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Abstract 
 

Diabetic retinopathy is a major cause of blindness in 
the world. Regular screening and timely intervention can 
halt or reverse the progression of this disease. Digital 
retinal imaging technologies have become an integral 
part of eye screening programs worldwide due to their 
greater accuracy and repeatability in staging diabetic 
retinopathy. These screening programs produce an 
enormous number of retinal images since diabetic patients 
typically have both their eyes examined at least once a 
year. Automated detection of retinal lesions can reduce 
the workload and increase the efficiency of doctors and 
other eye-care personnel reading the retinal images and 
facilitate the follow-up management of diabetic patients. 
Existing techniques to detect retinal lesions are neither 
adaptable nor sufficiently sensitive and specific for real-
life screening application. In this paper, we demonstrate 
the role of domain knowledge in improving the accuracy 
and robustness of detection of hard exudates in retinal 
images. Experiments on 543 consecutive retinal images of 
diabetic patients indicate that we are able to achieve 
100% sensitivity and 74% specificity in the detection of 
hard exudates. 
 
1. Introduction 
 

Diabetic retinopathy is a serious complication of 
diabetes mellitus and a major cause of blindness 
worldwide [12]. Early detection and timely treatment of 
diabetic retinopathy can halt or reverse the progression of 
the disease and prevent blindness. For this reason, almost 
all diabetic patients should have their retina in both eyes 
examined at least once every year even if they have no 
visual symptom. A fundus camera is used to capture 
images of the retina that are then read and graded by 
doctors. Given the number of diabetic patients screened 
yearly, the number of retinal images generated is large 
and the majority of them are normal. Automated detection 

of abnormal retinal images can reduce the workload of 
doctors reading the images and improve the follow-up 
management of diabetic patients. 

One important manifestation of diabetic retinopathy 
is the development of hard exudates in the retina. Hard 
exudates occurring in the macula can cause significant 
visual impairment. Existing algorithms to detect hard 
exudates [3,6,14] are not sufficiently sensitive and 
specific for clinical application. The main obstacle is the 
extreme variability in the color of the retinal images that 
depends on factors such as degree of pigmentation in the 
retinal pigment epithelium and choroid in the eye, size of 
the pupil, and illumination. These factors, in turn, affect 
the appearance of hard exudates in the retinal images.  

In this paper, we use domain knowledge to improve 
the reliability of automated hard exudate detection. 
Domain knowledge of light- or bright-colored lesions 
such as drusen and cotton wool spots is used to 
differentiate true hard exudates from these other lesions. 
High intensity artifacts near large retinal blood vessels as 
a result of reflection of light are often mistaken as hard 
exudates. Domain knowledge of the locations of retinal 
blood vessels is used to remove such artifacts. In addition, 
image quality has a great impact on the features of retinal 
lesions, especially hard exudates. Knowledge of how the 
size and intensity difference of hard exudates vary 
according to the degree of overexposure and 
underexposure is used to identify the often missed hard 
exudates in overexposed and underexposed retinal images. 
Experiments on 543 consecutive digital retinal images of 
diabetic patients indicate that our approach is able to 
achieve 100 % sensitivity and 74% specificity. 

The rest of the paper is organized as follows. Section 
2 gives the background for our work. Section 3 presents 
the proposed knowledge based hard exudate detection 
algorithm. Section 4 shows the results of our experiments. 
Section 5 compares our approach with a recent work on 
retinal image analysis. Finally, we conclude in Section 6. 
 



2. Preliminaries 
 

In this section, we will first give the clinical domain 
knowledge for the development of certain lesions in 
retinal images. We will then review existing hard exudate 
detection techniques and highlight their shortcomings. 
 
2.1 Lesions in Retinal Images 
 

Diabetic retinopathy is characterized by 
microvascular leakage and microvascular occlusion in the 
retina. Weakening of retinal capillary walls and loss of 
pericyte support, give rise to microaneurysm formation. 
Serum lipoproteins leak from these microaneurysms and 
are deposited as hard exudates in the retina. Hard exudates 
vary in size and have a yellow waxy appearance with 
distinct margins. Microvascular occlusion in diabetic 
retinopathy leads to infarction of the retinal nerve fibers. 
This forms white fluffy opaque lesions known as cotton 
wool spots along the nerve fiber layer. 

Drusen are small, discrete, yellow-white, slightly 
elevated lesions which are usually an early manifestation 
of age-related macular degeneration but are unrelated to 
diabetic retinopathy. Drusen consists of focal collections 
of hyaline material located between the basal lamina of 
the retinal pigment epithelium and the inner collagenous 
layer of Bruch’s membrane. Drusen are less yellow in 
color compared to hard exudates. We will show in the 
subsequent section how this domain knowledge is used to 
differentiate hard exudates from other lesions. 
 
2.2 Related Work 
 

A number of studies have been carried out to 
automatically detect hard exudates based on their size, 
shape, texture, etc. [11] shows that using these features in 
isolation is insufficient to detect hard exudates accurately. 
Several attempts have been made to detect hard exudates 
using histogram segmentation. If the background color of 
a retinal image is sufficiently uniform, a simple and 
effective method to separate exudates from the 
background is to select proper thresholds [10,15,18]. 
[11,14] investigate dynamic thresholding by dividing a 
retinal image into sub-images and computing a threshold 
based on the local histogram. This technique is useful 
only if the sub-images contains unimodal hard exudates. 

 [6, 9] examine how the 3-D color feature space can 
be mapped into 3-D spherical coordinates. Unfortunately, 
hard exudates, drusen, and cotton wool spots overlap in 
this feature space and are not linearly separable. [6] 
attempts to use Mahalanobis classifier and jackknife linear 
discriminant methods to detect exudates but the results 
were inconclusive. [3] applies restrictions on the exudates 
and test images and uses the Mahalanobis classifier with 

features extracted from shape, color and edge of the hard 
exudates to achieve high sensitivity and specificity. 

[17] employs the minimum distance discriminant 
classification to detect lesions in retinal images. But it is 
not robust for different types of retinal images and user 
intervention is required on a case-by-case basis. The 
approach is not scalable for analyzing large numbers of 
retinal images in a real-life screening application.  
 
3. Domain Knowledge Based Hard Exudate 

Detection 
 

We will now present a domain knowledge based 
approach to detect hard exudates in digital retinal images. 
The retinal images are obtained from a Topcon digital 
fundus camera and stored in 24-bit TIFF format with 
768x576 pixels resolution. This consists of 8-bits red, 
green and blue layers with 256 levels each. Figure 1 
shows examples of digital retinal images with different 
background colors. There are three steps in the hard 
exudate detection algorithm: 
(1) Use median filtering to compute intensity difference 

map. 
(2) Use dynamic clustering to determine lesion clusters. 
(3) Apply domain knowledge to identify true hard 

exudates. 
We will explain each step in the following subsections. 
 

 
(a)   (b) 

Figure  1. Digital retinal images with (a) bright  yellowish 
background and (b) with dark  reddish background. 

 
3.1 Compute Intensity Difference Map 
 

The retinal lesions of interest in our current study are 
manifested as bright intensity regions in the retinal 
images. [13] shows that the green layer contains the most 
information on the brightness and structure of exudates 
compared to the other two layers. An optic disc 
recognition algorithm [5] is first used to remove the optic 
disc from the retinal images. Smoothing operation is 
applied on the green layer to remove random noises. Next, 
median filtering [1,7] is applied to the smoothed image. 
Figure 2 shows the results of median filtering on the 
retinal images in Figure 1. To highlight the lesions areas, 
the median filtered image is subtracted from the green 
layer of the original smoothed digital retinal image to 



obtain a difference map. Figure 3 shows the difference 
maps computed for Figure 1. 

 

 
(a)   (b) 

Figure 2. Median filtered images of Figure 1. 
 

 
(a)   (b) 

Figure 3. Difference map of Figure 1. 
 
 From the output, we see that median filtering and 
subsequent subtraction is effective in isolating the lesion 
areas. We conducted experiments to determine the 
optimal size for the median filter. Table 1 shows the 
results. We observe that a median filter of size 17x17 is 
sufficient to give 100% sensitivity. Hence this filter is 
selected for this algorithm.  
 

Filter Size Sensitivity 
13x13 87% 
15x15 93% 
17x17 100% 
19x19 100% 

Table 1. Comparison of various median filters. 
 

We can distinguish two types of objects in the 
difference map: the brighter lesion patches, and the darker 
background features. These form separate clusters in the 
brightness space of the difference map. The exact extent 
or location of each group in brightness space cannot be 
pre-determined due to the non-uniform qualities of input 
retinal images. But there is always a clear demarcation 
between the two groups. 
 
3.2 Determine Lesion Clusters 
 

Dynamic clustering techniques [2,4] have been used 
to automatically and accurately determine clusters without 
prior thresholds or input parameters. This technique 
separates a set of data points into reasonable groups or 
clusters according to the attributes of data. Here, “a 
cluster” means the set of data within the cluster are more 

similar to each other than the data from other clusters in 
specific aspects/features. Each cluster has its own “cluster 
center” in the feature space. An important measurement of 
similarity for data is “distance” between cluster centers 
and between points inside one cluster. In our case, the 
feature space is the difference map. The distance measure 
is the Minkowski metrics defined by 
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where n is dimension of feature space; r is optional 
parameter; dij is distance between pixel Xi and Xj in n-
dimensional feature space. When r=1, this distance 
becomes “city block” metric; and when r=2, it denotes the 
Euclidean distance, etc. In our application, the distance 
measure is simply the difference in the gray values 
between pixel i and pixel j in the difference map. 
 We need to pre-determine the number of clusters and 
provide the initial cluster centers [16]. Since we are 
looking for lesions versus non-lesions, the number of 
clusters is two. The lesion cluster is located at higher 
intensity range while the background cluster is located at 
lower intensity range. The maximum and minimum gray 
levels in the difference map are calculated and are termed 
max and min respectively. These values are used as the 
initial cluster centers CLSTRlesion and CLSTRothers. 

The entire clustering process is iterative. Let q be the 
clustering iteration number, CLSTR(q)lesion  and 
CLSTR(q)others be the cluster centers in iteration q. Then 
the clustering algorithm proceeds as follows: 
 
(1)  Calculate the max and min values of a Mh × Mv pixel 

difference map. 
(2)   Set  q = 1, CLSTR(q)lesion=max, CLSTR(q)others=min. 
(3)  For i= 1, 2, … Mh × Mv, 

Let the intensity level of pixel i be Xi  
D1 = distance(Xi, CLSTR(q)lesion)  
D2 = distance(Xi, CLSTR(q)others)  
If D1 < D2  
 Then assign pixel i to the lesion cluster 
 Else assign pixel i to others cluster 

(4) Update cluster centers according to the equations: 
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(5) Increment the iteration and repeat Steps (3) and (4) until 
stopping conditions are met. 

Two common stopping conditions are:  
(a) The cluster centers stay within a limited range 

between iteration q and iteration q+∆q (∆q>1), i.e., 
the cluster centers do not vary much from one 
iteration to another; 

(b) Number of iteration exceeds a user-defined loop 
threshold say Tloop. 



 Initial investigations show that dynamic clustering 
was able to successfully detect all exudates, but it is 
unable to differentiate true hard exudates from artifacts 
and other lesions. In fact, a significant number of artifacts 
that appear along the large retinal vessels are detected as 
hard exudates. These artifacts were primarily from the 
glistening background very close to the large vessels. 
Figure 4 show the results of the clustering for Figure 1. 
 

 
(a)   (b) 

Figure 4. Clustered image of Figure 1 containing hard 
exudates and artifacts. 

 

3.3 Apply Domain Knowledge  

3.3.1 Knowledge of retinal vessels 
 
 In order to improve the accuracy of our detection 
algorithm, we incorporate knowledge about blood vessels 
into the detection algorithm to minimize false 
identifications of artifacts near the vessels as exudates. A 
vessel recognition algorithm is used to determine major 
blood vessels in the retinal images. Experiments show that 
the vessels are mostly distributed in the lower intensity 
levels of the green layer. A reverse video operation is 
performed to bring the vessels into the high intensity 
levels. Next, a median filtering technique using a 20x20 
median filter is applied to suppress the vessels 
information while preserving the background information. 
To highlight the blood vessels, we subtract the median 
filtered image from the original inverted image. This 
produces an image that contains vessels in a uniform 
background. Figure 5 shows the results. 
 Dynamic clustering is used to differentiate the vessels 
from the background. Clustering was done with two initial 
cluster centers: one for vessels and the other for 
background. The cluster centers are set after repeated 
experiments to determine to the best initial centers values. 
The experiment was done on 210 digital retinal images of 
varying qualities. All the vessels in a given retinal image 
are classified into large vessels, primary vessels and 
secondary vessels. Large vessels are the vessels that 
emerge from the optic disc. Primary vessels are formed by 
complete division of large vessels or branches of large 
vessels that are more than 3 pixels in diameter. Secondary 
vessels are the branches of the primary vessels or 
branches of large vessels that are less than 3 pixels in 
diameter. Table 2 summarizes the results. 

 We selected the initial cluster center for the vessel to 
be Mean – SD and the initial cluster center for the 
background to be Mean + SD. Figure 6 shows the results 
of applying dynamic clustering with the selected initial 
cluster centers. Note that a large number of vessel 
fragments is produced. The following heuristic is used to 
link vessel fragments: Vessel fragments are connected to 
the closest edge of the another vessel fragment if the 
distance between two fragments are less than 3 pixels and 
the gradient of the fragment vessels are compatible to be a 
part of a completed vessel. These constructed vessels are 
then connected to the large vessels if they are 3 pixels or 
less apart.  Any unconnected regions were removed from 
the image. Figure 7 shows the completed retinal vessel 
structure. Armed with this knowledge of the location of 
retinal vessels, we are able to eliminate a large number of 
false identification of hard exudates due to artifacts.  
 

 
 
 
 

Accuracy (%) 
INITIALCENTRE vessel 

=Mean-2*SD 
INITIALCENTRE others 

=Mean+SD 

Accuracy (%) 
INITIALCENTRE vessel

=Mean-SD 
INITIALCENTRE others

=Mean+SD 

Accuracy (%) 
INITIALCENTRE vessel 

=Mean-SD/2 
INITIALCENTRE others 

=Mean+SD 

Large 
vessels 93.65% 99.24% 78.41% 

Primary 
vessels 64.51% 84.57% 68.8% 

Secondary 
vessels 36.41% 60.72% 56.45% 

Table 2. Results of the vessel recognition algorithm 
 

 
Figure 5. Vessel information highlighted image. 

 

 
Figure 6. Clustered image. 

 

 
Figure 7. Completed retinal vessel structure. 



3.3.2 Knowledge of Drusen and Cotton Wool Spots 
 

To further improve the detection accuracy, we study 
the characteristics of drusen, cotton wool spots and hard 
exudates. The 3-D spherical coordinates [8] in the 
equations below give the best results in differentiating 
hard exudates from drusen and cotton wool spots: 

r = (R2 + G2 + B2) ½ 

θ = Arctan (G/R) 
ϕ = Arccos(B/r) 

Let rc be the mean r value of all the pixels belonging to 
lesion cluster c and rbc be the mean r value of all the pixels 
belonging to the immediate background of c. We define 
the immediate background of c to be an area that is 7 
times the size of c, with c at the center of this area. Since 
hard exudates have a much higher intensity contrast than 
cotton wool spots or drusen, this contrast information is 
captured by rdifference  where rdifference  =  rc - rbc. Figure 8 shows 
the distribution of rdifference for the hard exudates and other 
lesions e.g. drusen and cotton wool spots. There are some 
overlaps among the three types of lesions primarily due to 
the overexposed and underexposed digital retinal images.  

A study of the image quality reveals that if the average 
intensity of the original retinal image is above 110 or 
below 70, the quality of the image deteriorates and the 
lesions features alters. We use this information to 
differentiate between true hard exudates from drusen and 
cotton wool spots. In good quality images where average 
intensity between 70 and 110, if the value of rdifference is 25 
or more, we classify it as hard exudates. In poor quality 
images where average intensity above 110 or below 70, if 
the value of rdifference is above 13, we will classify it as hard 
exudates. Figure 9 shows the results. 
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Figure 8. rdifference  for hard exudates and other lesions. 
 

 
(a)   (b) 

Figure 9. Hard exudates detected for Figure 1. 

4. Experiment Results 
 

We evaluate the robustness and reliability of our 
detection algorithm on 543 consecutive retinal images of 
diabetic patients who attended a routine diabetic 
retinopathy screening program. These images contain 
artifacts and varying combinations of one or more retinal 
lesions including hard exudates, drusen, cotton wool 
spots, hemorrhages and microaneurysms. Clinically, the 
retinal images range from normal to advanced or 
proliferative diabetic retinopathy. Some of the images are 
blurred because of the coexistence of cataract in the eye. 
The quality of these retinal images varies from very poor 
to good. A retinal specialist first reviews these images and 
identifies the locations and types of lesions present in the 
images. We compare the results of our hard exudate 
detection algorithm with that given by the retinal 
specialist. Two accuracy measures are used: 
(a) Sensitivity - Ratio of number of images detected to be 

abnormal to total number of abnormal images.  
(b) Specificity - Ratio of number of images detected to be 

normal to total number of normal images.  
Table 3 shows the accuracy of the algorithm in 

identifying hard exudates without the use of domain 
knowledge. Table 4 shows the accuracy of the algorithm 
when domain knowledge is applied.  Our hard exudate 
detection algorithm is able to achieve 100% sensitivity 
with or without domain knowledge. With the help of 
domain knowledge, the specificity improves from 41% 
(215/512) to 74% (380/512). This translates to a 33% 
savings without compromising the sensitivity. 
 

Automated Detection of Hard Exudate 
 

Absent Present 

Hard Exudate Absent 215 297 
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Hard Exudate Present 0 31 

Table 3. Hard exudate detection without domain knowledge. 
 

Automated Detection of Hard Exudate 
 

Absent Present 

Hard Exudate Absent 380 132 
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Hard Exudate Present 0 31 

Table 4. Hard exudate detection with domain knowledge. 
 
5. Discussion  
 

The most similar work to ours that has been reported 
is by B. M. Ege, Ole K. Hejlesen, and Ole V. Larsen [3]. 
They show promising results in detecting hard exudates 
using Mahalanobis classifier and statistical classification. 
However, we are unable to obtain either their test images 



or their executable version for comparison. Hence, we can 
only analyze their work qualitatively to demonstrate the 
differences between our work and theirs.  

In their algorithm, they restrict the hard exudate area 
to a maximum of 300 pixels and pre-define the hard 
exudate diameter to be between 1-6 pixels. From our 
experiments, it was noted that such criteria are 
unacceptable as there are a number of hard exudates in 
our retinal images that are much larger than the specified 
restrictions. Furthermore, it is difficult to define the 
diameters of hard exudates since their shapes are highly 
variable. The algorithm uses thresholding in preprocessing 
the images.  Area growing technique is then applied to 
estimate the shape of the lesion following thresholding. 
We implemented a simple version of the algorithm and 
our results indicate that the area growing technique (even 
with very small threshold) tends to grow rapidly and gives 
a wrong estimate of the exudate size and shape. Finally, in 
their work, only 143 test images are used and these 
images are selected using several criteria (e.g. lesions are 
not connected to other structures, lesions must be 
compatible with early diabetic retinopathy, images 
without fibrotic lesions etc.). In our work, we tested our 
algorithm on 543 consecutive retinal images of diabetic 
patients who attended a routine diabetic retinopathy 
screening program. No restriction has been applied in the 
selection of test images. The result truly demonstrates the 
robustness and reliability of our algorithm. 
 
6. Conclusion 
 

In this paper, we have proposed a novel hard exudate 
detection algorithm that incorporates relevant domain 
knowledge to achieve the robustness and reliability 
needed for clinical application. We have shown that the 
algorithm is able to achieve 100% sensitivity and 74% 
specificity in the detection of hard exudates in digital 
retinal images derived from a routine diabetic retinopathy 
screening program. In our future work, we will investigate 
how we can integrate further domain knowledge to help 
identify other abnormal lesions such as hemorrhage and 
neovascularisation. The ultimate aim is to build a 
comprehensive retinal image analysis system that will 
facilitate the screening of diabetic patients at risk of 
blindness from diabetic retinopathy and improve of the 
management of diabetic retinopathy.  
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