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Abstract 
Quantitative analysis of tumor cells is fundamental to pathological studies. Current practices are 

mostly manual, time-consuming and tedious, yielding subjective and imprecise results. To advance 

the understanding of tumor cells behaviour, it is critical to have an objective way to count the number 

of tumor cells. In addition, these counts must be reproducible and independent of the person 

performing the count. To achieve this, we propose a two-stage tumor cell identification strategy. In 

the first stage, potential tumor cells are segmented automatically using local adaptive thresholding and 

dynamic water immersion techniques. Unfortunately, due to histological noise in the images, a large 

number of false identifications have been made. To improve the accuracy of the identified tumor cells, 

a second stage of feature rules mining has been initiated. Experiment results show that image 

processing techniques alone are unable to give accurate results for tumor cell counting. However, with 

the use of features rules, we are able to achieve an identification accuracy of 94.3%.  

 

1. Introduction 
The mechanism of tumor cell metastasis has been the subject of research for many years in 

pathology [1,2]. Tumor cells first migrate from the primary tumor, penetrate into the 

circulation, and eventually colonize distant sites. Knowledge regarding the dissemination of 

tumor cells is very important in clinical studies of pathology. The quantitative analysis of 

tumor cells in the filed of pathology forms the basis for characterizing the dissemination 

activity of tumor cells. To perform quantitative analysis of tumor cells, the original tumor 

cells are first stained with special materials such as GFP – Green Fluorescent Protein. These 

stained cells are then being introduced into the experiment animals. After a few days, tissue 

sections containing the stained tumor cells are harvested from certain body organ such as 

lungs. A trained medical professional will then manually count the number of tumor cells 

expressing GFP in the tissue section under a converted fluorescence microscope focused onto 

the tissue section or on a monitor screen displaying fluorescence cell images that are digitally 



captured from the tissue sections. This process is laborious and tedious, yielding subjective 

and imprecise results. Hence, there is an increasing demand for an automated system that can 

analyze the digitized histological images and identify tumor cells accurately.   

The design of such an automatic segmentation system for biomedical image analysis 

in pathology has been a major research objective for many years. Automatic segmentation 

methods are generally based on local image information such as pixel intensity, discontinuity 

of intensity, histogram or clusters. Traditionally, segmentation techniques are categorized 

into two classes: those that employed region-finding algorithms versus those that employed 

contour-detection algorithms. Region-finding algorithms [3, 4, 5, 6] involve partitioning the 

grey level histogram in such a way that the appropriate thresholds for segmentation can be 

easily determined. Contour-detection algorithms rely on the discontinuity of the image 

intensities or texture at the boundary of objects [7, 8]. Contour-finding algorithms generally 

have poor performance in noisy images as the presence of noise tends to lead to broken and 

disjoined edges which require additional efforts to analyze these broken edges before 

boundaries information can be extracted. Although region-finding algorithms are less 

sensitive to image noise, they are usually computationally more expensive.   

There have been a lot of cell segmentation methods that employ image processing 

techniques to deal with case-specific problems reported in the literature [9-16]. Jeacocke et 

al. [9] used a multi-resolution method which contains quadtree smoothing, lowest level 

classification and boundary re-estimation by water immersion. Chen et al. [10] used spatial 

adaptive filter, watershed and refining of the labeled image. Wu et al. [11] presented a 

parametric fitting algorithm for segmentation of single cervical and breast cell images from 

cytology smears by incorporation a prior knowledge of the objects to be identified as 

elliptical curves in the paper. However, in most situations, a prior information is not be 

available. Thresholding methods based on different kinds of statistical information such as 

grey-level histogram and various mathematics morphological operations were also used for 

segmentation. Kovalev et al. [12] used intensity histogram of G color plane and the balance 

between G and B color intensity for color images. Awasthi et al. [13] used a combination of 

multiple thresholding, dilation morphology operation and region growing methods to perform 

cell segmentation. Berns et al. [14] used a combination of median filter, local histogram, and 

morphology filter with watershed method to achieve the same goal of cell segmentation. C. 

G. Loukas et al. [15] generated Principal Component (PC) and processed histogram of the PC 



with greatest contrast by an appropriate threshold. The region of interests (ROIs) were 

detected by constructing a distance map for every particle. Anoraganingrum [16] used 

median filter and mathematical morphology operation for edge detection based cell 

segmentation. However, these methods are unable to effectively segment the ROIs with 

histological noise and non-uniform background. Wu et al. [17] proposed a two-step 

segmentation strategy to deal with the problem of uneven illumination in images. First an 

approximate region containing the single cell and part of the background near the cell is 

detected by applying a global threshold to the local variation of intensity. Second the cell is 

segmented from the background within such approximate region by Otsu’s method. The 

drawback of the method is that the computation is very expensive and clumped cell clusters 

are not taken into account. There are few works reported on extracting individual cells from 

segmented ROIs corresponding to clumped cell clusters. Mathematical morphology 

operations and watershed techniques lead to over-segmentation and result irregular contours 

of cells. C. G. Loukas et al. [15] used either a standard morphological operation called 

Skeleton by Influence Zone or a proposed heuristic processing of a distance map resulted 

from former process step to detect individual cells. A.K. Jain et al. [18] employed a 

hierarchical clustering algorithm to group together those boundary points of a cell clump that 

belong to the same globally convex sections of the boundary. When the segmented ROIs do 

not provide sufficient shape complexity information for convex or concave analysis and cell 

boundaries inside the cell clusters are not sharp enough to be readily extracted, these methods 

generally seem unable to successfully detect individual cells.   
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Figure 1.    Portions of a tissue-section histological image. 



Figure 1 shows the highly complex characteristics of some typical fluorescence cell images 

of tissue sections in the present study. Most of these images exhibit non-uniform background 

illumination. In particular, the tumor cell boundaries are not sufficiently sharp to be readily 

extracted and it can be observed that many tumor cells, in fact, join with each other to form 

clumped cell clusters throughout the images.  We make the following observations:  

1)  High intensity pixels in the form of white patches scattering in the image may have a 

number of interpretations: they could be the individual tumor cells (Figure 2a), or they 

could be clumped cell clusters where the tumor cells have grown to form a colony (Figure 

2b), or they could be histological noise such as reflection of light on the spherical surface 

of normal cells (Figure 2c), or they could be pseudo-pods of tumor cells (Figure 2b).  

2)  The non-uniform background illumination may result in the intensity of the tumor cells 

being darker than the background intensity at distant location of the image (Figure 2d). 

3)  The presence of cell pseudo-pods complicates the problem further as cell boundaries are 

typically not sharp enough to be readily extracted. In addition, there are many situations 

where the cells are joined or located so close to one another that highly irregular shapes 

are formed (Figure 2b). 

4)  The intensity of a tumor cell usually peaks at the center of the cell. However, when two 

cells are touching an intensity valley will be formed between the two peaks (Figure 2b).   
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Figure 2.   (a) Individual tumor cells, (b) clumped tumor cell clusters and pseudo-pods of 
tumor cells, (c) histological noise of light reflection, (d) ‘brighter’ background. 

 

Due to the complex characteristics of the images in our study, it is evident that no existing 

case-specific methods for cell segmentation can produce satisfactory results. Moreover, our 

studies indicate that image processing techniques alone are unable to give accurate results for 



tumor cell counting. Instead, we propose a two-stage tumor cell identification strategy. First, 

we propose a local adaptive thresholding approach to segment regions of interest from the 

background by minimizing the negative effects of distant background noise. We also propose 

a dynamic water immersion algorithm to detect individual tumor cells in clumped tumor 

clusters so that these individual tumor cells can be extracted as objects of interest. 

Investigations show that our proposed approach is able to effectively extract reliable circle-

like contours of the tumor cells, as well as contours that correspond to histological noise such 

as white light reflection areas and the extended pseudo-pods of tumor cells. In other words, 

pure image processing techniques alone are unable to provide a high accuracy for the 

identification of tumor cells. To overcome this problem, we propose the use of feature rules 

to help distinguish tumor cells from histological noise.  

Applying feature rules to aid in pattern identification is rapidly gaining popularity in 

the field of biomedical engineering. Thiran et al. [19] employed the evaluation of an overall 

score for a digital image based on extracted features measured on individual cells to decide 

whether the tissue image is cancerous or not. However, they do not perform classification on 

individual cells using the extracted features. Chan et al. [20] compared a variety of machine 

classifiers built from the STATPAC indexes traditionally used for glaucoma diagnosis on 

SAP data. The SAP data are scalar values and are collected from existing database. 

Properties, advantages and disadvantages of generative and discriminative machine classifiers 

are applied to the SAP data have been compared. Nattkemper et al. [21] used an artificial 

neural net of local linear map for classifying fluorescent lymphocytes in tissue sections. The 

system is semi-automatic that it acquires visual knowledge from a set of training cell-image 

patches selected by a user. Antonie et al. [22] investigated the use of neural network and 

association rule mining for classifying digital mammograms that were segmented into two 

categories: normal and abnormal images. Hsu et al. [23] combined 12 image attributes 

extracted for each individual vessel segment and fed them into an association based data 

mining classification tool (CBA) to classify the input vessel segments as normal or abnormal 

in the application of an Integrated Retinal Information system. Vessel segments were 

obtained by proposed case-specific image processing techniques. L. Zheng et al. [24] 

presented several artificial intelligence techniques to detect candidate regions in 

mammogram. A tree-type classification strategy was then applied at the end to determine 

whether a given region was suspicious for cancer. However, as far as we know, there has 



been no application of data mining techniques to the problem of tumor cell identification for 

fluorescence cell images.  

In this paper, relevant meaningful features are extracted from objects of interest and 

three base classifiers are built to generate features rules that will differentiate tumor cells 

from histological noise. Further, since different classifiers may potentially offer 

complementary information about the patterns to be classified, they could be integrated to 

improve the overall performance of the identification system [25, 26]. In this study, we unify 

three base classifiers (decision-tree based, association-rules based, and probability-based) 

into a meta-classifier using the majority vote strategy. Experiment results indicated that the 

second phase of using features rules to further enhance the accuracy of tumor cells 

identification is effective. We are able to achieve an accuracy of 94.3% in the identification 

of tumor cells.  

 

2. Overview 
Figure 3 shows an overview of our proposed approach. First, we apply a local adaptive 

thresholding method to segment the white patches as objects of interest. Second, we use a 

dynamic water immersion approach to locate the individual cells within clumped cell 

clusters. These individual cells are added to the set of objects of interest for further 

investigation. For each object of interest, we extract several discriminative features to 

accurately describe the characteristics of the extracted regions. Next, based on the extracted 

features, three classifiers are built to differentiate the tumor cells from noise. They are the 

Naïve Bayes classifier [27], C4.5 classifier [28] and CBA classifier [29]. Finally, a meta 

classifier with majority voting strategy is also implemented on top of the three base classifiers 

to further improve the accuracy for tumor cells identification. 
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Figure 3.  Overview of tumor cell identification process. 
 

 3. Objects of interest extraction 
The most crucial step in this tumor cell identification system lies in the effective extraction of 

the objects of interest which forms the basis for the next phase of feature-based classification. 

To accurately extract all objects of interest without missing any potential tumor cells, we 

adopt a two step process. The first step segments meaningful regions from the highly non-

uniform background. The emphasis in this step is to minimize the negative effects of distant 

background noise. The exact shape and size of the segmented regions are not important. The 



second step aims to separate the touching or closely located tumor cells out so as to obtain the 

individual objects of interest related to potential tumor cells. 

 

3.1  Local adaptive thresholding 

Segmentation of tissue images remains an open problem as described in Section 1. A popular 

implementation of region-finding segmentation methods is thresholding which can be 

regarded as pixel classification [30]. Thresholding methods can be classified as either global 

or local. Global thresholding techniques use a single threshold level for the entire image [3, 

4] while local methods [31, 32], similar in principle to contour-finding algorithms, develop a 

threshold surface which allows a different threshold value to be applied to each pixel. Local 

thresholding methods seem to produce unconnected boundaries of objects and various linking 

operations are needed for final object segmentation. In our case, the global thresholding 

method is unable to effectively segment all white patches that are scattering over the image. 

This is because that background is non-uniformly illuminated causing white patches at one 

location in the image to be ‘darker’ than the background at other locations. Applying a global 

thresholding across the entire image would result in ‘brighter’ background regions being 

misclassified as cells and ‘darker’ cell regions being misclassified as background.  

Figure 4(a) shows segmented result of a local portion of the entire image by applying 

the global thresholding method proposed by Otsu [4]. Clearly, a large number of unexpected 

background noises remain in the segmentation result for the image given. To deal with this 

problem, we propose the use of a local adaptive thresholding scheme based on the analysis of 

pixel intensity distribution in a specific sub-image. First, the image is divided into N×N sub-

images of equal size. Then, the histogram of each sub-image is computed and the local 

threshold is determined. According to the mean and variance of intensity histogram measured 

on the sub-image, the threshold is set as follows:  

stdmeanTH ×+= α           (1) 

where TH is the adaptive threshold, mean and std represents the mean and standard deviation 

of the intensity distribution of all pixels in the sub-image respectively. α  is a constant. Figure 

4(b) shows the result of applying local adaptive thresholding method to segment regions of 

interest from background with α  = 1.0. The segmented white patches cover all potential 

tumor cells as identified by a medical professional with only a small percentage of 



background noise. Hence, the local adaptive thresholding method is able to provide adequate 

segmentation results of white patches with histological meaning for further process. 
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Figure 4.    Segmentation results of regions of interest applied to the image in Figure 1(a). 
(a) by Otsu’s global thresholding method. (b) by the proposed local adaptive thresholding 
method.  
 
3.2  Dynamic water immersion 

Having obtained the segmented regions of interest, our next task is to separate the clumped 

cell clusters into individual cell objects so that meaningful features for each object can be 

extracted for further mining process.  This problem is made complicated by the fact that the 

boundaries of the cells are fuzzy and cannot be readily extracted. Furthermore, the shapes of 

cells are deformed due to the presence of cell pseudo-pods. Edge detection techniques such as 

Laplace of Gaussian (LoG) method perform poorly as it tends to lead to broken and disjoined 

edges which require additional efforts to analyze the output of an edge detection image before 

boundaries information can be extracted. 

Watershed or water immersion algorithm is considered to be a powerful technique for 

touching object contour detection [33, 34]. Water immersion algorithm works by grouping 

pixels with similar gradient information. Direct application of water immersion method to the 

digitized histological images typically produces over-segmentation of the individual cells. 

Instead, we propose a dynamic water immersion algorithm to cope with the situation.  

First, a sliding N×N window is used to locate the local peaks with maximum intensity 

in the regions of interest. For each segmented white patches, we place the center of the 

window over each pixel in the white patches. If the intensity of the center pixel is the highest 



with respect to all the other pixels in the window, we say that the center pixel is a local peak; 

otherwise, the window will move to be centered at another pixel to continue the search for all 

local peaks. At the end of this phase, all the peaks are marked and they will be treated as the 

starting seeds for water immersion method.   

One advantage of using the sliding window approach is that with the appropriate 

window size, it is possible to eliminate a large amount of peaks that correspond to the light 

reflection regions thus removing false detection. This is because the intensity levels of the 

peaks corresponding to the light reflection areas are generally lower than that of potential 

tumor cells or even the extended pseudo-pods of cells. Given that the distances between the 

peaks of the light reflection patches and the nearest peaks of the neighboring tumor cells are 

generally less than that between two touching tumor cells, it is possible to set the window 

size in such a way that these false peaks are ‘absorbed’ by the neighboring tumor cell peaks 

while the true peaks corresponding to the touching cells are not affected.  Another advantage 

of applying the sliding window with suitable size is to eliminate peaks within smaller isolate 

regions. This is done by setting an area threshold based on the window size (one fifth in the 

experiments). Any regions with area smaller than the threshold will not be considered for 

peaks detection. Figure 5(a) shows the result of choosing a suitable window size on the 

detection of peaks. Figure 5(b) illustrates with 3D representation that points F and J are in 

small regions and they are not marked out as peaks for water immersion algorithm.  

Having identified the intensity peaks, water immersion process starts from the 

detected peaks denoted as seeds and progressively immerses its neighboring pixels. The 

neighboring pixels are defined to be the 8-direction neighbors. These neighbors are placed in 

a growing queue structure sorted in descending order of the intensity level of the pixels. The 

lowest intensity pixel in the growing queue will be ‘immersed’ first and it is marked as 

belonging to the same object label as the current seed. The marked pixel is then removed 

from the growing queue. All neighboring pixels whose intensity level is lower than the 

marked pixel are added to the growing queue. This progressive immersion process continues 

until the growing queue is empty.  
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Figure 5.   (a) Results of intensity peaks detection applied to the image in Figure 1(a). Local 
intensity peaks are marked by bright white dots. (b) 3D representation of the same segmented 
regions of interest illustrates local intensity peaks as seeds for water immersion algorithm. 
Points F and J are in small isolate regions and not determined as peaks.  
 

The direct application of the water immersion technique has the tendency of over-immersion 

that leads to incorrect and deformed contours of the tumor cells. The tumor cells should be 

circular but instead, the resulted cell shapes are quite irregular. This can seriously undermine 

the accuracy of the classifiers which aim to distinguish tumor cell objects from noise objects. 

To overcome this tendency of over-immersion, we apply an additional stop criterion. Besides 

ignoring all neighboring pixels with intensity level lower than the last placed pixel, we also 

ignore all those pixels whose intensity level is too low as compared to the seed pixel. To 

implement this, we use a dynamically set seed-to-pixel contrast threshold. This threshold is 

larger for the ‘brighter’ seed and smaller for the ‘darker’ seed. This is because from a priori 

knowledge, we know that the variation in intensity level of pixels neighboring to a ‘brighter’ 

peak is larger than that to a ‘darker’ peak in which case the contour related to the ‘brighter’ 

peaks should be longer. The seed-to-pixel contrast threshold is determined directly relating to 

the intensity quantity of the seed involved using the equation as follows: 

255max
max

255
_

I

eIAthCon ××=              (2) 

where Con_th is the seed-to-pixel contrast threshold, A is a constant determined by analyzing 

the intensity level variation of the tumor cell objects , and  Imax is intensity level of the seed. 

The pseudo-codes for the dynamic water immersion algorithm are given as follows. 

 



 

Algorithm DynamicWaterImmersion 
 
Count_Q = 1 
FOR each seed of local intensity maxima s 
 Is = intensity value of the seed 
 Con_th = seed-to-pixel contrast threshold 
 FOR each 8-directional neighbor of the seed s, Pi 
  Ip = intensity value of Pi 

IF  (Ip > Is )  THEN 
Pi  Queue; Count_Q=Count_Q + 1 

ENDIF 
ENDFOR 
LOOP 

Sort elements in Queue in descent order 
IF ( Li is at last position in Queue) THEN 
 Il = intensity value of Li 

FOR each 8-directional neighbor of Li not in the Queue, Ri  
 Ir = intensity value of Ri 

IF  ( Ir > Il  .and. abs(Ir - Is) < Con_th)  THEN 
Ri  Queue; Count_Q=Count_Q + 1 

ENDIF 
 ENDFOR 

Li is removed from the Queue and marked the same object label as 
the seed. 
Count_Q = Count_Q – 1  

ENDIF 
IF ( Count_Q = 0 ) THEN exit LOOP 

ENDLOOP 
ENDFOR 

          

 

E

I

 
(a) (b)  

Figure 6.  (a) Illustration of extracted objects of interest marked by continuous white line 
applied to the image in Figure 1(a). (b) 3D representation of the same objects of interest 
illustrates that objects related to noise (E,I) have distinct characteristics from tumor cells 
such as smaller object volume. 



 

Figure 6(a) shows that the proposed algorithm is able to effectively extracted reliable 

contours of the tumor cells, and is able to separate those touching tumor cells. At the same 

time, a number of light reflection areas have been eliminated. However, the algorithm still 

extracts false objects corresponding to the pseudo-pods of tumor cells as shown in Figure 

6(b). With the existance of histological noise objects, the counting of tumor cells is not 

accurate. In the next section, we discuss how features mining algorithm can be used to 

increase the identification accuracy by automatically classifying these objects of interest into 

either tumor cells or non-tumor cells (histological noise). 

 

4. Tumor cell identification by features mining 
4.1 Feature extraction for tumor cell identification  

At this point, we have extracted individual objects of interest from tissue section images. For 

each extracted object, we need to extract relevant information for features mining to take 

place. A priori knowledge of the tumor cells’ characteristics indicates that touching cells and 

cell pseudo-pods resulted in irregularly-shaped tumor cells. Fortunately, with the proposed 

dynamic water immersion method, we are able to extract individual cells that conform to the 

circular appearance as shown in Figure 6(a). Moreover, the extracted objects that are due to 

histological noise usually bear different appearances from tumor cell objects in the sub-

images. Compared to tumor cells, objects due to histological noise can be characterized by 

lower intensity peaks (maximum intensity value of the object), smaller area and width 

measurement, smaller 3D volume measure and more elongated appearance complexity 

(Figure 6(b)). Hence, the following relevant features is able to provide sufficient 

discriminative power to classify objects into tumor cells and histological noises: (i) maximum 

intensity value of the object of interest (seed intensity value), (ii) power of the object of 

interest, (iii) elongation of the object of interest, (iv) area of the object of interest, and (v) 

width of the object of interest. 

The power of an object of interest is defined as follows. First, the minimum intensity 

value Im of the object is searched and stored.  Intensity value of each element in the object is 

subtracted by Im. The power is the sum of the modified intensity values of all elements in the 

object.  
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where P is the volume of an object of interest, N is the number of pixels enclosed in the 

object, Ik is the intensity value of object pixels and Im is the minimum intensity value in the 

object.    

An important morphological feature we employ to characterize the appearance of an 

object is the elongation measure. The elongation of an object is defined as the ratio of the 

width of the minor axis to the length of the major axis. This ratio is computed as the minor 

axis width distance divided by the major axis length distance, giving a value between 0 and 1. 

If the ratio is equal to 1, the object is roughly a square or is circular in shaped. As the ratio 

decreases from 1, the object becomes more elongated. Major axis is the longest line that can 

be drawn through the object. The two end points of the major axis are found by selecting the 

pairs of boundary pixels with the maximum distance between them. This maximum distance 

is also known as the major axis length. Similarly, the minor axis is defined as the line that it 

is perpendicular with respect to the major axis and the length between the two end points of 

the line intersected with the object is the longest which is called the width of the minor axis. 

The ratio, Elong, is a measure of the degree of elongation of an object. 
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where  LMAJOR is the major axis length of the object and LMINOR is the minor axis length of the 

object.  

In addition, two additional features are extracted: area of the objects of interest ( total 

number of pixels within the object, up to and including the boundary pixels), and width of the 

object (length of minor axis of an object of interest). These measures are useful in 

characterizing the appearance of connected objects. To ensure our objects of interest are 

connected set of pixels with no holes inside, we perform a closing morphological operation to 

fill all the holes that may possibly exist in the objects of interest. This ensures that each object 

of interest has a single border.  

 

4.2 Features mining by base and meta classifiers  

With the extracted features of each objects of interest, a number of base classifiers are built to 

help classify these objects into either tumour cells or non-tumour cells (histological noise). 



Here, we have selected the three most commonly used data mining techniques to build our 

team of base classifiers. The first base classifier is the Naïve Bayes classifier [27] which 

applies statistical method for pattern classification. Assuming the sample distributions of all 

classes are multivariate Gaussian distribution: 
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where 1 , i is the label of the different classes, L is the number of total classes which is 

equal to two in our study: class of tumor cells and class of non-tumor cells.   

Li ≤≤

The mean vector and the covariance matrix for each class could be computed from the 

training data by the maximum likelihood estimates. If there are N training samples, the 

statistics of the extracted features can be represented of the mean µ and covariance matrix Σ 

of these vectors, where 
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where k = 1, 2, …, N. 

In order to save computation load and evaluate reliable statistics, features are usually 

assumed to be independent which means the diagonal elements of the covariance matrix are 

zeros leading to a Naïve Bayes classifier. In this case, only the variances each feature for the 

different classes are computed. 

When a test data comes in, the classification rule will assign the test sample to the 

class with the highest posterior probability which can be written as follows. 
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where 1 , i is the label of the different classes, L is the total number of classes, P(ωi) is 

the class frequency and p(x) is a common factor for all classes. Furthermore, the 

classification rule can be simplified by using the discriminant function which is defined 

below.    
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The test sample is classified to the class which results the smallest value of the discriminant 

function. 



However, the true class distributions under consideration may not be Gaussian. In 

such cases, classification techniques that do not require such assumption may result in better 

performance. Therefore, we use the second base classifier based on the decision tree 

techniques that do not make the Gaussian distribution assumption. The most widely cited 

decision tree classification tool, C4.5 [28] is used to build this base classifier. C4.5 is based 

on ID3. The basic ideas behind ID3 are: 1) each node of the decision tree corresponds to a 

feature and each edge to a possible value of that feature. A leaf of the tree specifies the 

expected value of the feature for the samples described by the path from the root to that leaf. 

2) Each node in the decision tree should be associated with the feature which is most 

informative among the features not yet considered in the path from the root. 3) Entropy is 

used to measure how informative is a node. C4.5 is an extension of ID3 that accounts for 

missing values, continuous attribute value ranges, pruning of decision trees, rule derivation, 

and so on. For further details, refer to [28].  

Our third and final base classifier is based on association rules mining technique. This 

classifier is built using the Classification-Based on Association (CBA) tool that was first 

proposed in 1998 [29]. The CBA tool integrates classification rule mining technique and 

association rule mining techniques focusing on mining a special subset of association rules. 

Experimental results show the CBA based classifier is usually more accurate than C4.5. 

Check [29] for more information.    

In this study, we adopt 10 fold cross-validation testing strategy to train classifiers and 

evaluate classification accuracy.  For each round of testing, one tenth of collected samples are 

left as testing samples while the remaining samples are used to model the classifier. 

Classification measures such as false-positive and false-negative are computed accordingly. 

After 10 rounds of testing, the classification measures are averaged and this average value is 

reported as the final classification accuracy. From past experiments, it is known that different 

classifiers have different abilities in classifying the different classes [14, 15]. To take full 

advantage of their different strengths and to examine the further improvement of predictive 

accuracy, we propose the use of majority voting strategy to integrate the base classifiers into 

a meta-classifier. In the majority vote strategy, the meta-classifier will output the majority 

class among all the base classifiers as the final class. For example, in our problem, we have 

two classes: tumor versus non-tumor. Once test data comes in, if the Naïve Bayes classifier 



identifies it as class tumor, but both the C4.5 and CBA classifiers classify it as class non-

tumor, then the majority-vote meta-classifier will assign the test data to class non-tumor.  

 

5. Experimental results 
The images used in our experiments are derived from the tissue sections containing tumor 

cells of experimental animals’ lungs which had been stained using GFP - green fluorescent 

protein. Female mice, 4–8 weeks of age, were given injections with a single cell suspension 

of 2 x 106 cells in 100 µl into the tail vein. After 24 or 48 hours, the mice were sacrificed and 

the lungs were frozen in histological preparation. Ten-micrometer frozen sections were made. 

The section slides were scanned using a digital micrometer (Microcode II; Boeckeler 

Instruments) to ensure that all areas were counted only once. Green fluorescent cells were 

confirmed by overlay with a DAPI-stained nucleus. 

The tissue sections were observed by a Leica inverted fluorescence microscope. A 

Hamamatsu Orca digital camera was connected to the microscope and linked to a Mac G4.  A 

×40 objective was used during acquisition. Fluorescence cell images were captured directly 

using the digital camera as 8-bit gray-level 1024×1022 TIFF files and stored on hard disk of 

Mac G4 computer. The digitized histological images were characterized by high intensity 

pixels in the form of white patches corresponding to potential tumor cells or clumped cell 

clusters expressing GFP. The proposed methods were evaluated on a database of 40 tissue-

section histological images captured under same environment such as subjective 

magnification, exposure and data format, etc. The resolution of these images is 1024×1022 in 

8-bit grey level TIFF format.  

During the image processing stage of local adaptive thresholding, the images are 

divided into 3×3 sub-images. After performing some initial studies, we set α in Eqn (1) to 

1.00. This value is good enough to retain as many white patches as possible while removing 

most of the background noise. For the dynamic water immersion algorithm, a window size of 

7x7 pixels is used to locate the local intensity peaks.  The Con_A in Eqn (2) was determined 

by initial investigation to be 42 for extracting contours of objects of interest. Figure 4(b) 

shows an example of the segmented white patches by the local adaptive thresholding method. 

Local peaks are detected and marked by bright white dots as shown in Figure 5(a). Contours 

of objects of interest extracted by using the dynamic water immersion algorithm are 

highlighted by continuous white lines as shown in Figure 6(a).  



In our experiments, there are 9581 objects of interest extracted by the improved image 

processing techniques for the 40 fluorescence cell images while a medical professional had 

carefully labeled 1974 tumor cells. All of the tumor cells labeled by the expert are 

automatically detected and included in the objects of interest. These extracted objects of 

interest not only correspond to tumor cells but histological noise objects as well due to the 

complexity nature of the tissue section images processed. The histological noise objects are 

pseudo-pods of tumor cells and white light reflection areas which are not excluded by the 

process of water immersion method. Hence, using the improved image processing techniques 

alone, we are only able to achieve an accuracy of 20.6%, which is absolutely unaccepted. To 

improve the identification accuracy, features rules are examined by building a number of 

classifiers to help identify the tumor cells.  

To evaluate the effectiveness of class assignments by individual classifiers, the false-

positive and the false-negative error rates are often used as system performance 

measurement. False-positive error rate refers to misclassification of tumour cell as non-

tumour cell and false negative error rate relates to misclassification of non-tumour cell as 

tumour cell. The average error rate is defined as the ratio of all misclassified assignments to 

all test samples. However, if class distribution is seriously skewed as in the present study, the 

frequency of objects of interest due to histological noise (class 0) is 7607 (79.4% of total 

samples), additional measures such as recall, precision and F1 measures [35] should also be 

employed to evaluate the classifier performance. Recall is defined to be the ratio of correct 

assignments of a class to the total number of points in that class. Precision is the ratio of 

correct assignments of a class to the total number of the system’s assignments to that class. 

The F1 measure combines recall (r) and precision (p) with an equal weight in the following 

form: 

pr
rpprF
+

=
2),(1        (10) 

Although application of the improved image processing techniques resulted 100% recall of 

tumor cells which means all of the tumor cells identified by the medical professional are 

successfully detected, the precision of 20.6% is very low due to a large number of noise 

objects existing. Corresponding F1 value is 34.2% which is also absolutely unaccepted.  

Next, we perform experiments on the predictive accuracy of the three base classifiers. 

We use the 10 fold cross-validation testing strategy. Performance metrics of false positive 



error rate, false negative error rate and average error rate, together with the scores of recall, 

precision and F1 value, are computed for each fold first and then are averaged over 10 folds. 

The results of probabilities of false positive and false negative, probabilities of precision and 

recall, average error rates and F1 values obtained for 10 splits of the database for Naïve Bayes 

classifier, C4.5 classifier, CBA classifier and Meta-classifier with majority vote are 

summarized in Tables 1, 2, 3 and 4 respectively.  

The average error rate and F1 value for Naïve Bayes classifier are 7.4% and 81.0% 

respectively. C4.5 has 5.7% average error rate and 86.5% F1 value. The performance of CBA 

classifier leads to 6.4% of average error rate and 85.1% of F1 value. Meta-classifier has 5.7% 

average error rate and 86.5% F1 value. The C4.5 classifier has the lowest average error rate 

and highest F1 value among the three base classifiers. Unfortunately, the Meta-classifier with 

majority vote could not provide better classification accuracy than C4.5 classier as shown in 

Table 5. Identification performances by using the improved image processing techniques and 

features mining algorithm for tumor cell identification in fluorescence cell images are 

summarized in Table 6. Experiment results indicate that the mining process of using extracted 

features rules has strong capability to distinguish tumor cells from histological noise. 

Satisfactory identification accuracy of 94.3% is obtained by using the improved image 

processing techniques and a C4.5 classifier (F1 = 86.5%) in the present study.  

 
TABLE 1: Probabilities of false positive and false negative, probabilities of precision and 
recall, average error rates and F1 values for the 10 splits with the Naïve Bayes rule 
classifier. 
 
Split 

k 
False positive 

rate  
False negative 

rate Precision Recall Avg. error 
rate F1 

1 0.056 0.213 0.825 0.787 0.095 0.806
2 0.042 0.247 0.877 0.753 0.101 0.809
3 0.046 0.211 0.838 0.789 0.085 0.813
4 0.041 0.191 0.835 0.809 0.071 0.822
5 0.013 0.206 0.692 0.794 0.020 0.740
6 0.053 0.132 0.767 0.868 0.066 0.814
7 0.048 0.194 0.877 0.806 0.091 0.840
8 0.078 0.189 0.827 0.811 0.113 0.819
9 0.039 0.174 0.788 0.826 0.059 0.807
10 0.027 0.157 0.816 0.843 0.044 0.829

Avg. 0.043 0.196 0.814 0.809 0.074 0.810
 
 



TABLE 2: Probabilities of false positive and false negative, probabilities of precision and 
recall, average error rates and F1 values for the 10 splits with the C4.5 rule classifier. 
 

Split 
k 

Prob. of   
false positive false negative Prob. of 

precision recall Avg. error rate F1 

1 0.038 0.171 0.881 0.829 0.071 0.854
2 0.042 0.219 0.881 0.781 0.093 0.828
3 0.045 0.197 0.844 0.803 0.080 0.823
4 0.034 0.144 0.865 0.856 0.056 0.860
5 0.004 0.029 0.892 0.971 0.005 0.930
6 0.034 0.113 0.839 0.887 0.047 0.862
7 0.037 0.130 0.908 0.870 0.065 0.888
8 0.056 0.143 0.875 0.857 0.084 0.866
9 0.026 0.097 0.861 0.903 0.037 0.881
10 0.021 0.132 0.854 0.868 0.035 0.861

Avg. 0.032 0.153 0.870 0.862 0.057 0.865
 
 
 
TABLE 3: Probabilities of false positive and false negative, probabilities of precision and 
recall, average error rates and F1 values for the 10 splits with the CBA rule classifier. 
 

Split 
k 

Prob. of   
false positive false negative Prob. of 

precision recall Avg. error rate F1 

1 0.053 0.167 0.840 0.833 0.081 0.837
2 0.051 0.146 0.870 0.854 0.078 0.862
3 0.063 0.139 0.807 0.861 0.080 0.833
4 0.046 0.134 0.828 0.866 0.064 0.846
5 0.006 0.088 0.838 0.912 0.009 0.873
6 0.055 0.094 0.766 0.906 0.062 0.830
7 0.079 0.092 0.830 0.908 0.082 0.867
8 0.099 0.093 0.808 0.907 0.097 0.854
9 0.045 0.035 0.790 0.965 0.044 0.869
10 0.036 0.091 0.786 0.909 0.043 0.843

Avg. 0.051 0.114 0.816 0.892 0.064 0.851
 
 
 
 



TABLE 4: Probabilities of false positive and false negative, probabilities of precision and 
recall, average error rates and F1 values for the 10 splits with the Meta classifier. 
 

Split 
k 

Prob. of   
false positive false negative Prob. of 

precision recall Avg. error rate F1 

1 0.042 0.167 0.870 0.833 0.073 0.851
2 0.041 0.182 0.889 0.818 0.081 0.852
3 0.056 0.188 0.815 0.812 0.087 0.813
4 0.037 0.124 0.859 0.876 0.054 0.867
5 0.006 0.088 0.861 0.912 0.008 0.886
6 0.039 0.101 0.822 0.899 0.049 0.859
7 0.047 0.113 0.887 0.887 0.067 0.887
8 0.070 0.096 0.855 0.904 0.078 0.879
9 0.032 0.062 0.839 0.938 0.037 0.885
10 0.025 0.099 0.838 0.901 0.034 0.869

Avg. 0.038 0.130 0.853 0.878 0.057 0.865
 
 
TABLE 5: Comparison of classification performances of three base classifiers and the meta-
classifiers using majority voting combination strategy.  
 

System performance  
Classification method 

Average error rate (%) F1 Value (%) 
Naïve Bayes classifier 7.4 81.0 
C4.5 classifier 5.7 86.5 
CBA classifier 6.4 85.1 
Meta-classifier  
(Majority Voting) 5.7 86.5 

 
 
TABLE 6: Comparison of identification accuracy of the improved image processing 
techniques (IIPT) and combination of IIPT with features mining algorithm.  
 

Identification 
accuracy IIPT 

IIPT + 
Naïve Bayes 

classifier 

IIPT + 
C4.5 

classifier

IIPT + 
CBA 

classifier

IIPT + 
Meta 

classifier  
Recall (%) 100 80.9 86.2 89.2 87.8 

Precision (%) 20.6 81.4 87.0 81.6 85.3 
F1 Value (%) 34.2 81.0 86.5 85.1 86.5 

Ave. error rate 
(%) 79.4 7.4 5.7 6.4 5.7 



6. Conclusion 
Advances in imaging techniques have led to large repositories of histological images in 

pathological studies. In this paper, we have described a real-life image mining application to 

the problem of tumour cell counting for fluorescence cell images. We have proposed a two-

stage tumor cell identification strategy which involves segmenting objects of interest 

corresponding to potential tumor cells by improved image processing techniques, and 

identifying tumor cells using features mining algorithm. The improved image processing 

techniques method includes local adaptive thresholding and dynamic water immersion. 

Regions of interest with histological meaning are segmented from background of non-

uniform illumination using a local adaptive thresholding approach. A dynamic water 

immersion algorithm is applied to detect individual cells in clumped cell clusters.  

While the improved image processing approach is able to effectively extract reliable 

contours of the tumor cells, the segmentation result includes undesirable histological noise. 

Image processing techniques alone are unable to give accurate results for tumor cell counting. 

Therefore, we examine the use of features rules to distinguish tumor cells and histological 

noise. Meaningful features are extracted from the objects of interest and the use of extracted 

features rules is examined by building a number of base classifiers. A meta-classifier with 

majority voting strategy is also implemented. Experiment results indicate that using extracted 

features rules is able to distinguish tumor cells and histological noise, with an identification 

accuracy of 94.3%. 
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