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Abstract   
A novel scheme is introduced that uses a mirror and a single camera to restore the 3D 
position of a finger tip. The camera is positioned in such a way that it captures both the hand 
as well as its mirror image. The captured images are then processed to extract the contour of 
the hand. This extraction process is done using a fast algorithm that integrates Bayesian 
estimation into the traditional chain code generation algorithm. The algorithm works well 
with complex albeit fixed background. In addition, we have integrated the smoothness 
assumption into the algorithm so as to obtain a smoother hand contour thus improving the 
accuracy of our tracking process. Tolerance to noise can be improved by utilizing the 
constraints imposed by our system setting to eliminate false signals. A prototype system has 
been implemented and the performance of the 3D mouse before different backgrounds has 
been analyzed. 
 
1 Introduction 
 
Due to the increased availability of high speed 3D hardware and software on all classes of 
computer, 3D interaction is becoming more and more popular [1]. 3D applications can be 
found in domains such as medical and scientific visualization, computer-aided design, 
computer-aided education and entertainment. Compared with electromagnetic 3D input 
device such as VPL’s DataGlove [2], a 3D vision-based solution has many advantages. The 
chief advantage is that a vision-based solution frees the user from any form of physical 
attachment that may constraint his/her movement. For instance, there is no putting on/ taking 
off of data glove, the user can simply operate with his/her bare hand. Even though some 
physical devices [3,4] have tried to accomplish free hand human-computer interface, their 
high cost has inhibited widespread use. Because of this, vision-based approach has attracted 
many efforts in computer vision fields [5]-[10], but their results are currently too sensitive 
and computationally too expensive for practical applications. Many of them impose 
unacceptable constraints on the user, such as smooth or periodic movement [5], static 
supporting points (shoulder or palm) [6, 7, 9]. Some of them tried to achieve a complex 
gesture recognition system but finally degraded their system to a 3D mouse [7]-[9] because of 
the issues of reliability and computation expense. In this paper, instead of try to achieving the 
complex gesture recognition system, we address some of these issues about a 3D mouse from 
the practical user interface standpoint. Ideally, a 3D vision-based mouse solution should 
satisfy the following criteria:  
 

i.  Robustness to movement: There should be as few constraints imposed on the user’s 
hand movement as  possible. This is to ensure that the ease of usability is maintained.  

ii.  Fast pick up:  The algorithm should be able to pick up the target object any time and 
anywhere. This allows the user’s hand to move in and out of the scene just as s/he tends 
to pick up a normal 2D mouse now and then. 

iii.  Low computational cost: Fast response time is a critical factor in the design of a good 
user interface. Thus, our 3D vision-based solution should not be too computationally 
expensive. 
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iv.  Robustness to false recognition: Since no tracking algorithm can guarantee a 100% 
correct recognition rate, it is important for the algorithm to be able to recover from 
false recognition.  

v.  Low cost solution:  The solution should not be too costly to implement. In other words, 
we need to cut down on the number of hardware equipment needed to implement the 
solution. 

 
In this paper, we propose a novel scheme to address these issues. A 3D vision-based mouse is 
implemented with the help of a mirror and a single camera. Instead of using 2 cameras to 
provide the two views of an object, we position the mirror and camera in such a way that the 
reflection from the mirror provides the second image needed to restore the 3D information. 
This effectively cut down on the number of camera needed thus saving cost (criterion (v)). To 
satisfy criteria (i) - (iv), we propose an algorithm to detect hand contour before a fixed but 
complex background. Details of this algorithm is given in Section 3.  
 
 
2 Related Work 
 
Vision-based 3D mouse was mentioned several times in recent publications [5]-[10]. Many of 
them rely on strong prior knowledge about the object, such as 2D shape model [5] (Kalman 
Snakes [11]) or 3D anatomic model [6]-[9] to guide in deriving the measurement of an image. 
Strong movement models such as smooth, slow, affine or periodic properties are also used in 
their next model state prediction. Typically, these applications have the following program 
structure (see Figure 1). 
 
Figure 1 is almost a standard procedure for model-based video analysis. It provides partial 
solutions to the transient occlusion problem and is able to handle dynamic backgrounds. 
However, when it comes to applying these models in practical user interface (UI) 
applications, a number of problems surface. The first problem is the difficulty in initiating  
the model. For practical UI application, the user’s hand should be allowed to re-enter the 
scene easily. This implies that  initiation needs to be done each time the user re-enters the 
scene. Such initiation is very expensive without introducing additional constraints such as 
fixed background [6,7,9,10] or arranged initialization area [5,7]. The second problem is the 
inability to restore from false recognition. In the model-based approach, estimation of the 
image is directly computed from the previous result. If the result is false due to the inaccuracy 
of the feature measurement, lock-loss is possible. Once the lock is lost, regaining the lock is 
difficult because the initiation of the model is expensive. In [5], learning is used to prevent 
lock losing, but this only applies to those movements which are used to train the system. 
Given the fact that the false recognition in a vision-based system is inevitable and the user’s 
movement cannot be constrained too much, model-based approach is not appropriate for our 
application.  
  
3 Twins Architecture 

3.1  Gesture  
 

In place of a physical mouse, our system, Twins, allows the use of the bare hand to operate as 
a 3D mouse. This means that our system must be able to simulate typically mouse operations 
such as  moving the mouse and pushing the mouse button. The gesture used in Twins is 
described in Figure 2. The index finger is used to specify the 3D  position of the mouse while 
the thumb is used to specify the state of the mouse button. An erected thumb means that the 
button is not pressed. A bend thumb signifies the pressing of the mouse button. This gesture 
is similar to the gesture used in [7]. The next question is how we obtain the 3D position of the 
index finger accurately.  
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3.2 Twins setup 
To accurately determine the 3D position of an object, we need at least two views. Many 
stereo vision systems use two or more cameras to restore the 3D position. On the other hand, 
there are also indirect methods to  restore 3D position of an object using just one camera. 
These methods utilize shading, texture or size information [5] or 3D structure [6,7,9] as cues 
in order to estimate the depth information. However, they tend to be unreliable because the 
depth information cannot be obtained directly.  

 
In Twins, a novel method using one camera and a mirror is introduced, this is shown in 
Figure 3. A video camera is placed such that it is projecting at an angle of 45° to the mirror. 
The coordinate  system XYZ is described in Figure 3 with Y axis sticking out from the paper 
surface. In the image plane, we have two views of an object (the actual object and its image). 
In general, the camera lens may cause the image formed to be smaller than the projection of 
the object on the image plane. For this paper, we magnify the image to a particular size and 
assume the image formed can be considered as the projection of the object on the image 
plane. This assumption is true so long as the object distance is much further than the focal 
length of the camera lens. In fact, none of the vision-based user interface application ever 
takes this into consideration.  
In Figure 3, r is the real object and v is the mirror image (virtual object) of r. Their 
coordinates in the magnified image plane are (xr, yr) and (xv, yv) respectively. Let us assume 
that we also know the projection (xvc’,  yvc’) of the virtual camera VC’ which is the mirror 
image of the camera. We can now decide the 3D position of the real object using these three 
projections (images) - (xr, yr), (xv, yv) and (xvc’, yvc’). Note that the X and Y positions of  the 
real object are x and y respectively. The Z value is a little more tricky.  From the symmetric 
property of reflection, we have z = xvc’ - xv, thus we have equation (1) 
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Using a simple geometry transform, we transform the XYZ coordinate system to a more 
natural coordinate system UVW with W axis sticking out of the paper (see Figure 3). P is the 
translation vector. 
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From (1), (2) can be rewritten as: 
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In equation (3), all the variables are known except xvc’. This is because the virtual camera, 
VC’, is outside the scope of our camera. Instead, we select the origin, O, of the UVW system 
such that both O and its virtual object can be seen in the image plane. In other words, we 
know both (xr0, yr0) and (xv0, yv0). From (3), we have (4). 
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Subtracting (4) from (3), we get (5). 
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Rewriting (5), we obtain: 
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Thus, after fixing the origin, O, of the UVW coordinate system, the 3D position of an object 
can be easily restored using (6) as long as both the real object and its virtual object are 
visible. This setup helps to save hardware cost as compared to multi-camera systems, and is 
particularly important for wide user’s acceptance as computers with one camera are 
becoming common nowadays whereas multiple-camera system is still largely a specialized 
commodity.  
 
3.3  Twins Architecture 
 
3.3.1 Background and Hand Intensity Models 
Having described the setup of the Twins system, we now describe the underlying algorithm 
used by our 3D mouse application. As mentioned in Section 2,  model-based approach faces 
many problems. An alternative approach is to use background information to perform video 
segmentation. In fact, many practical work such as Pfinder [12] uses background knowledge 
to perform segmentation. Similarly, in Twins, we assume a fixed background and use prior 
background and hand intensity knowledge to perform feature measurement. The background 
and hand intensity knowledge are modeled using simple Gaussian models. To learn the 
background models, Twins require an initial startup time of n continuous frames to build the 
Gaussian models:   
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where i is the intensity vector expressed in RGB space.  
Based on the background Gaussian models, a single Gaussian model describing the hand 
intensity is  built up by placing the hand before the learned background. Hand pixel 
segmentation is achieved by: 

{f x y
i x y if m x y i x y x y

if m x y i x y x y
( , )
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After the segmentation, the Guassian model for all hand pixels  can be built in a similar way: 
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where nh is the total number of non-zero pixels in segmented image.  
  
3.2.2 Chain Code Generation Algorithm Integrating Smoothness Assumption 
The next task is to extract the hand contour so as to perform effective tracking. This is 
achieved by integrating the smoothness assumption to a well-known chain code generation 
algorithm so as to obtain a smooth hand contour. The proposed algorithm does not require 
any prior shape knowledge and is thus robust to fast and dramatic changes in shape. Let us 
first give a brief review of the tradition chain code generation algorithm. 
  
Tradition chain code generation algorithm 
The well known chain code generation algorithm [13] for 8-direction chain code is listed as 
Algorithm 1 . 
Let N and V be two functions where 

Nj(C) returns  the jth neighbor of vertex C, and 
V(Ci,Cj) = t,  if C i is the tth neighbor of Cj; 
V(Ci,Cj) = -1,  otherwise; 

Given the initial contour queue “C0C1,” the algorithm is: 
 
Algorithm 1  
1.   k=1; 
2.   t=V(Ck, Ck-1); 
3.   j=(t+2) mod 8; 
4.   Ck+1= Nj(Ck); 
        if (Ck+1 in the boundary) goto 6;   
        else j=(j-1) mod 8;  
5.     goto 4  
6.     add Ck+1 to the contour queue, k=k+1; 
        if (Ck=C0)  then halt; 
7.     goto 2    
 
The neighbor function, N, is defined by a grid that is imposed on the image. Algorithm 1  uses 
a square grid and hence each node has 8 neighbors. In general, the grid size and its pattern 
have an effect on the performance of the chain code. Figure 4 shows the hexagonal pattern 
with the neighbors of grid point A and B marked out. In [14], Scholten et. al proved 
theoretically that a hexagonal grid can describe a curve more accurately as compared to the 
triangle or square grid. In Twins, we tried both square and hexagonal grid and found the latter 
to provide much more accurate result Though the chain coding algorithm on hexagonal grid 
is slightly more complex in terms of locating a point’s neighborhoods, that can be 
implemented efficiently. Thus, we have chosen the hexagonal grid for our implementation 
and its diameter is 12 pixels. 
 
The chain coding algorithm on hexagonal grid is described below. 
 
Algorithm 2  
1.   k=1; 
2.   t=V(Ck, Ck-1); 
3.   j=(t+3) mod 12 ; 
4.   Ck+1= Nj(Ck); 
        if (Ck+1 in the boundary) goto 6;   
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        else j=(j-1) mod 12;  
5.     goto 4  
6.     add Ck+1 to the contour queue, k=k+1; 
        if (Ck=C0)  then halt; 
7.     goto 2   
 
 In Algorithm 2 that the condition in step 4, “Ck+1 in the boundary”  is not yet defined. An 
obvious approach to test the condition in step 4 is to use the Gaussian models (Section 3.2.1) 
we have built up to threshold the pixels. In this case, the value used for the threshold process 
is defined to be: 

P I H
P I B

i m i m

h

h

h

( | )
( | )

exp( )=
−

−
−σ

σ σ σ

2

2

2

22 2
      (10) 

where I denotes that the intensity of the pixel is i; H denotes that the pixel is a hand pixel; and 
B denotes that the pixel is a background pixel. 
 
Figure 5 shows the results when we compute (10) over all image pixels. The intensity of 
Figure 5 reflects the magnitude of the results. Using (10) as a thresholding condition for step 
4 in Algorithm 2 , we obtain Algorithm 3  where λ is a pre-determined threshold value. 

 
Algorithm 3  
1.   k=1; 
2.   t=V(Ck, Ck-1); 
3.  j=(t+3) mod 12 ; 
4.  Ck+1= Nj(Ck); 

        if ( P I H
P I B

( | )
( | )

> λ ) goto 6;   

        else j=(j-1) mod 12;  
5.     goto 4  
6.     add Ck+1 to the contour queue, k=k+1; 
        if (Ck=C0)  then halt; 
7.     goto 2   
 
Thus far, we have assumed equal probability for each pixel to be a hand pixel. Further 
improvement of the algorithm is possible if we realize that most parts of the hand contour are 
smooth. 
 
For example, suppose in Figure 6 we have detected the contour points A and B, and we are 
now trying to determine the next point, C, in the contour. In the hexagonal grid case, C has 10 
options. They are distributed in the directions as depicted in Figure 6. Algorithm 3  will 
examine X0,  X1... until it finds Xk which is in the object and Xk is considered as the next 
boundary pixel C. Given the fact that most part of the contour are smooth, it is reasonable to 
assume, before we perform the intensity test, that X3 is the most probable candidate and X0 
and X9 are least probable candidates. Based on the above assumption, we can assign different 
weight values {wi} reflecting the relative probabilities of these 10 directions. The criterion in 
assigning these weight values is to reflect the relative probabilities of being the next contour 
pixel. In our experiment, we assign the weight values as follows: 

w
i m

i
w= −

−
exp(

( )
)

2

ρ
           (11) 

where mw and ρ are real numbers and they control the two independent properties of such an 
assignment. The integer that is closest to mw defines the direction which has the largest 
weight value – in our case, it must be near to 3. ρ reflects the relative difference between the 
weights.  If ρ→∞, {wj} becomes a constant series. If  ρ  is  smaller, the difference between 
adjacent weight values will be larger which means that the contour is expected to be  
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smoother, for example, a circle. When choosing ρ, we should consider the smoothness of the 
contour. In our experiment we choose ρ as 6.0 and mw as 3.1. Having assigned these weight 
values, we are able to refine Algorithm 3 to obtain a smoother contour. Before we discuss the 
refinement, let us first define a function M. 

M C C C V C C V C C MODk k k k k k k( , , ) ( ( , ) ( , ))+ − − += −1 1 1 1 12     (12) 

where MOD is slightly different from the standard mod function in that it returns a result 
from -5 to 6 instead of 0 to 11 in the following way: 

n MOD m n m if n m
m

n m m otherwise
= ≤

−






mod , mod ;

( mod ) , .
2

 

The function M maps the neighboring 3 grid points Ck-1, Ck, Ck+1 in Algorithm 2 to a signed 
integer representing the deflection of the contour at point Ck (See Figure 7).  From the 
execution of the algorithm, function M only returns value from -3 to 6. 

 
Now let us look at how we can refine Algorithm 2 to obtain a smoother contour. Algorithm 2  
examines each Xj in turn until it  finds the boundary pixel C. Suppose Algorithm 2 has 
examined X0, X1... Xk-1 (0≤ k < 9) and yet to find the boundary pixel C, we can conclude the 
following: 
i.  X0, X1... Xk-1 are all background pixels; 
ii.  C must be one of the pixel in the pixel set { Xk, Xk+1... X9}. 
By normalizing the weight values, {wj}, we obtain Equation (7) which gives the probability 
that  Xk is the boundary pixel C.  This probability estimate has not taken into consideration 
the pixel intensity, and it is just a prior guess.    

P C X
w
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k

M X B A

j
j M X B A

k
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= =
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∑
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Now we need to take the intensity of the pixel into consideration. Let’s evaluate 
P(C=Xk| pixel intensity of Xk is i).  
Using Bayesian rule [15], the posterior probabilities can be computed by: 

P C X I
P C X P I C X

P Ik
k k( | )

( ) ( | )
( )

= =
= =         (14) 

P C X I
P C X P I C X

P Ik
k k( | )

( ) ( | )
( )

≠ =
≠ ≠         (15) 

where I denotes the event that “pixel intensity of Xk is i”. 
Comparing P ( C = X I)k |  with P(C X I)k≠ | , we achieve  the condition which can be used in 
step 4 in Algorithm 2. The condition becomes (16): 

P I C X
P I C X

P C X
P C X

k

k

k

k

( | )
( | )

( )
( )

=
≠

>
≠
=

           (16) 

Consider the items in  (16): 
i.  P(C=Xk ): This quantity can be calculated from Equation (13). Note that the value 

changes dynamically as the algorithm proceeds; 
ii.  P(C≠Xk ): 1 - P(C=Xk ); 
iii.  P(I|C=Xk): If Xk is in the contour, we can use the hand Gaussian model depict by 

Equation (9) to obtain an estimate. Thus, we have:  

 P I C X
i m

ik
h

h

h

( ) exp( )= = −
−1

2 2

2

2π σ σ
∆  

iv.   P(I|C≠Xk): From the nature of chain code      generation Algorithm 
we know that if C is not in the contour it must be a background pixel. Using Equation (7), 
we have: 

P I C X
i m

ik( ) exp( )≠ = −
−1

2 2

2

2π σ σ
∆        

Put all these items in (16), we can rewrite (16) as: 
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Now we can decide whether a pixel is a hand pixel or a background pixel using (17). 
Integrating (17)  into Algorithm 2 , we have the following algorithm. 
Algorithm 4  
1.   k=1; 
2.   t=V(Ck, Ck-1); 
3.   j=(t+3) mod 12 ; 

4.  if    ( exp( )
( )

( )
)

σ
σ σ σh

h

h

i m i m P C

P C

−
−

−
>

− =
=

2

2

2

22 2

1 N (C )

N (C )
j k

j k

 goto 6;   

        else j=(j-1) mod 12;  
5.     goto 4  
6.     Ck+1= Nj(Ck); 
        add Ck+1 to the contour queue, k=k+1; 
        if (Ck=C0)  then halt; 
7.  goto 2   
 
In addition, we also introduce a simple technique to make sure that the chain code generation 
algorithm will search the whole image instead of terminating too early. The technique 
introduces a special line called the “wrist line” to the image. The wrist line is a horizontal line 
in the image which pass through the wrist position of the hand. Wrist line is an assumed line 
that needs to be updated constantly while the finger tip moves. The parameter of such a line 
depends on the previous position of the finger tip. The horizontal wrist line in frame k, ywk 
can be described as: 

y y dk
w f

k p= −−1         (18)  

where yf k-1 is the y position of the finger tip in the k-1 frame and dp is the length between the 
finger tip and the wrist. The wrist line in Figure 8 is marked as a dotted line in the image. All 
the pixels above the wrist line are marked as the hand pixels. This allows us to constrain the 
contour tracking to be carried out  from left to right through the entire image each time. After 
introducing wrist line, the terminating condition in chain code algorithm becomes “if the 
contour tracing arrives at the right side of the image.”  
Though Algorithm 4 works well in most circumstances, it fails in some particular situations. 
One example is shown in Figure 8. 
 
Initially, the algorithm traced the contour (the solid line) correctly starting from the left and 
slowly proceeding to the right. However, halfway through the tracing, it entered a loop as 
shown in Figure 8. The reason for the loop is due to inconsistent pixel classification. Consider 
Figure 9. Let us assume that the algorithm has detected A then B and is going to determine 
the next point. The algorithm examines Y first. Suppose at this stage, Y fails to be classified 
as a hand pixel and so does X. Note that although Y and X fail to be classified as hand pixels 
this time, they may possibly be classified as hand pixels in the future as the algorithm 
proceeds. This is because condition (17) depends not only on the intensity of the pixels but 
also on P(C=Xk) which is dynamic during the execution of the algorithm. Thus, for Figure 9, 
the algorithm detects C, D, E, ... W and X, where X is classified as hand pixel now – 
inconsistent classification! After that, C is classified as the hand pixel for the second time and 
a loop occurs.  
The only way to prevent the loop is to avoid such inconsistent classification. If a pixel has 
been classified before, the previous classification is retained. Condition (17) is used only if 
the pixel has not been classified before. This modification gives rise to Algorithm 5 .  
 
Algorithm 5  
1.  k=1; 
2.   t=V(Ck, Ck-1); 



 9

3.   j=(t+3) mod 12  
4.  if  (Nj(Ck) was ever classified as hand pixel)  

goto 6; 
else if (Nj(Ck) was ever classified as background pixel) { 
 j=(j-1) mod 12; 

goto 5;};  

else if ( exp( )
( )

( )
)

σ

σ σ σh

h

h

i m i m P C

P C

−
−

−
>

− =

=

2

2

2

22 2

1 N (C )

N (C )
j k

j k

{ 

mark Nj(Ck) in the classification history as hand; 
goto 6;  }; 

else    { 
mark Nj(Ck) in the classification history as background; 
j=(j-1) mod 12; };  

5.     goto 4  
6.     Ck+1= Nj(Ck); 
        add Ck+1 to the contour queue, k=k+1; 

 if (the contour tracing arrives at the right  side of the image)  then halt; 
 

The history can be maintained in a 2 dimensional array for fast access. If we also record the 
current frame number as well as the classification result in the array element, we do not need 
to reinitialize the array each time. Thus the computational complexity is not changed as 
compared to the traditional chain code generation algorithm.  
 
4 Experimental Results 
A number of experiments have been conducted to compare the performance of Algorithm 3 
(without integrating the smoothness assumption)  and Algorithm 5 (integrating the smoothness 
assumption). In all the experiments, the contour pixel classifications in Algorithm 3 and 5 are 
done on a cross mask on the image pixels to enhance the reliability. Of course,  the wrist line 
and the altered termination condition introduced previously are used in both algorithm 
implementations. Our experimental results indicate that Algorithm 5  outputs a smoother 
contour and is also more accurate in extracting the contour in most cases. Figure 10 shows 
two frames obtained from a single tracking session. The thresholds and configure values used 
in this tracking session are listed in Table 1.  
 
The thick line is the contour obtained using Algorithm 5 while the thin line is the contour 
obtained using Algorithm 3. The differences between the contour results are numbered and 
highlighted using arrows. In  the position marked 1, it is obvious that the Algorithm 5’s 
performance (thick line) is better. Algorithm 3 failed here because the threshold, λ, is too 
small which makes the algorithm too sensitive. To improve the performance of Algorithm 3 
here, we need to increase the value of λ. This is indicated in the first column of Table 2. 
Similar comparisons are carried out for all the differing points (marked position 2 to marked 
position 10). The results of analysis are summarized in Table 2. 
 
From the Figure 10 and Table2, we see that: 
i.  Algorithm 5  gives a smoother contour result; 
ii.  Since the hand contour is smooth,  Algorithm 5 has a better performance in terms of 

accuracy;   
iii.  Since a smoother contour is usually shorter, Algorithm 5 saves unnecessary 

computational costs; 
iv.  Changing the threshold value in Algorithm 3 does not improve its performance globally. 

We can see this from the second row of Table 2, 5 columns suggest decreasing λ, while 2 
columns suggest increasing λ, and 3 columns suggest no change. 
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Figure 11 and 12 show the contour length results of four contour tracking sessions performed 
on 26 continuous frames captured under normal lighting condition. Out of the four tracking 
sessions, one session uses Algorithm 5 while the remaining sessions use Algorithm 3 with 
different threshold values. The values used in these sessions are all shown in Table 3.  
 
The results indicate that the performance of Algorithm 3 is hardly affected in terms of the 
contour length when we vary λ between 1.25 and 1.75. Although Algorithm 5 occasionally 
performs worse than Algorithm 3 , in most cases, it outperforms Algorithm 3. This 
improvement is not achieved by introducing additional feature measurement or post-
processing, so no significant computation cost is added to the algorithm.   
 
5 Contour Analysis  
Recall that the two gestures that are needed for our 3D mouse application are the user’s index 
finger tip and the thumb state. Hence, elaborate features recognition is not necessary. For our 
purpose, we constrain the user’s index finger tip to be farthest from the wrist line (Section 
3.2.2). In Twins, the two points that are farthest from the wrist line are tagged as the index 
finger tip positions corresponding to the “real finger” and “finger’s mirror image” 
respectively.  
Thumb state detection is done by measuring finger tip features. We select a specific range 
within the hand contour as likely positions for the thumb finger tip. This is possible because 
we already know the index finger tip positions in the contour. Within the specific range,  we 
detect whether the contour bend significantly (corresponding to the tip of the thumb). If such 
bend is found, we have found the thumb. The bending value can be calculated incrementally.  
 
6 Post-processing  
After the finger tips positions have been determined, (6) is used to restore the 3D coordinates 
of the finger tip. Over time, a stream of 3D coordinate signals is generated from the video 
stream. This stream of 3D coordinate signals are unstable and succeptable to noise, hence, 
post-processing is needed to make the 3D mouse practical.  
 
6.1 Screening the False Signals 
The first post-processing is to screen out the false signals. After the two index finger tips are 
detected, we apply the law of physics to derive a constraint for screening out false signals. 
 

 
In Figure 12, the XYZ coordinate system is set up.  R and V correspond to the real finger and 
its mirror image respectively, and they share a single projection (x’,y’) in the mirror plane 
(XOY plane). Let L denote the optical center of the len used in the video camera. The 
coordinates of L is (x0,y0,z0). Let R’ and V’ be the image of R and V in the image plane 
respectively. Then, lines VV’ and RR’ should pass through L. Since the camera is projecting 
at an angle of 45° to the mirror, the image plane can be simply specified as: 

x z=         (19) 
Assume T is a point on the line RV and the coordinates of T is (x’, y’, h). Then, TL can be 

specified as:  
x x
x x

y y
y y

z h
z h

−
−

=
−
−

=
−
−

'
'

'
'0 0 0

    (20) 

From (19) and (20), we can obtain the position of T’s image which is the intersection between 
TL and the image plane. 

x z
x z x h

z h x x

y
y z y x x y y h

z h x x

= =
−

− − +

=
− + −
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'
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0 0

     (21) 

In (21), as h→-∞, we have: 
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x x
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=
=
=








0

0

0

            (22) 

Thus, we can conclude that all straight lines that pass through an object and its mirror image 
must converge to one point in the image plane. We call this point the RV center (Figure 13). 

 
The RV center is used to screen out the false contour analysis results. If the straight line, 
which passes through the 2 index finger tips (real object and its mirror image), does not pass 
through the RV center, the signal is considered an invalid signal and will be screened out. In 
our experiment, less than 5% of the raw signals are screened out by this process. In the event 
that the signal has been screened out, a “hole” is created in the continuous 3D coordinate 
stream. Such holes are filled by using the predictions of Kalman filters (see below) and a 
constant signal stream is still maintained.     
 
6.2 Kalman Filtering and Adaptive Filtering  
A set of linear Kalman filters [16] are used both to suppress the Gaussian noise in the 3D co-
ordinates signal and make predictions for the holes in the signal. This is the second step of 
our post-processing task. Preliminary experiments show that the Kalman filtering results are 
not stable. This is partly due to the fact that the noise in the signal is not purely Gaussian and 
partly due to our desire to maintain short signal delay. To smooth the signals further, we add 
a set of adaptive filters. The filtering results are shown in Figure 14. 

 
By combining Kalman filtering and adaptive filtering, we smooth the signals while reducing 
errors. The post-processing is surprisingly successful in the sense that the outputs are fairly 
smooth and accurate and the delay caused by the filtering is relatively minimum (between 2 - 
4 frames that is 0.08 - 0.16 sec at the 25 frame per sec video rate). The thumb state signal 
(mouse’s switch state) is also filtered by an adaptive filter. 
The thumb status signal is also processed by an adaptive filter. Because the signal is 
interpreted as mouse switch thus more critical and the user is less sensitive to the lag of this 
signal, we configure the adaptive filter in such a way that  the delay  is longer (<0.3 sec) but 
the output is more stable.   
 
7 System performance 
The time complexity of Algorithm 5 is O(n), where n is the number of points along the 
contour. Since the bending value can be calculated incrementally, the complexity of the 
contour analysis process is O(m), where m is the length of the possible range in the contour 
where the thumb may occur. It is obvious that m<n. In the post-processing stage, the results 
of Kalman filter and adaptive filter are both recursively calculated from the previous results 
and their time complexity is O(1). Hence, the time complexity of the entire system is O(n).  
A 3D mouse demon (Figure 15) is built to demonstrate the final performance of Twins on 
SGI Indy. A 25 frames (640X480) per sec rate has been achieved in the 3D mouse demon. 
(After the post-processing, the system produces 25 stabilized 3D co-ordinates per sec.) A 3D 
room with several cubes in are drawn on the screen. The user use her/his index finger tip and 
thumb to operate the 3D mouse in a 3D room to pick up and place the cubes.  

 
We tested our system against different backgrounds to evaluate the system’s sensitivity to 
background properties. The system displays strong adaptability to different backgrounds. 
Three backgrounds were used in our experiments as shown in Figure 16, 17 and 18 
respectively.  
Figure 16a shows a colorful and complex background. Figure 17a shows a normal office 
background. Figure 18a shows a dark background. The test results demonstrate the strong 
adaptability of our algorithm. In the experiments, we move the finger tip in a circular motion. 
The circle movement performed in these tests is 1-2 Hz. The periodical outputs of the 3 
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coordinates UVW of the finger tip movement is shown in Figure 16b, 17b and 18b 
respectively. The results indicate that our system can follow the finger tip movement very 
well and the output signals are smooth in general. We also tested the 3D mouse using a pencil 
held in a human hand. The system is able to track the pencil just as well as it tracks the finger. 
This is because we do not make any assumption regarding the shape of the object to be 
tracked. Hence, our system is robust to fast movement and adaptive to shape changes. In 
addition, the system does not have lock loss problem. In terms of the gesture recognition rate, 
we found that in a cluttered environment like Figure 16a, the error rate (before the signals are 
being post-processed) is less than 5% for the bent thumb gesture and less than 10% for the 
erected thumb gesture. The results are derived when the hand is moving at a fast pace. For 
critical signals such as mouse switch states, this error rate is not acceptable. Careful 
examination shows that the errors occur randomly and are sparsely distributed over time. 
With the use of an adaptive filter in the post-processing stage, we are able to suppress and 
screen out all such errors from the final output  
 
7 Conclusions 
 
In this work, we propose a novel low cost solution that uses one camera and a mirror to 
derive accurate 3D position of a finger tip. Bayesian estimation is used in our algorithm to 
improve the chain code generation. We have also addressed the chain loop problem in this 
paper. It is shown that our improved algorithm results in a smoother and more accurate 
contour tracing. In video analysis, it can be used to track fast moving object over a known 
complex background where shape information is not available. Using the algorithm, a 
practical 3D mouse is designed and implemented. Post-processing is done to stabilize the 
outputs. Experimental results show that our 3D mouse satisfies the requirements for a robust 
and convenient 3D input device.  
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Figure 1. Program structure of model-based approach in video tracking. 
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Figure 2. Gestures used in the 3D mouse. 
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Figure 3. Twins setup arrangement that uses a mirror to provide another view of the object.  
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Figure 4. The hexagonal grid is used in the chain code generation.  
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Figure 5. The pixel classification results using hand and background intensity models. 
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Figure 6. After detecting A and B, there are 10 possible positions for the next point 
X0-X9 in the chain code algorithm and their possibilities are not identical 
considering the contour should be smooth. 

X4 

X1 

X2 

X0 

X3 

X5 
X6 

X9 

X8 

X7 

B 
A 



 20

 
 
 
 
 
 
 
 

 
Figure 7. The deflection of the contour at point Ck.. Ck+1 is the 0th neighbor of Ck and 

Ck is the 11th neighbor of  Ck-1,  thus   M(Ck+1, Ck, Ck-1,) =(0 -11) MOD 12 = -
1. We can see that the vector Ck Ck+1 deflects from the vector Ck Ck-1 with 
one unit in the clockwise direction. 
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Figure 8. All the pixels above the wrist line (dotted) are classified as hand pixels 

forcefully. Loop occurs occasionally in the improved algorithm. 
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Figure 9. Inconsistent classification of pixel which cause the loop chain code. 
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Table 1. Values used in the experiment. 

λ in Alg.3  mw in Alg. 5  ρ in Alg. 5  
1.5 3.1 6.0 



 24

 
 

1
2

3

4

5 6

7
8

10
9

       
 

Figure 10. Comparable contour tracking results using traditional chain code 
generation  algorithm (thin line) and our improved algorithm (thick line). 
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Table 2. The summary of the experiment result. 
 1 2 3 4 5 6 7 8 9 10 

Contour error* - + 0 - - - - - + - 
Contour length* - - 0 - - + - - 0 - 
λ to be changed** ↑ = = ↑ ↓ ↓ ↓ ↓ = ↓ 

*    +: the thick line has a larger 
value;  

    -: the thin line has a larger value;  
    0: performances are almost equal. 
 

** ↑: λ to be increased;  
↓: λ to be decreased; 
 =: no suggestions to the change. 
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Table 3 Threshold values used in the tracking sessions 
Algorithm 3 Algorithm 5  

λ in (1) λ in 
(2) 

λ in 
(3) 

mw  ρ 

1.5 1.25 1.75 3.1 6.0 
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Figure 11. Comparison of the contour length in the number of points in the contour. 
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Figure 12. The constraint provided by our equipment setting.  
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Figure 13. The straight lines passing through a real object and its mirror image converge to 
one point in the image plane. 
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Figure 14. The filtering process and the signals comparison. Kalman filter’s output is still 

unstable while only using adaptive filter causes significant error. Their 
combination produces better results. 
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Figure 15. The 3D room demon with cubes in. A user can operate the cross cursor to pick up 

and place these cubes in the room  by his/her index finger tip. 
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Figure 16a. Background with colorful newspaper. 

Figure 16b. Output signals of the colorful background experiment. 
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Figure 17a. Background in an office environment. 

Figure 17b. Output signals of the normal office background experiment. 
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Figure 18a. Dark background. 

Figure 18b. Output signals of the dark background experiment. 


