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ABSTRACT 
 
This paper presents a new version of our violin music transcriber 
[1] to support personalized learning. The proposed method is 
designed to detect duo-pitch (two strings being bowed at the same 
time) from real-world violin audio signals recorded in a home 
environment. Our method uses a semitone band spectrogram, a 
signal spectral representation with direct musical relevance. We 
exploit constraints of violin sound to improve the transcription 
performance and speed in comparison with existing methods. We 
have carried out rigorous evaluations using (a) single pitch notes 
and duo-phonic pitch samples within the violin’s playing range 
(G3-B6), and (b) music excerpts. For pitch and duo-pitch samples 
our method can achieve a transcription precision score of 93.1% 
and recall score of 96.7% respectively. For music excerpts, an 
average of 95% of all notes could be found (recall), and 93% of 
notes transcribed correctly (precision). 

 

1. INTRODUCTION 
 
Automatic transcription of music refers to the automatic analysis 
and extraction of parameters from a music signal that would 
sufficiently describe it. Despite attempts dating back to the 1970s 
[2, 3] and recent progresses, it remains a challenging research 
problem. Its nontrivial nature is reflected in the variety of 
proposed methods, ranging from techniques emphasizing 
computation efficiency to those emulating theoretical models of 
human music perception. Recent techniques include Kashino’s 
integration of psychoacoustics processing with the Bayesian 
probability network [4], and Martin’s blackboard architecture 
system utilizing musical rules to transcribe four-voice piano 
compositions [5]. Another system that imposes some constraints is 
Goto’s partial transcription of melody and bass line [6]. Klapuri, 
who has actively contributed to music transcription [7, 8], recently 
proposed a method transcribing pitched notes without restricting 
the original signal by modeling note events, silence and 
musicology [9]. 
 
Systems with more significant success typically involve 
techniques that incorporate some constraints; hence, the challenge 
is to build a system where restrictions, if any, make perfect 
‘musical’ sense. For our intended applications in personalized 
violin education [1], it would be sufficient if the transcriber can 
extract the pitches and other relevant audio features specific to the 

targeted instrument. This reasoning has motivated our current 
work on violin music transcription. The violin has been chosen 
because it is the most common instrument used in classical music 
of various forms. It is also the second most popular solo 
instrument after the piano for music learners. It is commonly 
recognized that violin is much harder than piano to start with and 
it may take a beginning violin learner years to simply produce the 
correct pitch. 
 
This paper presents a significantly improved version of our earlier 
transcriber which works only for monophonic violin signal [1]. 
The proposed transcriber works now for the entire playing range 
of the violin (G3-B6), and is capable of duo phonic transcription – 
the maximum music theoretical polyphony for the violin [10]. 
Sections 2 detail our transcription system. Section 3 presents our 
evaluation results. We conclude with a summary of this work and 
possible future improvements in Section 4. 
 

2. SYSTEM DESCRIPTION 
 
The proposed violin transcriber has two main building blocks, 
namely note segmentation detection and pitch estimation (see 
Figure 1). 

 
Figure 1: block diagram of proposed system 
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We have relaxed the requirement of system complexity in order to 
overcome an important limitation of our earlier system: In 
addition to a fairly low time resolution determined by the analysis 
window length, our earlier system could not be easily scaled up to 
transcribe duo-pitch violin sound. To solve this problem, we 
perform a STFT with shorter fixed length FFT (2048 PCM 
samples) and 75% overlap. This is followed by the creation of a 
note spectrogram via summation of relevant frequency 
components in a semitone band spectrogram. Initial note 
segmentation onset detection is carried out by means of an inverse 
autocorrelation function of adjacent frames note spectrograms. We 
then use an adaptive window length determined by subsequent 
pairs of note boundary points for pitch estimation through note 
spectrogram. In order to assure note detection in cases such as two 
fast consecutive notes with the same pitch, a step to refine note 
segmentation is carried out before the note information is given 
out. Note information includes note pitch, note start time, note 
duration, and note strength. 
 
2.1. Semitone Band and Note Spectrogram Creation 
 
Fast Fourier Transform (FFT) is first performed to convert the 
time domain signals into a frequency domain representation. The 
linear frequency representation is then mapped to an equal 
temperament western musical scale to create a semitone band 
spectrogram, which models the human perception of pitch, [11, 1]. 
 
In a semitone band spectrum, the second to the fifth harmonics lie 
in the semitone bands 12, 19, 24 and 28 semitones away from the 
fundamental. Denoting Z(n) as the semitone band spectrum, A[n] 
is the estimated amplitude level of a musical note with semitone 
index n. In our earlier system [1], A[n] was obtained by adding up 
the estimated amplitude levels of harmonics which fall on specific 
semitone indexes n+k where k = 0, 12, 19, 24 and 28: 
 

∑ += ][][ knZnA                          (1) 

 
One of the problems of above method is that it can cause sub-
harmonics of the signals to be amplified. To mitigate the problem, 
we carry out harmonic summation using the following expression 
[11]: 
 

)][],[min(][ ∑ += knZnZnA α         (2) 

 
In the expression, α ensures that the power of the harmonics 
added does not exceed the power at the fundamental by more than 
a factor of α. We choose α = 5 for our method because this value 
seems to give the best transcription performance. By replacing (1) 
with (2), we can improve our transcription performance by 7%. 
Repeating the above operation on musical notes ranging from G3 
to B6, we map the semitone band spectrogram to a note 
spectrogram that shows the distribution of amplitude levels for 
each note. We have chosen the range because of the following: G3 
is the lowest note that our pitch detector would need to detect. All 
violins are expected to have a frequency range of at least three 
octaves where the ‘practical’ pitch range reaches G6 [12]. Hence, 
it is sufficient for the range of our note spectrogram to be set at 
slightly more than three octaves for onset and pitch detection. 
 

2.2. Note-level segmentation using Note Spectrum 
Inverse Correlation 
 
Note level segmentation is very much related with onset detection 
since note onsets define the start time of a new musical event. 
While onsets may include changes in expressive features and 
timbre, for our purpose, an onset is defined in this paper as the 
time instance when, from a current note, there is (a) a pitch 
change to the next note, or (b) a transition to a subsequent note of 
the same pitch. 
 
Previous onset detection techniques include the use of high 
frequency content, spectral difference and phase deviation 
amongst many others. An extensive coverage is provided in [13]. 
Correlation coefficients, numbers between –1.0 and 1.0, give us a 
measure statistically of how strong pairs of variables are related. 
The larger the coefficient is, the greater the variables are related. 
Our experiments have shown that calculating the correlation 
coefficient between subsequent frames of a note spectrogram is 
reliable for detecting pitch changes. This is extremely useful for 
the violin because unlike instruments such as the piano or guitar, 
onsets may occur without strong energy changes. 
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Figure 2: analysis of a music excerpt showing (top) note 

spectrogram as derived from semitone spectrogram, and (bottom) 
inverse correlation of note spectrum and resulting onset instants 

The principle of our onset detector is illustrated in Figure 2. A 
global threshold is set where onsets are determined to have 
occurred when the inverse correlation coefficients exceed the 
threshold. In regions where several successive coefficients exceed 
the threshold, the first point is taken as the onset point. The 
processed audio signal is segmented based on the onset points 
where pitch estimation is performed on each segment. 

 
2.3. Pitch Estimation 
 
Violin monophonic transcription is not sufficient as the violin is 
capable of producing two notes simultaneously [10]. To perform 
duo-phonic detection, we extended the semitone band spectrum 
pitch detection algorithm described in [1]. If a detected dominant 



pitch P1 with P1 = max(A[n]) is reduced, a second pitch P2, if 
present, would now have the maximum A[n], and thus could be 
identified. This is similar to the principle used in [9], where a 
detected sound is removed from the mixture, and pitch detection 
performed on the residue. In our system, we reduce the estimated 
amplitude levels of the harmonics (semitone band indexes) that 
form P1 to one-fifth its original value. This is the best reduction 
level based on our experiments. At this level, pitch P2, if present, 
may be detected on the residue semitone band spectrum. 
 
Octave errors occur where instead of the actual pitch, a pitch an 
octave away is detected. Traditional spectral-location based 
approaches are prone to pitch halving, and spectral-interval based 
approaches to errors in pitch doubling [8]. Through our improved 
harmonic summation, we have also implemented a reliable octave 
error detector. With α = 5, if a pitch P is detected and 2*A[P-12] 
> A[P], we can conclude an octave error has occurred, and we set 
P to be one octave lower i.e., P = P-12. 
 
2.4. Refined Note segmentation 
 
For violin sound, onset detection, especially the detection of 
subsequently played notes of the same pitch, is significantly more 
difficult compared to other instruments (e.g., percussion 
instruments). This is because notes amplitude related attributes 
change significantly from a soft to a relatively hard performing 
style. 
 
To tackle this problem, we use three criteria for onset detection: 

1. There is a pitch change.  
2. The amplitude tops a predetermined loudness threshold.  

3. There is an amplitude valley beyond a predetermined 
threshold.  

If any of the criteria is fulfilled, we consider the candidate valid 
for an onset. 
 
While the onset detector in Section 2.2 could detect pitch changes 
(criteria 1) reliably, a step of refined note segmentation is required 
to check criteria 2 and 3. The last criterion, in particular, is 
targeted at finding soft onsets that occur when subsequent notes of 
the same pitch are played. An improvement in this paper over [1] 
is the evaluation of criteria 2 and 3 with direct relevance to human 
pitch perception by expressing the total estimate amplitude level 
of a note A[n] in a decibel scale.  
 
From experimentation, for criteria 2, we have set loudness 
threshold to 10dB, and for criteria 3, we request amplitude valley 
to be at least 10dB. These levels work well across a wide variety 
of our test musical excerpts.  
 

3. EVALUATION 
 
Evaluation comprises two phases; we test the system’s 
transcription ability with: (a) monophonic and duo-phonic violin 
samples, and (b) solo violin excerpts. 
 
3.1. Monophonic and Duo-Phonic Samples 
 
The test data consists of all possible monophonic and duo phonic 
violin sound samples from G3 to B6. We evaluated every possible 
combination up to an interval of 16 semitones, which is the 
maximum interval a typical violin player can play given the 
fingers’ physical stretching limitations. Overall, 

 
P . I 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 4 0 4 1

P .I D 4 D # 4 E 4 F 4 F # 4 G 4 G # 4 A 4 A # 4 B 4 C 5 C # 5 D 5 D # 5 E 5 F 5 F # 5 G 5 G # 5 A 5 A # 5 B 5 C 6 C # 6 D 6 D # 6 E 6 F 6 F # 6 G 6 G # 6 A 6 A # 6 B 6
* G 3 * 0 * 0 0 0 * * *

2 G # 3 0 * 0 0 0 0 0 0 0 0
3 A 3 0 * * * 0 * * 0 * * 0
4 A # 4 0 0 * 0 0 * 0 0 * 0 * *
5 B 3 0 * 0 * 0 * * * 0 * 0 * *
6 C 4 * * * * * * * * * * * * * *
7 C # 4 0 * * * 0 * 0 * * * * * * 0 *
8 D 4 * * * * * * 0 * * * * * * * *
9 D # 4 * * * * * * * * * * * * * * *

1 0 E 4 0 * * * * * * * * * * 0 * * *
1 1 F 4 * * * * * 0 * * * * 0 0 0 * *
1 2 F # 4 * 0 0 * * * * * * * 0 * * * *
1 3 G 4 * * * 0 * * * * * * * * * * *
1 4 G # 4 * * * 0 * * * * * * * * * 0 *
1 5 A 4 * * 0 * * * * * * * * * * * *
1 6 A # 4 * * 0 * 0 * * * * * * 0 * 0 *
1 7 B 4 * * * * * * * * * * * * 0 * *
1 8 C 5 * * 0 * * * * * * * * * * 0 *
1 9 C # 5 * 0 0 0 * * * * * * * 0 * * 0
2 0 D 5 * * * * * * * * * * * * * * 0
2 1 D # 5 * * * * * * * * * * * * * 0 *
2 2 E 5 * * * * * * * * * * * * * * *
2 3 F 5 * * * * * * * * * * * * * * *
2 4 F # 5 * * * * 0 * * * * * * * * * *
2 5 G 5 * * * * * * * * * * * * * * *
2 6 G # 5 0 * * * 0 * * * * * * * 0 0
2 7 A 5 P . I  =  P it c h  In d e x * * * * * * * * * * * 0 *
2 8 A # 5 * = C o r r e c t ly  D e t e c te d * * * * * * * * * * * 0
2 9 B 5 0 = M is t a k e  in  d e t e c t io n * * * * * * * * * * *
3 0 C 6 N o t C o n s id e r e d * * * * * 0 * * * * *
3 1 C # 6 * * * 0 * * * * * *
3 2 D 6 0 0 * 0 * 0 * * *
3 3 D # 6 * 0 * * * 0 * 0
3 4 E 6 * * * * * *
3 5 F 6 * * * * * *
3 6 F # 6 * 0 * * *
3 7 G 6 * * * 0  

Figure 3: performance of proposed system with pitch samples



our system can achieve a precision score of 93.1% and recall 
score of 96.7%. The test results are summarized in Figure 3. 
 
3.2. Short Music Excerpts 
 
The test data consists of short excerpts of solo violin pieces. The 
metrics of evaluation are: 
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Norig represents the numbers of notes to be detected in the music 
excerpt, and Nd the number of notes detected by the system. Out 
of the notes detected, Nc represents the notes correctly detected. 
Figure 4 excerpts our results, where an average of 95% of all 
notes were found (recall), and 93% of notes transcribed correctly 
(precision). 
 

Precision Recall

(% ) (% )
Traditional, Twinkle Twinkle Little Star 

(Arranged for solo violin) Single Pitch 42 40 40 2 0 100 95.2
Beethoven, Symphony No. 9 in D minor, Op. 
125, 4th Movement (Arranged for solo violin) Single Pitch 62 56 56 6 0 100 90.3

Copland’s Shaker Melody Single Pitch 87 92 79 8 13 85.7 90.1

Nc Nu NwTitle of Music Excerpt Pitch Combination Norig Nd

J.S Bach, Partita No. 3 in E, BWV 1006, 4- 
Minuet I

Single Pitch & 
Double Pitch 48 49 47 1 2 95.9 97.9

J.S Bach, Partita No. 3 in E, BWV 1006, 3- 
Gavotte en eondeau

Single Pitch & 
Double Pitch 53 56 53 0 3 94.6 100

Beethoven, Symphony No. 9 in D minor, Op. 
125, 4th Movement (Arranged for solo violin 

with double stop improvising)
Single Pitch & 
Double Pitch 41 44 38 3 6 86.4 92.7

Traditional, Twinkle Twinkle Little Star 
(Arranged for solo violin with double stop 

improvising)
Single Pitch & 
Double Pitch 67 72 66 1 6 91.2 98.5

Figure 4: performance of proposed system with short music 
excerpts 

 
4. CONCLUSION AND FUTURE WORK 

 
We have presented a new violin sound transcriber designed for 
music education applications. It utilizes a semitone band 
spectrogram to perform violin transcription with high accuracy 
and speed. Such a signal representation is not only musically 
relevant; it also accounts for the fact that while string sounds 
belong to the class of harmonic sounds, higher-order partials 
suffer from the inharmonicity and tend to shift upwards slightly in 
frequency [8]. 
 
The system can be improved in several ways. First, its detection 
accuracy could be further enhanced. Second, the current system 
does not consider octave detection; hence, an immediate extension 
is for it to perform duo-phonic octave transcription. Another 
improvement is to extend the method to detect duo phonic violin 
vibrato. Finally, violin music playing is limited not only by 
instrument characteristics, but also human physical limitations. 
For example, certain note jumps may not be physically possible. 
Hence, incorporating such knowledge into a transcription system 
could significantly enhance its accuracy. 
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