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ABSTRACT 
Advances in imaging techniques have led to large repositories of 
images. There is an increasing demand for automated systems that 
can analyze complex medical images and extract meaningful 
information for mining patterns. Here, we describe a real-life 
image mining application to the problem of tumour cell counting. 
The quantitative analysis of tumour cells is fundamental to 
characterizing the activity of tumour cells. Existing approaches 
are mostly manual, time-consuming and subjective. Efforts to 
automate the process of cell counting have largely focused on 
using image processing techniques only. Our studies indicate that 
image processing alone is unable to give accurate results. In this 
paper, we examine the use of extracted features rules to aid in the 
process of tumor cell counting. We propose a robust local 
adaptive thresholding and dynamic water immersion algorithms to 
segment regions of interesting from background. Meaningful 
features are then extracted from the segmented regions. A number 
of base classifiers are built to generate features rules to help 
identify the tumor cell. Two voting strategies are implemented to 
combine the base classifiers into a meta-classifier. Experiment 
results indicate that this process of using extracted features rules 
to help identify tumor cell leads to better accuracy than pure 
image processing techniques alone. 
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1. INTRODUCTION 
The mechanism of tumor cell metastasis has been the subject of 
research for many years in pathology. Tumor cells first migrate 
from the primary tumor, penetrate  into the circulation, and 
eventually colonize distant sites.  Knowledge regarding the 
dissemination of tumor cells has been considered very important 
in clinical studies of pathology.   The quantitative analysis of 
tumor cells in the filed of pathology forms the fundamental 
element to characterize the dissemination activity of tumor  cells. 
In traditional pathology, tumor cells are first stained. Then, they 
are being introduced into experimental animals such as mice.  
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After a few days, tissue specimens containing the stained tumor 
cells are prepared. A highly trained medical professional will then 
analyze the tumor cell metastasis by manually counting the 
number of stained tumor cells in the specimen.  This process is 
very time-consuming and not objective. Figure 1 shows some  
examples of typical images of tissue specimens with the stained 
tumor cells. 
 

        

Figure 1.  Small portions of a tissue -section histological image 
 
Many of these images exhibit poor contrast with non-uniform 
background illumination. In particular, the tumor cell boundaries 
are not sufficiently sharp to be readily extracted and many tumor 
cells, in fact, overlap with each other to for m cell groups.  The 
following observations have been made with regard to the 
problem of tumor cells identification:  
1) High intensity pixels in the form of white patches scattering 

in the image may have a number of interpretations: they 
could be the true tumor cells (see Figure 2a), or they could be 
clumped cell groups where the tumor cells have grown to 
form a colony (Figure 2b), or they could be histologial noise 
such as reflection of light on the spherical surface of normal 
cells (Figure 2c), or they could be psedopods of tumor cells 
(Figure 2b).  

2) The non-uniform background illumination may result in the 
intensity of the tumor cells being darker than the background 
intensity at another portion of the image (see Figure 2d).  

3) The presence of cell fragments (see Figure 2b) complicates 
the problem further as their cell boundaries are typically not 
sharp enough to be readily extracted. In addition, there are 
many situations where the cells are touching one another that 
resulted in highly irregular shape (Figure 2b).   

 
There have been a number of attempts to automate the process of 
tumor cell counting [1-10]. Many of these attempts focus on using 
pure image processing techniques to identify the tumor cells. 
However, due to the highly complex nature of the tumor cells 
images as described above, these approaches have limited success. 
 



                
                (a)                  (b)                  (c)                     (d) 

Figure 2. a) Individual tumor cells, b) clumped tumor cell 
groups, fragments and pseudopods of tumor cells,   
c) histological noise, d) ‘brighter’ background. 

 
In this paper, we propose a robust local adaptive thresholding and 
dynamic water immersion algorithms to segment regions of 
interest from the background. These regions of interest may 
correspond to true tumor cells or histological noise such as white 
light reflection regions and the extended psuedopods of tumor 
cells. Based on the segmented regions of interests, meaningful 
features are extracted. Three base classifiers are then built to 
generate features rules that will differentiate the tumor cells from 
the histological noise. Further, it is observed that the three 
different classifiers may potentially offer complementary 
information about the patterns to be classified. This could be 
integrated to improve the overall performance of the identification 
system. Two integration strategies, namely majority vote and 
weighted vote, have been applied to unify the three base 
classifiers into a meta classifier. Experimental results indicate that 
this process of using extracted features rules to help identify 
tumor cells leads to better accuracy than pure image processing 
techniques alone, and meta-classifier with weighted vote has the 
best predictive accuracy.     
 
2. RELATED WORK 
The design of an automatic system for medical image analysis in 
pathology has been the main research objective for many years. 
There have been many cell segmentation and identification 
methods that employ image processing techniques to count the 
number of tumor cells in digitized histological images. They are 
categorized into statistical classification methods [6,7,9], region 
growing methods [3,4], and boundary methods [5,8,10].  
 
Awasthi et al. [3] used a combination of multiple thresholding, 
dilation morphology operation and region growing methods to 
perform cell segmentation. Berns et al. [4] used a combination of 
median filter, local histogram, and morphology filter with 
watershed method to achieve the same goal of cell segmentation. 
Gauthier et al. [5] used global thresholding, component labeling, 
morphology filter. Jeacocke et al. [6] used a multi-resolution 
method which contains quadtree smoothing, lowest level 
classification and boundary re-estimation by water immersion. 
Chen et al. [7] used spatial adaptive filter, watershed and refining 
of the labeled image. Anoraganingrum  [8] used median filter and 
mathematical morphology operation for edge detection based cell 
segmentation. Kovalev et al. [9] used pattern recognition based on 
intensity of G image plane and the balance between G and B 
intensity for color images. Wu et al. [10] used cost function based 
optimal method to obtain a parametric reconstructed image which 
approximates the original image and threshold such image to 
segment cells from background.   
 

Although these methods can be simply implemented and have 
satisfactory experiment results with relatively simple medical 
images, they work poorly on complex images. No further 
processing was suggested to improve the ability of automatic cell 
segmentation. This is the reason that we propose a robust image 
processing technique to cope with complex histological images 
and some data mining techniques to help improve system 
performance.   
 
Recently, research in data mining and knowledge discovery is 
rapidly gaining popularity in the field of medical image 
classification. Some of the research and applications carried out 
use various data mining classification techniques for image 
categorization. Antonie et al. [11] investigated the use of neural 
network and association rule mining for classifying digital 
mammongrams into two categories: normal and abnormal images. 
Hsu et al. [12] combined 12 image attributes extracted for each 
individual vessel segment and fed them into an association based 
data mining classification tool, CBA to classify the input vessel 
segments as normal or abnormal in the application of an 
Integrated Retinal Information system. However, as far as we 
know, there has been no application of data mining techniques to 
the problem of tumor cell identification.  
 
3. OVERVIEW OF OUR APPROACH 
First, we apply a robust local adaptive thresholding to segment 
white patches with histological meaning from non-uniform 
illumination background. Second, we use a dynamic water 
immersion approach to detach touching cells in clumped cell 
groups and extract the regions of interesting for further 
investigation.  For each segmented regions, we extract three 
relevant features of size and shape that accurately describes the 
characteristics of the region. Next, data mining techniques are 
applied on the extracted features to derive a number of base 
classifiers, namely C4.5 classifier [13], Bayes classifier [14], and 
CBA classifier [15]. Finally, to improve the accuracy of the tumor 
cell detection problem, a meta classifier with two voting strategies 
of majority vote and weighted vote is built upon the three base 
classifiers.  
 
4. FEATURE EXTRACTION FOR MINING 
The most crucial step in this tumor cell identification system lies 
in the accurate segmentation of the regions of interest. 
Segmentation refers to the process of extracting meaningful 
regions out from the image background. Such regions typically 
correspond to objects of interest or their parts. The segmentation 
of tissue-section histological images into regions that correspond 
to meaningful biological structures, such as cells and clumped cell 
groups, is a difficult problem as described in Section 1. In this 
section, we study the use of adaptive local thresholding method 
and dynamic water immersion algorithm to perform the 
segmentation.  
 
Traditionally, segmentation techniques are categorized into two 
classes: those that employed region-finding algorithms versus 
those that employed contour-detection algorithms. Most classical 
region-finding algorithms involve partitioning the grey level 
histogram in such a way that the appropriate thresholds for 
segmentation can be easily determined. However, studies indicate 
that for complex images such as the histological images, simple 
thresholding techniques based on a globally determined value will 



not work well. One way to overcome this problem is to adopt a 
global adaptive thresholding method based on the analysis of 
pixel intensity distribution. According to the mean and variance of 
histogram, since we want to segment white patches from the 
background, the threshold can be set as follows,  
 

stdmeanTH ×+= α       (1) 

where TH is the adaptive threshold, mean and std represents the 
mean and standard deviation of the gray level distribution of all 
pixels respectively. α  is a constant. 
 
Global adaptive thresholding method can effectively segment 
white patches with histological meaning from background. 
However, when the images have non-uniform background where 
white patches at one location in the image can be ‘darker’ than the 
background at other locations, then global adaptive thresholding 
technique is unable to effectively extract all the white patches that 
are scattering over the image.  
 

         
      (a)                    (b)                      (c) 

Figure 3. Segmentation results by a) a global low threshold, b) 
a global high threshold, c) a local adaptive thresholding. 

 
Figure 3a and 3b shows the results of applying the global adaptive 
thresholding method with a low and a high threshold respectively. 
Clearly, a relatively low global threshold will lead to a large 
number of unexpected histological noise as shown in Figure 3a. 
To prevent extracting the unexpected histological noise, a 
relatively high threshold is preferred. However, this may lead to 
some histological meaning patches being excluded because they 
are even ‘darker’ than many background patches somewhere else 
not displayed in Figure 3b. To deal with this problem, we propose 
the use of a local adaptive thresholding method. The main idea is 
to apply the global thresholding method to one small area at a 
time. First, the image is divided into N×N sub-images of equal 
size. Then, the histogram of each sub-image is computed and the 
local threshold is determined based on the intensity distribution of 
pixels in the sub-image. Figure 3c shows the result of applying 
adaptive local thresholding method. 
 
Having obtained the segmented image, our next task is to separate 
the clumped cell groups into individual cells so that meaningful 
features for each cell can be extracted for mining purposes.  This 
problem is made complicated by the fact that the boundaries of 
the cells are fuzzy and cannot be readily extracted. Furthermore, 
the shapes of cells are varied due to the presence of cell 
fragments. Edge detection techniques such as Laplace of Gaussian 
(LoG) method perform poorly as it tends to lead to broken and 
disjoined edges which require additional efforts to analyze the 
output of an edge detection image before boundaries information 
can be extracted. 
 
Watershed or water immersion algorithm is considered to be a 
powerful technique for object contour detection. Water immersion 

algorithm works by grouping pixels with similar gradient 
information. Direct application of water immersion method to the 
digitized histological images typically produces over-
segmentation of the individual cells. Instead, we propose a 
dynamic water immersion algorithm to cope with the situation. 
Details of the algorithm follow. 
 
First, a N×N window is used to locate the local maxima points in 
the image. For each segmented white patches, we place the center 
of the window over each pixel in the white patches. If the 
intensity of the center pixel is the highest with respect to all the 
other pixels in the window, we say that the center pixel is a local 
maxima; otherwise, the window will move to be centered at 
another pixel to continue the search for all local maxima points. 
At the end of this phase, all the maxima are marked and they will 
be treated as the starting seeds for water immersion method.  One 
advantage of using the sliding window approach is that with the 
appropriate window size, it is possible to eliminate a large amount 
of maxima points that correspond to the light reflection regions 
thus removing false detection. This is because the intensity level 
of the maxima points corresponding to the light reflection patches 
are generally lower than that of potential tumor cells or even the 
extended pseudo-pods of cells. Given that the distances between 
the maxima points of the light reflection patches and the nearest 
maxima points of the neighboring tumor cells are generally less 
than that between two touching tumor cells, it is possible to set the 
window size in such a way that these false maxima points are 
‘absorbed’ by the neighboring tumor cell maxima points while the 
true maxima points corresponding to the touching cells are not 
affected. Figure 4a shows the effect of choosing a suitable 
window size on the detection of the true maxima points. 
 

             
                                    (a)                            (b)             
Figure 4. a) Local maxima marked by dark dots, b) regions of 

interesting extracted marked by continuous white line. 
 
Having identified the true maxima points, water immersion 
process starts from the detected maxima points and progressively 
floods its neighboring pixels. The neighboring pixels are defined 
to be the 8-direction neighbors. These neighbors are placed in a 
growing queue structure sorted in descending order of the 
intensity level of the pixels. The lowest intensity pixel in the 
growing queue will be ‘immersed’ first and it is marked as 
belonging to the same region label as the current seed. The 
marked pixel is then removed from the growing queue. All 
neighboring pixels whose intensity level is lower than the marked 
pixel are added to the growing queue. This progressive immersion 
process continues until the growing queue is empty.  
 
Unfortunately, simple application of the water immersion 
technique have the tendency of over-flooding that leads to 
incorrect shape and size of the potential tumor cells. This can 
seriously undermine the accuracy of the classifiers in the next 
step. To overcome this tendency of over-flooding, we apply an 
additional stopping criterion. In addition to ignoring all 



neighboring pixels with intensity level lower than the last placed 
pixel, we also ignore all those pixels whose intensity level is too 
low as compared to the last placed pixel. To implement this, we 
use a dynamically set seed-to-pixel contrast threshold. This 
threshold is larger for the ‘brighter’ seed and smaller for the 
‘darker’ seed. This is because from a priori knowledge, we know 
that the variation in intensity level of pixels neighboring to a 
‘brighter’ maxima point is larger than that to a ‘darker’ maxima 
point. The seed-to-pixel contrast threshold is determined using the 
equation as follows: 
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AthCon ××=          (2) 

where Con_th is the seed-to-pixel contrast threshold, A is a 
constant determined by analyzing the intensity level variation of 
the tumor cells , and  Imax is intensity level of the seed. 
Figure 4b shows that the proposed algorithm is able to effectively 
extracted accurate contours of the potential tumor cells, and is 
able to separate those touching tumor cells. At the same time, a 
large number light reflection region has been eliminated.  
However, the algorithm is still unable to eliminate false regions 
corresponding to the extended psuedopods of cell segments. In 
order to obtain an accurate count of tumor cells in the histological 
images, it is necessary to adopt a different strategy. In the next 
section, we discuss how data mining techniques can be used to 
help classify these regions of interest into either tumor cells or 
non-tumor cells.   
 
5. MINING THE TUMOR CELL FEATURES  
At this point in the analysis process of histological images, we 
have segmented the original image into individual regions of 
interest with different sizes and shapes. For each segmented 
region, we need to extract relevant information for meaning 
mining to take place. Although touching cells together with cell 
fragments make cells in highly irregular shapes, because the 
process of dynamic water immersion method to extract individual 
regions of interesting does not follow the irregular shapes of cells 
but extract potential tumor cell regions with rounder and larger 
appearance than extracted noise regions such as extended 
psuedopods , we focused on features related to the size and the 
shape of each region. 
 
Shape measurements are physical dimensional measures that 
characterize the appearance of an object. The goal is to use the 
least number of measurements to characterize an object 
adequately so that it may be unambiguously classified. Human 
judgements of shape complexity depend on several factors. Of 
course, topological factors play an important role, the number of 
components and holes in the object affect its judged complexity. 
In our tumor cell identification problem, we assume that the 
regions are made up of connected set of pixels with no holes 
inside. In order to guarantee this property, a closing 
morphological operation has been used to fill all the holes that 
may possibly exist in the regions of interest. This ensures that 
each region of interest has a single border. For such region, the 
size and shape attributes are area of the region, the roundness and 
the elongation of the region. 
 
The first feature we have found useful relate to the size of the 
region in the form of the area of the region. Area of the region of 
interest is defined as the total number of pixels within the region, 
up to and including the boundary pixels. Another useful feature is 

the perimeter of the region. It is defined as the arc length of the 
digital boundary of the region under consideration. The arc length 
is obtained from its chain code representation [16] with 8-
direction connection whereby the horizontal and vertical moves 

are counted as 1 and the diagonal moves are counted as 2 . With 
this definition, we define the roundness of a region as: 

2

4
Perimeter

Arearoundness ××= π          (3) 

Note that the roundness measurement is a value between 0 and 1. 
The greater the ratio is, the rounder is the object. If the ratio is 
equal to 1, the object is a perfect circle. As the ratio decreases 
from 1, the object becomes elongated or irregular. In the real 
plane, the ‘isoperimetric inequality’ rule holds that roundness = 1 
for any shape. However, in a digital measurement, it turns out that 
the roundness may be greater than 1 for small area regions.  
 
Another important feature to characterize morphology of a region 
is the elongation measure. The elongation of a region is defined as 
the ratio of the width of the minor axis to the length of the major 
axis. This ratio is computed as the minor axis width distance 
divided by the major axis length distance, giving a value between 
0 and 1. If the ratio is equal to 1, the region is roughly a square or 
is circularly shaped. As the ratio decreases from 1, the region 
becomes more elongated. Major axis is the longest line that can be 
drawn through the region. The two end points of the major axis 
are found by selecting the pairs of boundary pixels with the 
maximum distance between them. This maximum distance is also 
known as the major axis length. Major axis angle is the angle 
between the major axis and the x-axis of the image. The angle can 
range from 0° to 360°. Similarly, we define the minor axis length 
and minor axis angle where the minor axis must maintain 
perpendicula rity with respect to the major axis at all time. The 
result is a measure of the degree of elongation, Elong 

MINOR

MAJOR

L
L

Elong =               (4) 

where  LMAJOR is the major axis length of the region and LMINOR is 
the minor axis length of the region.  
 
With the extracted features of each regions of interest, a number 
of base classifiers are built to help classify these regions into 
either tumour cells or non-tumour cells. We have selected the 
three most commonly used data mining techniques to build our 
team of base classifiers. The first base classifier is the statistical 
Bayes classifier [14] which incorporates the full covariance 
matrix. The size and shape features of the regions of interest are 
not necessarily independent of each other and maintaining the 
correlation information among them may help to improve the final 
classification performance. In the training phase, the mean vector 
and the covariance matrix are computed from the training data to 
model the Bayes classifier. When a test data comes in, it is 
assigned to the class with the highest posterior probability. Our 
second base classifier is based on the decision tree techniques. We 
use the most widely cited decision tree classification tool, C4.5 
[13], to build this base classifier. Our third and final base 
classifier is based on association rules mining technique. This 
classifier is built using the Classification-Based on Association 
(CBA) tool that was first proposed in 1998 [15].  
 
While the individual classifiers do give reasonably accurate 
predictions of tumor versus non-tumor cells, to improve the 
predictive accuracy further, we propose the use of two voting 



strategies to integrate the base classifiers into a meta-classifier. 
The first voting strategy is the majority vote strategy. In the 
majority vote strategy, the meta classifier will output the majority 
class among all the base classifiers as the final class. For example, 
in our problem, we have two classes: tumor versus non-tumor. 
Once test data comes in, if the Bayes classifier identifies it as 
class tumor, but both the C4.5 and CBA classifiers classify it as 
class non-tumor, then the majority-vote meta-classifier will assign 
the test data to class non-tumor. This technique is simple but it 
does not take full advantage of the strengths of the different 
classifiers. 
 
It is observed that different classifiers have different abilities in 
classifying the different classes. For example, the Bayes classifier 
may be very accurate in identifying the tumor class, whereas the 
CBA classifier may be very good in identifying the non-tumor 
class. To take full advantage of their different strengths, a 
weighted vote strategy for building the meta classifier is proposed. 
In this strategy, different weights are assigned to the individual 
classifier’s outputs for different classes. Assume the weight of the 
Bayes classifier when it results in class tumor is α1, and when it 
results in class non-tumor is α2. Similarly, the weight of the C4.5 
classifier when it results in class tumor is α3, and for non-tumor 
class, the weight is α4. Finally, the weight of the CBA classifier 
when it results class tumor is α5, and for the non-tumor class, the 
weight is α6. All these weights are in the range from 0.0 to 1.0.  
When a test data comes in, if the Bayes classifier identifies it as 
belong to class tumor, the score of this test data for class tumor is 
α1, and at the same time, the score of the test data for class non-
tumor is 1-α1. If the Bayes classifier identifies it as belong to class 
non-tumor, then the score of the test data for class tumor is 1-α2, 
while the score for class non-tumor is  α2. In the same manner, we 
are able to obtain the scores for class tumor and non-tumor from 
the other two base classifiers. At the meta classifier level, the total 
scores for the two classes are computed. If the total score for class 
tumor is greater than the total score for class non-tumor, the 
metal-classifier will classify the particular test data to be class 
tumor.  
 
6. EXPERIMENTAL RESULTS 
The images used in our experiments are derived from the 
histological sections containing tumor cells of experimental 
animals’ lungs which had been stained using GFP - green 
fluorescent protein. Female mice, 4–8 weeks of age, were given 
injections with a single cell suspension of 2 x 106 cells in 100 µl 
into the tail vein. After 24 or 48 h, the mice were sacrificed and  

the lungs were frozen in Histo Prep. Ten-micrometer frozen 
sections were made. The slides were scanned using a digital 
micrometer (Microcode  II; Boeckeler Instruments, Tucson, AZ) to 
ensure that all areas were counted only once. Green fluorescent 
cells were confirmed by overlay with a DAPI-stained nucleus. The 
tissue sections were observed by a Leica inverted fluorescent 
microscope. A Hamamatsu Orca digital camera was connected to 
the microscope and linked to a Mac G4.  A ×4 objective was used 
during acquisition.   Histological images were captured directly 
using the digital camera as 8-bit gray-level 1024×1022 TIFF files 
and stored on hard disk of Mac G4 computer. The histological 
images were characterized by high intensity pixels in the form of 
white patches corresponding to potential tumor cells expressing 
GFP. The proposed methods were evaluated on a database of 20 
tissue-section histological images captured under same 

environment such as subjective magnification, exposure and data 
format, etc. The resolution of these images is 1024×1022 in 8-bit 
grey level TIFF format.  
 
During the local adaptive thresholding stage, the images are 
divided into 3×3 sub-images. After performing some initia l 
studies, we set α in Eqn (1) to 2.35. This value is good enough to 
retain as many white patches as possible while removing most of 
the background noise. For the dynamic water immersion 
algorithm, a window size of 7x7 pixels is used to locate the local 
maxima.  The Con_A in Eqn (2) was determined by initial 
investigation to be 42 for extracting contours of regions of 
interesting. Figure 4 show an example of the segmented white 
patches and local maxima marked by dark dots. Contours of 
regions of interesting extracted by using the dynamic water 
immersion algorithm are highlighted by continuous white lines.  
 
In our experiments, there are 2850 regions of interest in total.  A 
medical professional had labeled 1704 regions to be tumor cells. 
This implies that us ing the proposed image processing technique 
alone, we are only able to achieve an accuracy of 59.9%, which is 
far from satisfactory. Next, we perform experiments on the 
predictive accuracy of the three base classifiers. Here, we use the 
10 fold cross-validation testing strategy. The results obtained for 
10 splits of the database are summarized in Table 1. 

Table 1. Error rates for the 10 splits with the three base 
classifiers. 

 Bayes C4.5 CBA 

Split Error 
rate (%) 

Error 
rate (%) 

Error 
rate (%) 

1 15.8 15.1 17.5 
2 17.5 15.1 15.4 
3 23.2 20.4 18.2 
4 21.1 20.0 17.9 
5 22.1 20.7 20.7 
6 14.7 16.8 18.9 
7 17.9 17.9 15.8 
8 26.0 24.6 21.1 
9 30.8 23.2 20.7 

10 25.3 26.0 22.1 
Average (%) 21.4 20.0 18.8 

 

On average, the CBA classifier has the lowest average error rate 
of 18.8%. We also noticed that the classification error rates of the 
CBA classifier for 10 splits of database are more compact and 
consistent than that of Bayes and C4.5 classifiers.  Table 2 
summarizes the results of the experiments for evaluating the 
performance of meta-classifiers using the two voting strategies. In 
the table, false-positive error rate refers to the misclassification of 
tumour cell as non-tumour cell while  false negative error rate 
relates to misclassification of non-tumour cell as tumour cell.  
Here, the average error rate for the majority-vote meta-classifier is 
19.0%. On the other hand, the weighted-vote meta-classifier has 
the lowest average error rate among all the individual base 
classifiers with an average error rate of 18.7%. This result is 
achieved at α1 = 0.9, α2 = 0.6, α3 = 0.7, α4 = 0.6, α5 = 0.6, α6 = 
0.9. The Bayes classifier has a stronger ability to identify tumor 
cells, hence it receives greater weight for classifying class tumor 
cell. Statistical significance evaluations of paired t-tests between 
the weighted-vote meta-classifier and individual base classifiers 



have also been conducted. It was found that the improvement of 
the meta-classifier over Bayes classif ier is signif icant at 78% 
confidence level. However the improvement over the CBA 
classifier is not really statistically significant.  

Table 2. Comparison of classification performances of three 
base classifiers and the meta-classifiers using both majority 
and weight voting combination strategies.  

Classification 
method 

False-
positive 

error 
rate (%)  

False-
negative 

error 
rate (%) 

Average 
error rate 

(%) 

Bayes classifier 6.6 43.5 21.4 
C4.5 classifier 12.0 31.8 20.0 
CBA classifier 14.1 25.8 18.8 
Meta-classifier 
(Majority Voting) 10.4 31.7 19.0 

Meta-classifier 
(Weight Voting) 14.1 24.8 18.7 

 
 
7. CONCLUSION 
There is an increasing demand for automated systems that can 
analyze complex medical images and extract meaningful 
information for mining patterns. The quantitative analysis of 
tumour cells is fundamental to characterizing the activity of 
tumour cells. In this paper, we describe a real-life image mining 
application to the problem of tumour cell counting. We propose a 
robust local adaptive thresholding and dynamic water immersion 
algorithms to segment regions of interesting from background. 
Our studies indicate that image processing alone is unable to give 
accurate results. Therefore, meaningful features are extracted 
from the segmented regions and the use of extracted features rules 
is examined by building a number of base classifiers to help 
identify the tumor cell. Two voting strategies are also 
implemented to combine the base classifier into a meta-classifier 
to improve identification accuracy. Experiment results indicate 
that this process of using extracted features rules to help identify 
tumor cell leads to better accuracy than pure image processing 
techniques alone. Meta-classifier with weight voting has the 
lowest average error rate among all the classifiers. 
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