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ABSTRACT
Dynamic voltage/frequency scheduling algorithms for multimedia
applications have recently been a subject of intensive research. Many
of these algorithms use control-theoretic feedback techniques to
predict the future execution demand of an application based on the
demand in the recent past. Such techniques suffer from two ma-
jor disadvantages: (i) they are computationally expensive, and (ii)
it is difficult to give performance or quality-of-service guarantees
based on these techniques (since the predictions can occasionally
turn out to be incorrect). To address these shortcomings, in this
paper we propose a completely new approach for dynamic volt-
age and frequency scaling. Our technique is based on an offline
bitstream analysis of multimedia files. Based on this analysis, we
insert metadata information describing the computational demand
that will be generated when decoding the file. Such bitstream anal-
ysis and metadata insertion can be done when the multimedia file is
being downloaded into a portable device from a desktop computer.
In this paper we illustrate this technique using the MPEG-2 decoder
application. We show that the amount of metadata that needs to be
inserted is a very small fraction of the total size of the video clip
and it can lead to significant energy savings. The metadata inserted
will typically consist of the frequency value at which the processor
needs to be run at different points in time during the decoding pro-
cess. Lastly, in contrast to runtime prediction-based techniques, our
scheme can be used to provide performance and quality-of-service
guarantees and at the same time avoids any runtime computation
overhead.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-purpose and appli-
cation-based systems—Real-time and embedded systems

General Terms
Algorithms, Performance, Design
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DVS, Video decoding, Metadata, Bitstream analysis

1. INTRODUCTION
Energy efficiency is today one of the most critical issues in the

design of battery-powered portable devices such as mobile phones,
PDAs and audio/video players. The predominant workload run-
ning on most of these devices are now generated by multimedia
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Figure 1: Video clip with metadata information.

processing applications (e.g. audio/video decoders). This has re-
sulted in a considerable interest in power management schemes for
portable devices running multimedia applications [3, 5, 6, 11, 12].
Towards this, two main directions have evolved over the last couple
of years—dynamic voltage scaling (DVS) [4,7] and dynamic power
management (DPM) [1]. DVS relies on changing the frequency and
voltage of the processor at runtime to match the workload demand
generated by an application. On the other hand, DPM-based tech-
niques rely on switching off parts of a device (processor, hard disk,
display, etc.) at runtime, based on their usage.

Typically, multimedia applications exhibit a high degree of data-
dependent variability in their execution requirements. For example,
the ratio of the maximum and the average workload generated by
an MPEG decoder application can be as high as a factor of 10. In
addition, there might also be other types of variability such as the
variability in the input-output rates of an application (e.g. the vari-
able length decoding task in an MPEG decoder consumes a variable
number of bits corresponding to each compressed macroblock that
is generated). In the case of multimedia applications, many DVS-
based techniques exploit this variability to scale the voltage and
frequency of the processor at runtime to match the changing work-
load. Towards this, two broad classes of techniques have evolved.
The first class relies on control-theoretic feedback techniques [9]
to predict the future workload, based on the workload history in
the recent past. The main disadvantages of this class of techniques
are that (i) they are computationally expensive and are difficult to
implement (especially considering that the voltage of the proces-
sor needs to be frequently changed at runtime), (ii) it is difficult to
give performance and quality-of-service guarantees based on these
techniques (because occasionally the predictions might be wrong).
The second class of techniques attempt to statically characterize
the bounds on the variability and use these bounds at runtime. Al-
though this allows for quality-of-service guarantees, usually such
static characterizations are overly pessimistic and do not lead to
useful energy savings. There has been a significant amount of
work on both these approaches, both, in the embedded systems, as
well as in the multimedia communities and the disadvantages listed
above are well recognized. However, the commercial availability of
voltage/frequency-scalable processors (and the increasing concern
about battery lifetime of portable devices) implies that research on
DVS and DPM techniques will continue in the future.

Our Contribution: In this paper we propose a completely new ap-
proach for DVS in the context of multimedia applications. In what
follows, we will only be concerned with video decoding. However,



the proposed scheme is very general and can be applied to both,
other types of video, as well as audio processing applications. The
scheme relies on an offline bitstream analysis of a video clip to pre-
dict the workload that will be generated while decoding the clip.
Based on this analysis, metadata information is inserted into the
video clip or is saved as a separate file. At runtime, the decoder
reads this metadata information and controls (or scales) the voltage
and frequency of the processor. The metadata information will typ-
ically consist of the frequency at which the processor needs to be
run at any point in time. However, the metadata might also con-
sist of workload information (such as processor cycle demands),
from which the required processor frequency is computed at run-
time. The amount of metadata that needs to be inserted depends on
the granularity, or how often the frequency of the processor needs
to be changed. If the amount of metadata allowed is large, then
potentially higher amounts of energy can be saved.

Figure 1 illustrates the key idea behind our scheme. It shows a
video clip along with the inserted metadata. This metadata com-
prises of the frequency with which the processor needs to be run—
frequency f1 for the segment of the video clip s1, frequency f2 for
the segment of the clip s2, and so on. We assume that the decoder
is specially designed to read the metadata information in addition
to the original video data. It reads this metadata and changes the
processor frequency at appropriate times. With the availability of
software-controlled voltage/frequency-scalable processors, this ap-
proach is certainly feasible today.

The key point to note here is that all the previously known tech-
niques predict at runtime the processor frequency fi with which
the segment si needs to be decoded without looking into si. In
contrast to such techniques, we perform an offline analysis of the
compressed bitstream corresponding to si and insert the metadata
fi. The runtime system simply reads fi and sets the processor fre-
quency to this value. Also, note that the metadata information need
not be equally spaced out within the video clip. If the computa-
tional workload of a clip is highly variable and irregular, then this
might require more metadata. Whereas certain portions of the clip
might not exhibit any variation, in which case it might suffice to run
the processor at a constant frequency (and hence only this constant
frequency value needs to be inserted once). The inserted metadata
information might consist of frequency as well as voltage values,
depending on the type of the underlying processor.

Main Challenge: The main challenge in implementing the pro-
posed scheme lies in the metadata computation process. Clearly,
the exact values of the metadata inserted will depend on the archi-
tecture of the processor (e.g. its instruction set architecture, volt-
age/frequency range and the steps in which they can be changed)
and also on the decoder application running on this processor.

One possibility is to insert this metadata information directly
during the encoding process. However, this would assume that the
details of the decoder and also the processor on which the decoder
would run are already known at the time of encoding. It would
also amount to generating video clips which can only be played on
certain devices or on devices manufactured by the same company,
which are all based on the same or on similar processor architec-
tures. Although this is a feasible option (e.g. the Windows Media
format is only targeted towards Windows platforms), it is clearly
very restrictive.

We therefore propose a scheme where the metadata information
is directly inserted into a video clip based on the architecture of
the portable device. Towards this, we assume the following sce-
nario. To download a video file into such a device, it would be
connected to a desktop computer on which an application program
specialized for this device would run. This program would perform

a bitstream analysis of the video file being downloaded, calculate
the appropriate metadata information and insert this information
into the file. Since the program is specialized for this device, the
metadata computed is specific to its processor architecture and also
to the decoder application running on the device. Each such de-
vice would therefore be shipped with an application program (that
would run on the desktop computer) that is specific to the device.
This scheme has two main advantages: (i) It is flexible, i.e. the
portable device can play video files encoded in standard formats
such as MPEG-2 and the metadata-inserted files are not visible to
the external world; they only exist inside the portable device. (ii)
The bitstream analysis process, which might be involved, can run
on a desktop computer and not on the portable device, which would
typically be resource constrained.

Metadata Computation: The only remaining question that needs
to be answered is, given a video file, how is the metadata exactly
computed? What follows in this paper will mostly be concerned
with answering this question.

The most straightforward answer to this question is, simulate the
decoding of the given video file on a software model of the proces-
sor’s architecture. This would result in a trace of the file’s processor
cycle requirements, e.g. the number of processor cycles required to
decode each macroblock of the video file. From this trace, the clock
frequency with which the processor should be run while decoding
any segment of the file can be computed. The computed frequen-
cies will constitute the metadata information to be inserted into the
video file. Towards this, it would be possible to use processor in-
struction set simulators like SimpleScalar [2] to compute the trace
of processor cycle requirements of a video file. However, a cycle-
accurate simulation of the execution of a processor is extremely
expensive in terms of the simulation time involved. For example,
simulating the decoding of a 30 seconds long MPEG-2 video clip
requires more than half an hour using SimpleScalar. Hence, this
scheme is not feasible if the metadata computation needs to be
done while downloading a video file from a desktop computer into
a portable device.

We therefore propose an alternative scheme where we do not
simulate the execution/decoding of the video clip. Instead we per-
form a bitstream analysis to predict the processor cycle require-
ments of each macroblock. We would again like to point out that
in contrast to this, runtime prediction schemes predict the proces-
sor cycle requirement of a video segment without looking into the
segment. Our scheme allows for the bitstream analysis because it is
done offline (i.e. not at runtime) while the video file is being down-
loaded into the device. The prediction scheme we propose is based
on classifying the video decoding tasks into two groups—those that
are CPU-bound, such as motion compensation, and others which
are memory-bound such as those responsible for dithering. The
processor cycle requirements of memory-bound tasks are almost
constant and are hence easy to predict. Hence, we shall mostly
be concerned with predicting the processor cycle requirements of
CPU-bound tasks. In this paper we will use MPEG-2 for the sake
of illustration.

2. MPEG-2 BITSTREAM ANALYSIS
An MPEG-2 video sequence is made up of a number of frames,

where each frame contains several slices. Each slice in turn con-
sists of a number of macroblocks (MBs). Decoding an MPEG-
2 video can therefore be considered as decoding a sequence of
MBs. This involves executing the following tasks for each MB:
variable length decoding (VLD), inverse discrete cosine transfor-
mation (IDCT) and motion compensation (MC). Other tasks, such
as inverse quantization (IQ) involves a negligible amount of com-



putational workload and hence we ignore them for the purpose of
our analysis. The analysis we present here can be used for volt-
age/frequency scaling at the MB granularity (clearly, the same anal-
ysis can be used at the slice or frame granularity as well). Given
a sequence of MBs, in this section we describe how to predict
the processor cycle requirements corresponding to the tasks VLD,
IDCT and MC for each of these MBs. We compare our predicted
results with those obtained from simulating the execution of these
tasks using the SimpleScalar [2] instruction set simulator (with the
Sim-Profile configuration), with the same sequence of MBs as in-
put. Since we envisage the decoder to run on a general-purpose
processor (such as those found on a PDA), we choose our proces-
sor to be a RISC processor (similar to a MIPS3000) without any
MPEG-specific instructions. We use Test Model 5 (TM5) [8] as our
MPEG-2 decoder application. Although not an optimized decoder,
it is acceptable for our analysis since all MPEG-2 decoders have a
similar code structure. We experimented with five different video
clips, encoded with a 4M/s bitrate: (i) Flwr (has moderate motion),
(ii) Tennis (still background with moving foreground), (iii) Susi
(very low motion), (iv) V700 (still image) and (v) Football (very
fast motion).

VLD Task: The IDCT coefficients in MPEG-2 are encoded us-
ing variable length encoding, which involves Run-Length Coding
followed by Huffman Coding. Some run-length codes are coded
using longer Huffman codes compared to the others. The number
of processor cycles required for the Huffman decoding depends on
the length of the Huffman codes used. Therefore, the number of
processor cycles required by the VLD task for any input MB is ex-
pected to depend on the number of non-zero IDCT coefficients in
it. Our simulations confirm that this is indeed the case and the re-
lationship is a linear one (see Figure 2). Figures 2(a) - (e) show the
plot of the number of processor cycles required by the VLD task
for different number of non-zero IDCT coefficients in a MB. Note
that each of these plots consist of two distinct linear bands, where
the upper band results from large MBs which involve extra I/O op-
erations. We neglect these MBs, since they constitute less than 1%
of the total number of MBs in a clip (this error may be reduced if
necessary [10]). We fit a straight line on the lower band using least
squares fitting.

The resulting function serves as an estimate of the number of
processor cycles required by the VLD task for any MB: nvld =
a × ncoeff + b. Here, nvld is the estimated number of processor
cycles, ncoeff is the number of non-zero coefficients in the MB and
a and b are constants which depend on the processor architecture
and the VLD code. From our experiments we determined the val-
ues of a and b to be 140 and 3000 respectively for our setup. The
prediction error (in processor cycles) resulting from this function is
shown in Figure 2(f) for the Flwr video clip. Other clips have sim-
ilar error distributions. For around 36% of the MBs, the processor
cycle requirements were predicted with an error of less than 2%.
For all MBs, the prediction error was less than 10% (in the range
of −1000 to +2000 processor cycles).

MC Task: MBs constituting an MPEG-2 clip may be classified
into three categories: those involving no motion compensation (I-
type), those involving only forward motion compensation (P-type)
and those involving both forward and backward motion compensa-
tion (B-type). Therefore, the MC task for P-type MBs incur about
half the number of processor cycles compared to B-type MBs and
I-type MBs do not incur any computational workload.

Figures 3(a) - (e) show the processor cycle distribution for the
MC task for each of our five MPEG-2 video clips (obtained from
SimpleScalar simulations). As expected, with the exception of the
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Figure 2: Workload generated by the VLD task.
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Figure 3: Workload generated by the MC task.

V700 clip (still image), the number of processor cycles for all of
these clips are distributed into three distinct clusters. The first
(around 0 processor cycles) correspond to the I-type MBs, the sec-
ond (around 3000 - 7000 cycles) correspond to the P-type MBs,
and finally the third cluster (around 9000 - 17000 cycles) corre-
spond to the B-type MBs. In the V700 clip, almost all the MBs
use the same type of motion compensation, thereby resulting in a
single cluster (Figure 3(d)).

Since the processor cycle distribution within each cluster is rea-
sonably large, a prediction solely based on MB type will not be ac-
curate enough. The variability within each cluster results from fac-
tors like whether the MC task is frame- or field-based and whether
the motion vectors are half- or one-pixel accurate. We account for
these as follows.

The code for the MC task may be considered to be composed
of a number of subroutines, each of which is essentially the same
function, but called with different parameters. Let us denote this
function by F . The number of processor cycles required to exe-
cute F depends only on its input parameters. Depending on the
input MB, these parameters include whether (i) Y1 component’s

1Each frame in MPEG-2 is represented in the YUV color space.
See the ISO MPEG-2 standard for details.
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Figure 4: Workload generated by the IDCT task.

x-dimension is HALF-PIXEL, (ii) Y component’s y-dimension is
HALF-PIXEL, (iii) U or V component’s x-dimension is HALF-
PIXEL, (iv) U or V component’s y-dimension is HALF-PIXEL,
(v) forward or backward motion compensation is required, and (vi)
the motion compensation window size is 16 × 8 or 16 × 16. Dif-
ferent MBs call F different number of times and with different val-
ues of the above boolean parameters. For example, a P-type non-
progressively coded MB, which uses frame-based motion compen-
sation, will callF twice. Both of these calls are with the same list of
parameters (0, 0, 0, 0, 1, 16×8). Similarly, a B-type, progressively
coded MB, which uses field-based motion compensation, will also
call F twice, but with the parameters (1, 1, 1, 1, 1, 16 × 16) and
(1, 1, 1, 1, 0, 16 × 16).

Based on this observation, we predict the processor cycle re-
quirement of the MC task by first simulating the execution of F
with all possible input parameter values. Since there are six boolean
parameters, they result in a total of 26 = 64 possible input values.
The processor cycle requirement of F corresponding to each of
these 64 possible inputs is stored in a table. Now, given a sequence
of MBs, by parsing each MB, we determine the number of times
F is called and with what input parameter values. Using these and
our precomputed table of cycle requirements we are able to predict
the cycle requirements for each of the MBs. The error distribution
resulting from this prediction scheme is shown in Figure 3(e). For
approximately 40% of the MBs the error incurred is less than 2%.
Further, none of the MBs incur an error of more than 4%.
IDCT Task: Normally, each MB in MPEG-2 contains four Y blocks,
one U block and one V block. Each of these blocks are of 8 × 8
pixels size. Hence, the input data size to the IDCT task is the same
for all MBs, which results in the same computational workload be-
ing incurred for all MBs. However, an optimized implementation
of the IDCT task takes into account that several IDCT coefficients
might be zero and exploits this fact to save some computation. In
spite of this, it is a reasonably good approximation to assume that
the number of processor cycles incurred by the IDCT task for any
MB is a constant. This is once again confirmed by our experi-
mental results shown in Figures 4(a) - (e). Note that the variation
around the processor cycle requirement of 2 × 104 cycles results
from the optimized IDCT implementation. From these results we
select 2 × 104 + 4000 as the processor cycle requirement for any
macroblock (where 4000 cycles is the “safety margin”). The error
distribution resulting from this prediction is shown in Figure 4(f).
Around 61% of the MBs incur an error of less than 2% and 91% of
the MBs incur an error of less than 10%.

Total Cycle Requirements: The total number of processor cycles
required to decode a MB may be predicted by summing up the
predicted values for the VLD, MC and IDCT tasks and adding a
safety margin of 500 cycles (this value may again be obtained from
simulations and would depend on the processor architecture and the
decoder code).

3. CONCLUDING REMARKS
To evaluate the effectiveness of our scheme for dynamic fre-

quency scaling, we conducted three sets of experiments: (i) with-
out processor frequency scaling, (ii) using frequency scaling based
on our proposed scheme, and (iii) frequency scaling based on a
moving history-based workload prediction. We assumed that the
clock frequency of our processor may be scaled in the range of 200
- 500MHz, in steps of 50MHz (which corresponds to processors
found in high-end PDAs). At any point in time, the processor has
to run at a frequency such that it can sustain the output frame rate of
25fps. In the absence of dynamic frequency scaling, the processor’s
frequency is determined by this output frame rate and the maximum
number of processor cycles required to process any MB. Compared
to this baseline case, our scheme achieves more than 75% energy
savings. Further, this scheme incurs at most 2.7% workload pre-
diction error, in comparison to around 12% in the case of moving
history-based prediction schemes where the cycle requirement of
a MB is predicted from the requirements of the immediately pre-
ceding MBs (at the cost of significant runtime overheads). More-
over, this error substantially increases if the prediction is done for a
group of MBs, rather than for every MB. Lastly, the amount meta-
data inserted in our scheme is less than 0.01% of the clip size when
frequency scaling is done at a half-frame interval. We skip further
details due to space constraints. The work presented here is a part
of ongoing research; in future we plan to conduct more detailed
experiments to evaluate our scheme and also compare it with other
known dynamic frequency scaling techniques.
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