiment results demonstrates that our approach can
achieve high accuracy though only the EEG channel is used.
These results motivate us to further develop the rest of com-
ponents in the music recommendation system and evaluate
its full functions in the future.
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