
SNNB: A Selective Neighborhood based Naïve Bayes
for Lazy Learning

Zhipeng XIE Wynne HSU Zongtian LIU Mong Li LEE

1School of Computing
National University of Singapore

Lower Kent Ridge Road, Singapore, 119260
{xiezp, whsu, leeml}@comp.nus.edu.sg

2School of Computing
Shanghai University of China
Shanghai, P.R.China, 200072
ztliu@mail.shu.edu.cn

Abstract. Naive Bayes is a probability-based classification method which is
based on the assumption that attributes are conditionally mutually independent
given the class label. Much research has been focused on improving the
accuracy of Naïve Bayes via eager learning. In this paper, we propose a novel
lazy learning algorithm, Selective Neighbourhood based Naïve Bayes (SNNB).
SNNB computes different distance neighborhoods of the input new object,
lazily learns multiple Naïve Bayes classifiers, and uses the classifier with the
highest estimated accuracy to make decision. The results of our experiments on
26 datasets show that our proposed SNNB algorithm outperforms Naïve Bayes,
and state-of-the-art classification methods NBTree, CBA, and C4.5 in terms of
accuracy as well as efficiency.

Key words : Naïve Bayes, Classification, Lazy Learning

1 Introduction

Naive Bayes [5] is a probability-based classification method which is based on the
assumption that attributes are conditionally mutually independent given the class
label. Although simple, Naïve Bayes has surprisingly good performance in a wide
variety of domains, including many domains where there are clear dependencies
between the attributes. Naïve Bayes is also robust to noise and irrelevant attributes
and the learnt theories are easy for domain experts to understand. As a result, Naïve
Bayes has attracted much attention from researchers. Research work to extend the
Naïve Bayes can be broadly divided into three main categories.

The first category aims to improve Naïve Bayes by transforming the feature space
such as feature subset selection and constructive feature. Kononenko’s semi-naïve
Bayesian classifier [10] performs exhaustive search by iteratively joining pairs of
attribute values to generate constructive features based on statistical tests for
independence. The constructive Bayesian classifier [14] employs a wrapper model to
find the best Cartesian product attributes from existing nominal attributes, and

possible deletion of existing attributes. Langley and Sage [11] use the Forward
Sequential Selection (FSS) method to select a subset of the available attributes, with
which to build a Naïve Bayes classifier. It is shown that such attribute selection can
improve upon the performance of the Naïve Bayes classifier when attributes are inter-
dependent, especially when some attributes are redundant.

The second category of research extends Naïve Bayes by relaxing the attribute
independence assumption. This covers many classification methods based on
Bayesian network [2]. Friedman and Goldszmidt [8] explore the Tree Augmented
Naïve Bayes (TAN) model for classifier learning, which belongs to a restricted sub-
class of Bayesian network by inducing a tree-structure network structure.

The third category employs the principle of local learning to extend Naïve Bayes.
It is well-established that large, complex databases are not always amenable to a
unique global approach to generalization. This is because there may exist different
models specific to a data point. A typical example in this category is the Naïve Bayes
tree, NBTree [9], which uses decision tree techniques to partition the whole instance
space (root node) into several subspaces (leaf nodes), and then trains a Naïve Bayes
classifier for each leaf node. [17] presents the Lazy Bayesian Rule (LBR)
classification method to solve the small disjunct problem of NBTree.

In addition, Zheng Zijian [16] presents a method to generate Naïve Bayes
Classifier Committees by building individual naïve Bayes classifiers using different
attribute subsets in sequential trials. Majority vote of the committees was applied in
the classification stage. It has been shown that this method is able to improve the
accuracy of Naïve Bayes by a wide margin.

On the other hand, we can divide classification methods into two types: eager
learning and lazy learning, depending on when the major computation occurs [1].
Lazy learning is distinguished by spending little or no effort during training and
delaying computation until classification time. On the other hand, eager learning
replaces the training inputs with an abstraction expression such as rule set, decision
tree, concept lattice or neural network) and use it to process queries. The majority of
the methods to extend Naïve Bayes are eager, except for LBR. We observe that most
existing techniques for improving the performance of the Naïve Bayesian classifier
require complex induction processes.

In this paper, we propose a novel Naïve Bayes classifier, the Selective
Neighborhood Naïve Bayes (SNNB), for lazy classification. SNNB constructs
multiple Naïve Bayes classifiers on multiple neighborhoods by using different radius
values for an input new object. It then selects the most accurate one to classifier the
new object. Experimental results shows that SNNB outperforms not only the Naïve
Bayes and NBTree, but also several other state-of-art classification methods.

The rest of the paper is organized as follows. Section 2 briefly reviews the Naïve
Bayes method. Section 3 gives an example to motivate the work of SNNB. A detailed
description and analysis of SNNB is given in Section 4. Section 5 gives the results
from the performance study of SNNB. Section 6 discuss some related work and we
conclude in Section 7 by highlighting our contributions.

2 Naïve Bayes and Accuracy Estimation

For simplicity, we shall assume that the dataset is a relational table with only nominal
attributes and consists of the descriptions of n objects in the form of tuples. These n
objects have been classified into q known classes, C1, C2, …, Cq. Each object in the
database is described by m distinct attributes, Attr1, ..., Attri, ..., Attrm. In an
instantiation of object description, an attribute Attri takes on the value vij ∈
domain(Attri). Let U={x1, x2, …, xn} denote the set of objects and A={Attr1, …, Attrm}
denote the set of attributes. Various kinds of classification method have been
developed to induce classifiers on a dataset, and the classifier can be thought as a
function assigning a class label to an unclassified object.

Naïve Bayes is a probability-based classification method, built on the assumption
that all the attributes are mutually independent within each class. Given an unlabelled
instance x=<v1, …, vm> consisting of m attribute values, the classification technique
of Naïve Bayes classifier will assign the object x to the class Ci such that the value of
P(Ci|x) is maximal. P(Ci|x) can be calculated via Bayesian Theorem and the
independence assumption as follows:

P(Ci|x)=
)(

)()|(
xP

CPCxP ii ×
∝P(x|Ci)×P(Ci)= ∏

=

×=
m

j
iijj CPCvAP

1

)()|(. (1)

Note that P(x) is fixed for a given x. To estimate p(Ci), the simplest probability
estimate, or occurrence frequency, is used. That is,

p(Ci) = N(Ci)/N
where N is the number of the training examples, and N(Ci) is the number of the
training examples with class Ci. To estimate the conditional probability p(Attrk=vk|Ci),
we adopt the Laplace-corrected estimate, which leads to

p(Attrk=vk|Ci)=(N(Attrk=vk, Ci)+f)/(N(Ci)+fnj)
where nj is the number of values of the k-th attribute, and f is a multipicative factor
(default value as 1/N) [4]

For Naïve Bayes classifier, Leave-One-Out is used to get the accuracy on training
set. This can be implemented efficiently, and is linear to the number of objects,
number of attributes, and number of label values [9]. For Naive Bayes classifier clsNB,
acc(clsNB) is used to denote the accuracy computed through Leave-One-Out method.

3 Motivating Example

Before presenting the details of our SNNB algorithm, let us look at a simple example,
for which Naïve Bayes fails while one possible solution succeeds.

Example: Suppose we are given a small dataset that comprises of 300 objects

which are described by two conditional attributes, A and B. These objects are divided
into two classes, d=0 and d=1. Table 1 shows that among the 50 objects with
description (A=0, B=0), 45 are classified as (d=0), while 5 are classified as (d=1).
Obviously, an ideal classifier should be able to classify an object (A=0, B=0) to class

(d=0), object (A=0, B=1) to class (d=1), object (A=1, B=0) to class (d=1), and object
(A=1, B=1) to class (d=0). Note that for simplicity, all the probabilities are estimated
with occurrence frequencies.

A B d=0 d=1
0 0 45 5
0 1 5 95
1 0 5 45
1 1 95 5

Table 1. Example of a dataset.

Let us first consider the classifier generated by Naïve Bayes. We have the
following probabilities:

p(A=0|d=0)=1/3, p(A=1|d=0)=2/3, p(B=0|d=0)=1/3, p(B=1|d=0)=2/3
p(A=0|d=1)=2/3, p(A=1|d=1)=1/3, p(B=0|d=1)=1/3, p(B=1|d=1)=2/3
p(d=0)=p(d=1)=1/2

According to Equation (1) (in Section 2), the following results will be obtained:
(A=0, B=0) will be classified as d=1,
(A=0, B=1) will be classified as d=1,
(A=1, B=0) will be classified as d=0, and
(A=1, B=1) will be classified as d=0,

Clearly, Naïve Bayes can’t produce the ideal results.
Now, let us consider the situation where we construct a naïve bayes trained for an

input test example on its neighborhood including all the objects with distance no
larger than 1. Thus, for an test object with description (A=0, B=0), only (A=0, B=0),
(A=0, B=1), (A=1, B=0) in Table 1 will be considered as being in the neighborhood.
The following probabilities can be computed on these training objects:

p(A=0|d=0)=50/55, p(A=1|d=0)=5/55
p(B=0|d=0)=50/55, p(B=1|d=0)=5/55
p(A=0|d=1)=100/145,p(A=1|d=1)=45/145
p(B=0|d=1)=50/145, (B=1|d=1)=95/145
p(d=0)=55/200, p(d=1)=145/200

Hence,
p(A=0|d=0)*p(B=0|d=0)*p(d=0) = (50/55)*(50/55)*(55/200) = 0.227
p(A=0|d=1)*p(B=0|d=1)*p(d=1) = (100/145)*(50/145)*(145/200) = 0.172

Therefore, (A=0, B=0) will be classified as d=0.
Similarly, for each other input object, through constructing a naïve bayes classifier

on its 1-neighborhood, and applying this classifier to make decision for the input
object, an ideal classification result can be achieved.

4 Selective Neighborhood based Naïve Bayes

We will now present the details of SNNB, a Selective Neighborhood based Naïve
Bayesian classifier. The basic idea is to construct multiple classifiers on multiple

neighborhoods with different radius, then select out the classifier with the highest
estimated accuracy to classify the new object.

For any two objects x and y, the distance between them normally can be defined as
the number of the attributes on which x and y take on the different values, that is,

distance(x, y)=|{Attri∈A|Attri(x)≠Attri(y)}|.
For an input new object x, its k-Neighborhood consists of all the objects in U with

the distance to x not larger than k, denoted as
NHk(x)={xi∈U|distance(xi, x)≤k}

We also call the Naïve Bayes classifier, k-NBx, trained on NHk(x) as the k-th local
Naïve classifier. Clearly, for any input object x, m-NBx is trained on the whole object
set U, so it is also called the global Naïve Bayes classifier. The pseudo-code for
SNNB is given below, where OWD is an array of sets of objects, and OWD[dist],
0≤dist≤m, stores all the objects in U that has distance dist to the input object x.

 Algorithm SNNB
 input: Training set T,
 the trained global NB classifier CLSglobal,
 unknown new object x;
 output: the predicted class of x;
 begin
 1 Add t into OWD[distance(t,x)] for each t∈T;
 2 k=|A|; j=0;
 3 total=|T|;
 4 k-NB=CLSglobal; NHk=T;
 5 Candidates={k-NB};
 6 while (true)
 7 count=0;
 8 while(count<(1-θ)×total)//θ is set as 0.5 defaultly
 9 count+=|OWD[k]|;
 10 k--;
 11 endwhile;
 12 if (count<φ×|T|) break; endif;
 13 j++;
 14 NHk=OWD[0]∪OWD[1]∪…∪OWD[k];
 15 total=|NHk|;
 16 Train a Naïve Bayes classifier k-NB on NHk;
 17 Add k-NB into Candidates;
 18 endwhile;
 19 Select out the classifier q-NB with the maximal
 value of acc(q-NB) from Candidates;
 20 return q-NB(x);
 end;

The algorithm SNNB consists of three main steps. The first step calculates the
distance between the input new object x and each training object t in training set T,
and stores all the training objects according to their distances (line 1). The second step
constructs a series of NB classifiers on different subsets of training objects (line 2-line
18). The last step classifies the new object with the most accurate NB classifier (line
19-line 20). There are two parameters in the algorithm: one is the support difference
threshold, θ, with 0.5 as the default value; the other is the support threshold φ, with

0.03 as the default value. The support threshold is to ensure the generalizing ability of
learnt model, while the support difference threshold is mainly for controlling the
speed of the algorithm.

Complexity Analysis

We will now give an analysis of the complexity of the algorithm. Let m be the
number of attributes and n be the number of objects. It is obvious that the
complexities of the first step and the third step are O(m×n) and O(m) respectively. We
will now examine the complexity of the second step.

Fact: Given a set TS of training objects, the complexity of inducing a NB classifier
CLS and estimating its accuracy with Leave-1-out is O(|TS|×m).

Suppose the generated series of NB classifiers is CLS1, CLS2, …, CLSp, which are
trained on TS1, TS2, …, TSp respectively. From lines 8-10, we know that

(1) |TS1|≤θ×n, and
(2) |TSi+1|≤θ×|TSi| for i = 1, 2, …, p−1
That is, |TSi|≤θi×n for i=1, 2, …, p−1. According to line 12, we also have

|TSp|=θp×n ≥φ×n, that is p≤logθφ. Given the values of θ and φ, logθφ is a constant
value. Hence, the complexity of the second step is also O(m×n).

5 Experimental Results

Dataset No.
Attrs

No.
Classes Size Dataset No.

Attrs
No.

Classes Size

anneal 38 6 798 australian 14 2 690
auto 25 7 205 breast-w 10 2 699
cleve 13 2 303 crx 15 2 690

diabetes 8 2 768 german 20 2 1000
glass 9 7 214 heart 13 2 270

hepatitis 19 2 155 horse 22 2 368
hypo 25 2 3163 ionosphere 34 2 351
iris 4 3 150 labor 16 2 57

led7 7 10 3200 lymph 18 4 148
pima 8 2 768 sick 29 2 2800
sonar 60 2 229 tic-tac-toe 9 2 958

vehicle 18 4 846 waveform 21 3 5000
wine 13 3 178 zoo 16 7 101

Table 2. Datasets used in the experiments.

We carried out an empirical comparison of the algorithm SNNB by using the 26
datasets from UCI Machine Learning Repository [13]. The characteristics of these
datasets are listed in Table 2. Since the current version of SNNB can only deal with
nominal attributes, the entropy-based discretization algorithm [6] is used for pre-
processing.

5.1 Error-rate comparison

We first compare the accuracy results of SNNB with Naïve Bayes, and three other
state-of-art classification methods1:

• NBTree in [9] (a state-of-art hybrid classification method to improves the
accuracy of Naïve Bayes),

• CBA in [12] (a classification method based on association rules), and
• C 4.5 Rules (Release 8) [15].

The error rates of the different algorithms on the experimental domains are listed in
Table 3. All the error rates are obtained through 10-fold cross validation. We use the
same train/test set split for different classification methods in the experiments.
Throughout the experiment, the parameters of SNNB are set as default values without
adjusting.

Dataset NBTree CBA C4.5Rules NB SNNB

anneal 1.0 (1) 2.1 (4) 5.2 (5) 1.6 (3) 1.4 (2)
australian 14.5 (2) 14.6 (3) 15.3 (5) 14.1 (1) 14.8 (4)

auto 22.8 (4) 19.9 (1) 19.9 (1) 27.7 (5) 22.5 (3)
breast-w 2.6 (2) 3.7 (4) 5.0 (5) 2.4 (1) 3.0 (3)

cleve 19.1 (4) 17.1 (1) 21.8 (5) 18.1 (2) 18.5 (3)
crx 14.2 (2) 14.6 (4) 15.1 (5) 14.5 (3) 13.9 (1)

diabetes 24.1 (1) 25.5 (4) 25.8 (5) 24.1 (1) 24.1(1)
german 24.5 (1) 26.5 (4) 27.7 (5) 24.5 (1) 26.2 (3)
glass 28.0 (2) 26.1 (1) 31.3 (5) 28.5 (4) 28.0 (2)
heart 17.4 (1) 18.1 (2) 19.2 (5) 18.1 (2) 18.9 (4)

hepatitis 11.7 (1) 18.9 (4) 19.4 (5) 15.6 (3) 14.3 (2)
horse 18.7 (4) 17.6 (3) 17.4 (1) 21.7 (5) 17.4 (1)
hypo 1.0 (2) 1.0 (2) 0.8 (1) 1.8 (4) 1.8 (4)

ionosphere 12.0 (5) 7.7 (1) 10.0 (2) 10.5 (3) 10.5 (3)
iris 7.3 (5) 5.3 (2) 4.7 (1) 5.3 (2) 5.3 (2)

labor 12.3 (3) 13.7 (4) 20.7 (5) 5.0 (2) 3.3 (1)
led7 26.7 (3) 28.1 (5) 26.5 (1) 26.7 (3) 26.5 (1)

lymph 17.6 (3) 22.1 (5) 16.5 (1) 19.0 (4) 17.0 (2)
pima 24.9 (3) 27.1 (5) 24.5 (1) 24.5 (1) 25.1 (4)
sick 22.1 (5) 2.8 (2) 1.5 (1) 4.2 (4) 3.8 (3)

sonar 22.6 (4) 22.5 (3) 29.8 (5) 21.6 (2) 16.8 (1)
tic-tac-toe 17.0 (4) 0.4 (1) 0.6 (2) 30.1 (5) 15.4 (3)

vehicle 29.5 (3) 31 (4) 27.4 (1) 40.0 (5) 28.4 (2)
waveform 16.1 (1) 20.3 (4) 21.9 (5) 19.3 (3) 17.4 (2)

wine 2.8 (3) 5.0 (4) 7.3 (5) 1.7 (1) 1.7 (1)
zoo 5.9 (4) 3.2 (2) 7.8 (5) 3.9 (3) 2.9 (1)

Average 16.02 15.19 16.29 16.33 14.57

Table 3. Experiment results on the error rates of classifiers

From table 3, we have observed the following facts:

1 These classification systems are all available from Web, where NBTree is implemented in the

MLC Utilities available from http://www.sgi.com/tech/mlc/, CBA is downloadable from
http://www.comp.nus.edu.sg/~dm2/, and C4.5 from http://www.cse.unsw.edu.au/~quinlan/.

(1) SNNB obtains lower error rates than Naïve Bayes in 15 out of the 26 domains,
and higher error rates in 6 domains. It also obtains lower error rates than CBA in 16
domain and higher error rates in 9 domains. When compared with NBTree and
C4.5Rules, SNNB gets the same sore, winning in 15 domains and losing in 9
domains.

(2) To give further insight into the experimental results, for each dataset, all the
classification methods can be sorted from the lowest error rate to the highest error
rate. The ranking of each method is recorded in the parentheses, where number i
(1≤i≤5) means that the method gets the i-th lowest error rate among the five methods.
Such information has been summarized into the following table. SNNB gets the
lowest error rates on 8 domains, the sencond lowest error rates on 7 domains, the third
lowest error rates on 7 domains, the fourth lowest error rates on 4 domain, and doesn’t
get the worst error rate on any domain. We can also conclude that SNNB is better
than NB, NBTee, and CBA. As to the C4.5Rules, it gets the lowest error rates on 9
domains, which is one more than SNNB, but we can see that C4.5Rules also gets the
worst error rates on 15 domains.

 1st 2nd 3rd 4th 5th
NBTree 6 5 6 6 3
CBA 5 5 3 10 3
C4.5Rules 9 2 0 0 15
NB 6 5 7 4 4
SNNB 8 7 7 4 0

Table 4. Summary of ranking information

(3) With the comparison of the average accuracies, SNNB also produces more
accurate classifiers than Naïve Bayes, NBTree, C4.5Rules, and CBA. The geometric
mean error ratio shows that NB has 10.8% higher error, C4.5Rules 10.6% higher
error, NBTree 9.1% higher error, and CBA 4.1% higher error than SNNB.

5.2 Computational Requirements

At the end of section 4, we have already shown the time complexity of running SNNB
to classify a new object is linear wi th the number of training objects and the number
of attributes. To get an intuitionistic idea of the computational requirements of SNNB,
the table 5 records the average time of SNNB in CPU seconds on the personal
computer (Pentium III 700Mhz with 128M memory) for classifying each object. We
have not recorded the training time used to induce a global Naive Bayes classifier,
because this process is always very fast.

In table 5, when θ set as 0.5, the three worst cases are 0.1477 seconds, 0.1471

seconds, and 0.1402 seconds in the hypo domain, sick domain and waveform domain. These
three domains have 3163, 2800, and 5000 objects respectively, and they also have 25, 29, and
21 attributes respectively.

Support-Difference Threshold θ
Dataset

θ=0.3 θ=0.5 θ=0.7 θ=0.9
anneal 0.0496 0.0607 0.0868 0.1475
australian 0.0092 0.0110 0.0148 0.0223
auto 0.0074 0.0101 0.0156 0.0324
breast-w 0.0063 0.0073 0.0102 0.0157
cleve 0.0051 0.0058 0.0070 0.0098
crx 0.0098 0.0120 0.0159 0.0249
diabetes 0.0075 0.0087 0.0105 0.0138
german 0.0203 0.0240 0.0310 0.0429
glass 0.0033 0.0042 0.0048 0.0092
heart 0.0046 0.0053 0.0070 0.0091
hepatitis 0.0038 0.0046 0.0058 0.0099
horse 0.0070 0.0088 0.0124 0.0206
hypo 0.1315 0.1477 0.1798 0.2734
ionosphere 0.0104 0.0131 0.0184 0.0347
iris 0.0007 0.0007 0.0012 0.0015
labor 0.0011 0.0019 0.0021 0.0021
led7 0.0371 0.0520 0.0812 0.1274
lymph 0.0028 0.0047 0.0081 0.0104
pima 0.0068 0.0081 0.0094 0.0123
sick 0.1315 0.1471 0.1735 0.2396
sonar 0.0164 0.0190 0.0235 0.0357
tic-tac-toe 0.0066 0.0089 0.0125 0.0176
vehicle 0.0141 0.0199 0.0312 0.0646
waveform 0.1103 0.1402 0.2057 0.3432
wine 0.0025 0.0037 0.0052 0.0067
zoo 0.0018 0.0028 0.0060 0.0113
Average 0.0234 0.0282 0.0377 0.0592

Table 5. Average time to classify a new object (in seconds)

6 Related Work

Although the underlying mechanism in SNNB is lazy, SNNB is closely related to the
Naïve Bayes Tree method. Let us consider two kinds of neighborhood,

(1) Feature-based: For any object x and a feature subset F of its description, the F-
neighborhood of x consists of all the objects containing the feature subset F.

(2) Distance-based: For any object x and a distance d, the d-Neighborhood of x
consists of all the objects whose distances are less than d.

Now, it is clear that SNNB uses the Naïve Bayes classifier trained on a selective
distance-based neighborhood of the input test object to make classification. On the
other hand, NBTree uses the Naïve Bayes classifier trained on a selective feature-
based neighborhood of the input test object to make classification.

Furthermore, our method is also related to the k-nearest neighbor (k-NN) algorithm
[3], which is one of the most venerable algorithms in machine learning. Both SNNB
and k-NN are based on distance (or similarity). The k-NN algorithm can be
decomposed into two phases: Phase 1 determines a neighborhood which is formed by

the nearest k neighbors, while Phase 2 applies a simple classifier (Majority Voting) to
classify the new object. If we replace the simple classifier (Majority voting in original
k-NN algorithm) with Naïve Bayes, we can find that SNNB is also similar with the k-
NN algorithm, and SNNB can be viewed as a hybrid method of Naïve Bayes and
Nearest Neighborhood.

7 Conclusion

In this paper, we have developed a selective neighborhood-based Naive Bayes
algorithm, SNNB. The contribution of SNNB is that it lazily constructs a set of Naïve
Bayes classifiers, and chooses one of them to make decisions. Experimental results
demonstrate that our proposed algorithm is not only able to improve the accuracy of
Naïve Bayes, but it is also able to outperform existing state-of-art classification
methods such as NBTree, CBA and C4.5. We have also shown that SNNB is
computationally efficient.

Acknowledgements
We thank the anonymous reviewers for their suggestions. This work is supported by
the NSTB-NUS research project R-252-000-102-112 and R-252-000-102-303. The
third author’s work was partly supported by National Natural Science Fund of China
(No. 69985004).

References

[1] Aha, D.W. Lazy Learning. Dordrecht: Kluwer Academic, 1997
[2] Cheng, J., & Greiner, R. Comparing Bayesian network classifiers. in Proceedings of the

fifteenth conference on uncertainty in artificial intelligence, 1999
[3] Cover, T.M., & Hart, P.E. Nearest neighbor pattern classification. IEEE Transactions on

Information Theory, 1996, vol. 13, pp. 21-27
[4] Domingos, P., & Pazzani, M. On the optimality of the simple bayesian classifier under

zero-one loss. Machine Learning, 1997, Vol. 29, pp. 103-130
[5] Duda, R.O., & Hart, P.E. Pattern Classification and Scene Analysis. New Yaork: John

Wiley, 1973
[6] Fayyad, U.M, & Irani, K.B. Multi-interval discretization of continuous-valued attributes

for classification learning. IJCAI-93, pp. 1022-1027
[7] Friedman, J.H., Kohavi, R., and Yun, Y. Lazy decision trees. In Proceedings of the

Thirteenth National Conference on Artificial Intelligence, 1996, pp. 717—724
[8] Friedman, N., & Goldszmidt, M. Building classifiers using Bayesian networks.

Proceedings of the Thirteenth National Conference on Artificial Intelligence, 1996, pp.
1277-1284

[9] Kohavi R. Scaling Up the Accuracy of Naïve-Bayes Classifiers: a Decision-Tree Hybrid.
in Simoudis E. & Han J. (eds.), KDD-96: Proceedings Second International Conference
on Knowledge Discovery & Data Mining, AAAI Press/MIT press, Cambridge/Menlo
Park, pp. 202-207, 1996.

[10] Kononenko, I. Semi-naïve Bayesian classifier. in Proceedings of European Conference on
Artificial Intelligence, 1991, pp. 206-219

[11] Langley, P., & Sage, S. Induction of selective Bayesian classifiers. in Proceedings of the
Tenth Conference on Uncertainty in Artificial Intelligence, 1994, pp. 339-406

[12] Liu, B., Hsu, W., and Ma, Y. Integrating Classification and Association Rule Mining.
Proceedings of the Fourth International Conference on Knowledge Discovery and Data
Mining. New York, USA, 1998.

[13] Merz, C.J., and Murphy, P. UCI repository of machine learning database
[http://www.cs.uci.edu/~mlearn/MLRepository.html], 1996

[14] Pazzani, M. Constructive induction of Cartesian product attributes. in Proceedings of the
Conference ISIS96: Information, Statistics and Induction in Science, 1996, pp. 66-77

[15] Quinlan, J.R. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993
[16] Zheng, Z. Naïve Bayesian classifier committees. in Proceedings of European Conference

on Machine Learning, 1998, pp. 196-207
[17] Zheng, Z. and Webb, G.I. Lazy Learning of Bayesian Rules. Machine Learning, 2000,

Vol. 41(1), Kluwer Academic Publishers, pp. 53-84

