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ABSTRACT
Motivation: The function of an unknown biological se-
quence can often be accurately inferred if we are able to
map this unknown sequence to its corresponding homolo-
gous family. At present, discriminative methods such as
SVM-Fisher and SVM-pairwise, which combine support vec-
tor machine and sequence similarity, are recognized as the
most accurate methods, with SVM-pairwise being the most
accurate. However, these methods typically encode sequence
information into their feature vectors and ignore the struc-
ture information. They are also computationally inefficient.
Based on these observations, we present an alternative method
for SVM-based protein classification. Our proposed method,
SVM-I-sites, utilizes structure similarity for remote homol-
ogy detection.
Result: We run experiments on the SCOP 1.53 dataset.
The results show that SVM-I-sites is more efficient than
SVM-pairwise. Further, we find that SVM-I-sites outper-
forms sequence-based methods such as PSI-BLAST, SAM,
and SVM-Fisher while achieving a comparable performance
with SVM-pairwise.
Availability: I-sites server is accessible through the web at
http://www.bioinfo.rpi.edu. Programs are available upon
request for academics. Licensing agreements are available
for commercial interests. The framework of encoding local
structure into feature vector is available upon request.
Contact:houyuna@comp.nus.edu.sg, bystrc@rpi.edu

1. INTRODUCTION
Proper identification of homologous relationships in proteins
is important in advancing our understanding of the functions
of biological sequences. While the amount of discovered bi-
ological sequences has increased at an unprecedented pace,
the rate of analyzing, mapping, and understanding these se-
quences remains unacceptably slow. As a result, molecular
biologists are turning to computational techniques to help
the analysis of these data.

Much research has been focused on protein homology de-

tection. Dynamic programming based alignment tools such
as Smith-Waterman (Smith et al., 1981) and their efficient
approximations such as BLAST (Altschul et al, 1990) and
FASTA (Pearson, 1985) have been widely used to provide
evidence for homology by matching a new sequence against a
database of previously annotated sequences. However, these
approaches can only detect homologous proteins that exhibit
significant sequence similarity. In order to detect weak or
remote homologies, one can utilize the concept of protein
family or superfamily, which denotes a group of sequences
sharing the same evolutionary origin.

A statistical model can also be built for each family or super-
family, and a new sequence is subsequently compared with
these models. In contrast to simple pairwise comparison
methods, the ability to match a sequence to superfamily-
based models computationally often allow the biologists to
infer nearly three times as many homologies (Park et al.,
1998). Profiles (Gribskov et al., 1987) and hidden Markov
models (Krogh et al., 1994; Baldi, et al., 1994) are two meth-
ods commonly used for representing these models. These
probabilistic models are often called generative because the
methodology involves building a model for a single protein
family and then evaluating each candidate sequence to see
how well it fits the model. If the “fit” is above some thresh-
old, then the protein is classified as belonging to the family.

By gleaning the extra information of unlabeled protein se-
quences in large databases, iterative methods such as PSI-
BLAST (Altschul et al., 1997) and SAM (Karplus et al.,
1998) improve upon profile-based methods by iteratively col-
lecting homologous sequences from a large database and in-
corporating the resulting statistics into a central model.

A recently proposed approach called the discriminative method
is able to attain additional accuracy by modelling the dif-
ference between positive and negative examples explicitly.
There are two steps in this approach: a given set of proteins
is first converted into fixed-length vectors, before an SVM
is trained from the vectorized proteins. The most promi-
nent works that employ this approach include SVM-Fisher
(Jaakkola et al., 2000) and SVM-pairwise (Liao et al.). The
two methods differ mainly in the vectorization step. In
SVM-Fisher, a protein’s vector representation is its gradi-
ent with respect to a profile hidden Markov model; while in
SVM-pairwise, the vector is a list of pairwise sequence sim-
ilarity scores. While the SVM-pairwise method is currently
the most accurate method for detecting remote homologies,



it is inefficient and not scalable.

All the above works detect remote homology using only se-
quence information. This is accurate only if the proteins are
closely related. In this paper, we offer an efficient vectoriza-
tion method while maintaining a comparable performance
with SVM-pairwise. We observe that the three-dimensional
structures of a set of homologous proteins are conserved to
a greater extent than their primary sequences. Therefore,
we encode structure information into feature vectors instead
of using sequence similarity for remote homology detection.
Here, we assume that the structure information is given by
the probability that the protein contains certain local struc-
ture, as predicted by a library of sequence-structure motifs
I-sites library (Bystroff et al., 1998). Experimental results
on SCOP1.53 databases demonstrate that the accuracy of
our proposed method is comparable with the state-of-the-
art method SVM-pairwise and outperforms methods such
as PSI-BLAST, SAM and SVM-Fisher.

2. SYSTEM AND METHODS
2.1 Overview
Figure 1 gives the overview of the proposed SVM-I-sites
method. It consists of two phases: (a) the training phase
which constructs support vector classifiers, and (b) the test-
ing phase which uses a support vector machine (SVM) to de-
termine if the protein belongs to some known protein classes.
Both phases require the extraction of features from the pro-
teins and represent them in some suitable form, which essen-
tially distinguishes our method from SVM-Fisher and SVM-
pairwise.

In SVM-Fisher, a protein’s vector representation is its gra-
dient with respect to profile hidden Markov model. On the
other hand, SVM-pairwise method uses a pairwise sequence
similarity algorithm Smith-Waterman in place of the HMM
in the SVM-Fisher method. Both SVM-Fisher and SVM-
pairwise methods ignore the structure information when en-
coding the feature vector. In SVM-I-sites, we encode the
local structure information into the feature vector. By do-
ing this, we incorporate a natural biological interpretation
into our method to capture parts of the “signature” of the
protein’s three-dimension structure.

During the training phase, the proteins in the database is
transformed into high-dimensional feature vectors. These
feature vectors are separated into two classes: the positive
examples (which refer to those feature vectors that belong
to the protein classes) and the negative examples (which re-
fer to those feature vectors that do not belong to the known
protein classes). An SVM is subsequently constructed to
discriminate the positive and negative examples. This pro-
cess is repeated for all protein classes under investigation.
The output from the training phase is a set of SVM, one for
each protein class.

In the testing phase, a high-dimensional feature vector is cre-
ated for the protein under investigation. Each of the trained
SVM is then queried to determine whether the given pro-
tein belongs to the particular protein class associated with
the SVM. A positive result would suggest that the protein
under investigation has a homologous relationship with the
corresponding protein class.
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support vector

machine classifiers

Extract a set of structure motifs

Feature Representation
 Score structure motifs against a protein  under
investigation to create a representation vector
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Training
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Figure 1: Overview of SVM-I-sites

2.2 Feature extraction and representation
While sequence information does provide important hints to
the presence of homologous relationship, it is not sufficient.
In fact, there exists a large number of proteins that are ho-
mologous but whose sequences are only weakly similar. For
these remote homologous proteins, we observe that their
three-dimensional structures share many common charac-
teristics. Thus, it would be useful to capture these common
structures and represent them in a form suitable for the
subsequent training and testing of support vector machine
algorithms.

The most straightforward way to incorporate structure in-
formation in remote homology detection is to encode them
into the features. Unfortunately, three-dimensional protein
structures cannot be accurately predicted from sequences.
An intermediate but useful step is to predict the protein
secondary structure, by projecting the complicated three-
dimensional structure onto one dimension, i.e. onto a string
of secondary structural assignments for each residue. Se-
quences which are distantly related to each other but which
have similar functions, tend to have highly conserved pat-
terns of secondary structure (Russell et al., 1994). A better
1D representation of proteins is the generalized “local struc-
ture”, which includes two of the three secondary structure
types (helix and strand) but reclassifies the loop states to
one of several different loop types, such as the Schellman cap
motif shown in Figure 2. These loop motifs often have spe-
cific sequence signatures that are conserved between remote
homologs.

Pioneering work in protein secondary structure prediction



includes (Efimov, 1993; Hutchinson et al., 1994; Zhu et al.,
1996; Oliva et al., 1997; Han et al., 1996). However, the
majority of these methods do not identify the strong re-
lationship between the amino acid sequence and structure.
Further, the focus of these methods is on the three-state sec-
ondary structure prediction, namely helix, stand and loop.
Hence, they are not suitable for encoding secondary struc-
ture information into feature vectors.

One of the most successful local structure prediction meth-
ods is by Bystroff and Baker (Bystroff et al., 1998), which
performs local structure prediction based on a library (I-sites
library) of short sequence patterns (profiles) that correlate
strongly with protein three-dimensional structure elements.
In the I-sites library, there are 263 sequence-structure pro-
files each of which corresponds to a unique structure motif
which are more specific than the three-state secondary struc-
ture. Figure 2 is an example of sequence-structure profile.

(a)Sequence pattern (b)Glycine alpha-C-cap Type 1

Figure 2: This is one of the sequence profiles and its
corresponding local structure in I-sites library. (a) is
the sequence pattern for Glycine alpha-C-cap Type
1. Along the Y-axis are the 20 amino acids, arranged
roughly from non-polar on the bottom to polar on
the top, except that glycine and proline are on the
top and cystine is on the bottom. Along the X-axis
is the position in the motif, each column represents
one amino acid. The different color represents fre-
quency of occurrence: red for high frequency (log-
odds ratio > 3), and blue for low frequency (log-
odds ratio < -3). (b) is the three-dimension element
which has a strong correlations with the sequence
patterns of (a). In the Type 1 glycine cap, an amphi-
pathic helix is followed immediately by a glycine and
an aspartate beta-bend. The aspartate is preferred
in the position two residues after the glycine. Con-
served non-polar sidechains 1 and 4 residues after
the glycine interact with two conserved non-polar
sidechains 4 and 7 residues before the glycine.

In order to predict the local structure of any unknown pro-
tein sequence, the sequence patterns (profiles) for each of
the 263 clusters of I-sites library are used to score all sub-
fragments of this unknown target sequence. Given the length
difference, the similarity scores of different clusters are not
directly comparable. Instead the associated “confidence”
values are compared. The confidence of a fragment pre-
diction is the probability that a sequence segment with a
given score has the predicted structure. Each cluster has a

confidence curve (Figure 3) which maps similarity score to
the probability of correct local structure based on a ten-fold
jack-knife test: 90% of the database is used to refine each
of the cluster, while the remaining 10% is set aside for scor-
ing the profile of this cluster. The top-scoring segments are
kept. The structures of the top-scoring segments are then
compared to the paradigm structure for the cluster, chosen
from the 90% training set. The list is sorted by score and
the fraction of true-positive in the cluster. This procedure
is repeated ten times using a different 10% as the test set
and the results are averaged. Please refer to (Bystroff et
al., 1998) for the details of the confidence curve generation
procedure.

Figure 3: A confidence curve map similarity score
to confidence.

Given any protein sequence, we use the following method
to obtain its structure features: the first step is to run
PSI-Blast against swissprot database to generate a multi-
ple sequence alignment. After that, the multiple alignment
is converted to a sequence profile, and the sequence profile
is searched in overlapping windows using each of the 263 I-
sites and we get a score for each sub-fragment. Finally, each
score is translated into a probability (“confidence”) value,
and the whole set of “confidence” values are sorted. Thus,
for each sub-fragment, we obtain the probability (“confi-
dence” value) of this subsequence belonging to each of the
263 structure motifs.

To minimize the effect due to mutation, we apply a threshold
such that if the “confidence” value falls below the threshold,
then the confidence of this subsequence will be set to zero.
The number 0.25 is the default value of I-sites program.
Initial experiments show that using a threshold of 0.5 gives
the best performance. Details of the experiments are given
in Section 4.4.

Several heuristics can be used to handle the situation where
a protein motif occurs multiple times. For example, we can
take the maximum, the sum, or the average of all the “confi-
dence” value for such protein motifs. Initial experiments to
determine a good heuristics show that using the sum value
gives the best performance. Details of the experiment are
given in Section 4.4. Table 1 shows a sample of the vector
generated for the protein d9atcb2. Each value in the vec-
tor denotes the sum “confidence” value of the corresponding
local structure occurring in the protein.

It is possible that two(or more) overlapping subsequences
show similarity to different I-sites motifs. At the same time,
many of I-sites motifs tend to overlap. This may cause one
single subsequence to yield high confidence value to multiple
different motifs. In this paper, we keep all the predictions



Local Structure Feature Value

4.76

3.84

4.23

. . . . . .

Table 1: A sample of the generated structure feature
values

even when there exists some overlap. In future, we shall
look into some appropriate overlap removing algorithm to
improve the performance.

2.3 Construction of SVM classifiers
Having obtained the feature vectors for the proteins, the
next step is to predict whether the given feature vector ex-
hibits homologous relationship with any of the known pro-
tein families. Classical machine learning techniques such
as Naive Bayes classifiers (Lanley et al., 1992), neural net-
works (Pao, 1989), decision tree classifiers (Quinlan, 1993)
etc do not perform well for remote homology detection be-
cause they are unable to effectively obtain good generaliza-
tion from sparse training data in high dimensions.

The well-established SVM exhibits excellent generalization
performance in practice and is grounded in statistical learn-
ing theory (Vapnik, 1998). The idea behind SVM is to locate
a hyperplane that maximizes the distance separation be-
tween the positive and negative examples. Figure 4 shows
the two-dimensional case. Three possible lines are drawn
to separate the positive and negative examples. The high-
lighted line is the one chosen by SVM since it maximizes
the distance separation between the positive and negative
examples.

X1

x2

Optimal hyperplane

Support Vectors

Support
Vectors

Figure 4: Support Vector Machines

We first train the SVM to find such a partitioning hyper-
plane. Then the SVM predict the classification of an un-

known protein by mapping it into the feature space and de-
termining which side of the hyperplane the unknown protein
lie on.

In our implementation, we use the gist SVM software im-
plemented by Noble and Pavlidis (Noble et al.). It contains
a kernel function that acts as the similarity score between
pairs of input vectors. The base kernel is normalized so that
each vector has length 1 in the feature space; i.e.,

K(X, Y ) =
X · Yp

(X ·X)(Y · Y )

The parameters needed to tune a SVM are the ‘capacity’
and the choice of kernel. The capacity allows us to control
how much tolerance we allow for errors in the classification
of training samples. This affects the generalization ability of
the SVM and prevents overfitting. In our experiments, we
use a capacity equals to 10, which guarantees the numer-
ical stability of the SVM algorithm yet provides sufficient
generalization.

The kernel function allows the SVM to create hyperplanes in
high dimensional spaces that effectively separate the train-
ing data. In the input space, training vectors are often not
separated by a simple hyperplane. The kernel maps data
from one space to another such that a simple hyperplane
can effectively separate the data into two classes. We em-
ploy the Gaussian kernel for all the classifiers. The variance
of the associated Gaussian Kernel is computed as the me-
dian Euclidean distance (in feature space) from any positive
training examples to the nearest negative example. The out-
put is a discriminant score that is used to rank the members
of the test set.

To determine whether an unlabelled protein belongs to a
particular protein class, we test it against the SVM trained
for that class. The SVM classifier produces a ‘score’ repre-
senting the distance of the the testing feature vector from
the margin. The larger the score is, the further away the
vector is from the margin, and the more confident we are of
the classifier’s prediction.

3. COST ANALYSIS
Computational efficiency is an important characteristic for
any homology detection algorithm. In this respect, the SVM-
I-sites method is more efficient than SVM-pairwise. Both
SVM-I-sites and SVM-pairwise include an SVM optimiza-
tion and vectorization step. In the optimization step, both
algorithms take O(n2) time, where n is the number of train-
ing set examples. The vectorization step of SVM-pairwise
involves computing n2 pairwise scores. Using Smith-Waterman,
each computation takes O(m2), yielding a total running
time of O(n2m2), where m is the length of the longest train-
ing set sequence.

In contrast, SVM-I-sites first runs PSI-BLAST to obtain a
profile before it runs I-sites function to compute the “confi-
dence” value of each sequence containing a pre-defined local
structure. The time complexity of running PSI-BLAST on
the swissprot database is O(N) when the length of the query
sequence k is much less than N , where N is the size of the
swissprot database. The time complexity of running I-sites



function is O(k) for each sequence. Hence, the total running
time of SVM-I-sites is O(nN). Since N is typically one order
of m ∗ n where m is a two order number, we conclude that
SVM-I-sites is about one order faster than SVM-pairwise.

We also carry out an experiment to compare the response
time of SVM-pairwise and SVM-I-sites for the vectoriza-
tion step. The time taken by SVM-pairwise includes the
CPU time and the output time of the n2 pairwise scores,
while the time taken by SVM-I-sites includes the CPU time
and output time of PSI-BLAST and I-sites function. This
experiment is performed on a Pentium III 750MHz Ultra
Sparc running SunOS 5.8 with 8 GB RAM. I-sites takes
19 hours, and the Smith-Waterman algorithm requires 70
hours. Clearly, SVM-I-sites is 4 times faster than SVM-
pairwise in vectorization step. Note that the real-time com-
parison is not as significant as the theoretical analysis be-
cause the number of I/Os incurred by SVM-I-sites is much
more than that for SVM-pairwise.

4. PERFORMANCE STUDY
In this section, we compare the performance of five algo-
rithms: SVM-I-sites, PSI-BLAST, SAM, SVM-Fisher and
SVM-pairwise.

4.1 Experiment setup
We evaluate the accuracy of each algorithm by its ability to
classify protein domains into superfamilies in the Structural
Classification of Proteins (SCOP)(Murzin et al., 1995) ver-
sion 1.53. Sequences are selected using the Astral database
(astral.stanford.edu (Brenner et al., 2000)), and similar se-
quences are removed using an E-value threshold of 10−25.
This procedure resulted in 4352 distinct sequences, grouped
into families and superfamilies. The database is selected so
as to provide a direct comparison with previous work on
remote homology detection method, namely, SVM-pairwise.

We use the same experiment setup as SVM-pairwise. For
each family, the protein domains within a family are consid-
ered positive test examples; while the protein domains out-
side the family but within the same superfamily are taken as
positive training examples. The data set yields 54 families
containing at least 5 family members (positive test) and 10
superfamily members outside of the family (positive train).
Negative examples are taken from outside of the positive se-
quences’ fold, and are randomly split into train and test sets
in the same ratio as the positive examples.

4.2 Comparative methods
The vectorization step of SVM-pairwise uses the Smith-
Waterman algorithm as implemented on the BioXLP hard-
ware accelerator (www.cgen.com). The feature vector corre-
sponding to protein X is FX=fx1,fx2,...,fxn, where n is the
total number of proteins in the training set and fxi is the
E-value of the Smith-Waterman score between sequence X
and the ith training set sequence. The default parameters
are used: gap opening penalty and extension penalties of 11
and 1, respectively, and the BLOSUM 62 matrix.

For comparison, we also include the result of PSI-BLAST,
SAM and SVM-Fisher methods presented in the SVM-pairwise
paper (Liao et al.).

In SAM experiment, the Hidden Markov models are trained
using the Sequence Alignment and Modeling (SAM) toolkit
(www.soe.ucsc.edu/research/compbio/sam.html)(Krogh et al.,
1994). Models are built from unaligned positive training set
sequences using the local scoring option (“-SW 2”). Follow-
ing (Jaakkola et al., 2000 ), a 9-component Dirichlet mix-
ture prior developed by Kevin Karplus (byst-4.5-0-3.9comp
at www.soe.ucsc.edu/research/compbio/dirichlets) is used.
After the model is built, each of the test sequences is com-
pared to the model by using hmmscore(also with the local
scoring option) and the resulting E-values are used to rank
the test set sequences.

The SVM-Fisher method uses the same trained HMMs dur-
ing the vectorization step. Then, the forward and backward
matrices are combined to yield an observation count for each
parameter in the HMM. As shown in (Jaakkola et al., 2000 ),
the counts can be converted into components of a gradient
vector. Although these gradient components can be com-
puted for every HMM parameter, the SVM-Fisher method
uses only the gradient components that correspond to emis-
sion probabilities in the match states. Furthermore, a more
compact gradient vector can be derived using a mixture
decomposition of the emission probabilities. For a profile
HMM containing m match states, the length of the result-
ing vector is 9m.

In PSI-BLAST, the input is a single sequence, whereas for
methods such as HMMER and SVM-Fisher, the input con-
sists of multiple input sequences. In our experiments, we
randomly select a positive training set sequence to serve
as the initial query. The complete positive training set is
aligned using CLUSTALW (Thompson et al., 1994). Then
the query sequence and the alignment is used as inputs.
We run one iteration of PSI-BLAST with the test set as a
database. Note that PSI-BLAST is not run on the test set
for multiple iterations: this restriction allows a fair compar-
ison with the other, non-iterative methods included in the
study. The resulting E-values are used to rank the test set
sequences.

Note that the setup of SAM and PSI-BLAST methods as
presented in SVM-pairwise is slightly different from their
commonly reported usuage (Park et al., 1998). It is possi-
ble for SAM, PSI-BLAST and SVM-Fisher to achieve better
performance than those reported here if they have the ben-
efit of putative homologs from large sequence databases as
(Park et al., 1998).

4.3 Performance metrics
We use the two scoring methods as reported in SVM-pairwise
(Liao et al to compare these methods:

1. Receiver operating characteristic(ROC) scores.

2. Median rate of false positives(RFP).

The ROC score is the area under the receiver operating char-
acteristic curve – the plot of true positives as a function of
false positives (Gribskov et al., 1996). A score of 1 indi-
cates perfect separation of positives from negatives, whereas
a score of 0 denotes that none of the sequences selected by



Function  compute_ROC_score
Input:  SVM scores of the positve test sequences and negative
test sequences
Output : ROC score

Sort the SVM scores of the test sequences and
get a  sorted list of class labels (1 or -1) in a single column

tp=0     /* Initialize true positive   */
fp=0     /* Initialize false positive */
roc=0   /* Initialize ROC score    */

for each of the sorted label  do
   if  (label=1) then  tp=tp+1
    else {
        fp=fp+1
        roc=roc+tp}

if (tp=0)  then   roc=0
else if    (fp=0)   then roc=1
      else  roc=roc/(tp*fp)
 

Figure 5: Algorithm to compute ROC score

Function  compute_medianRFP_score
Input:  SVM scores of the positve test sequences and negative
test sequences
Output : Median RFP score

1. Sort the SVM scores of the positive test sequences

2. Compute the median of the SVM score of the positive   test
sequences

3. Median RFP=ratio of negative test sequences which score
above or equal to the median value

Figure 6: Algorithm to compute median RFP score

the algorithm is positive. The algorithm to compute ROC
score is shown in Figure 5. The median RFP score is the
fraction of negative test sequences that score as high or bet-
ter than the median-scoring positive test sequence. The al-
gorithm to compute median RFP score is shown in Figure
6.

4.4 Experiment results
Table 2 summarizes the average ROC score for the 54 SCOP
families of using different heuristics to account for multiple
subsequence occurrences as described in Section 2.2 at de-
fault threshold 0.25. Table 2 shows that the sum heuristics
gives the best performance.

Heuristic methods Average ROC score

for the 54 SCOP families

Maximum 0.88
Sum 0.89
Average 0.86

Table 2: Results of the experiments to determine
the best heuristics

Table 3 summarizes the average ROC score for the 54 SCOP
families of using different thresholds and sum to account for
multiple subsequence occurrences. Table 3 shows that it
gives the best performance at threshold 0.5. Here, the final
reported performance is the combination of 0.5 threshold
and sum to account for multiple subsequence occurrences.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

ROC

N
o.

 o
f f

am
ili

es
 w

ith
 g

iv
en

 p
er

fo
rm

an
ce

PSI−BLAST
SVM−pairwise
SVM−Fisher
SAM
SVM−I−sites

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

median RFP

N
o.

 o
f f

am
ili

es
 w

ith
 g

iv
en

 p
er

fo
rm

an
ce

PSI−BLAST
SVM−pairwise
SVM−Fisher
SAM
SVM−I−sites

Figure 7: Relative performance of homology detec-
tion methods. Each graph plots the total number of
families for which a given method exceeds a score
threshold. The top graph uses ROC scores, and the
bottom graph uses median RFP scores. Each se-
ries corresponds to one protein homology detection
methods.



Thresholds Average ROC score

for the 54 SCOP families

0.25 0.89
0.4 0.89
0.5 0.90
0.6 0.88

Table 3: Results of the experiments to determine
the best threshold
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Figure 8: Family-by-family comparison of SVM-
pairwise and SVM-I-sites. Each point on the graph
corresponds to one of the 54 SCOP superfami-
lies. The axes are ROC scores achieved by the two
primary methods compared in this study: SVM-
pairwise and SVM-I-sites

The results of the comparative experiment are summarized
in Figure 7. The two graphs rank the five homology detec-
tion methods according to ROC and median RFP scores. In
each graph, a higher curve corresponds to more accurate ho-
mology detection performance. We observe that SVM-I-sites
performs significantly better than PSI-BLAST, SAM and
SVM-Fisher methods, and is comparable to SVM-pairwise.
This is because SVM-pairwise adopt pairwise scores as fea-
ture values and the Smith-Waterman algorithm is recognized
as the most sensitive pairwise comparison method.

SVM-I-sites can be an alternative and complimentary method
to SVM-pairwise method to construct features with local
structure probabilities. This can be shown from Figure
7. Figure 8 is a family-by-family comparison of the 54
ROC scores computed for each method. The results suggest
that SVM-I-sites and SVM-pairwise are two complimentary
methods for detection remote homology.

5. DISCUSSION
The inference of homology relationship in proteins with known
structure and/or function is a core problem in computational
biology. Sequence comparison is the most commonly used
approach to determine homology. However, remote homol-
ogous proteins tend to have little sequence similarities. As
such, they are often statistically undetectable using conven-
tional sequence comparison methods. Homology or common
ancestry in such cases needs to be inferred from their com-

mon three-dimensional structures and functions.

The main novelty of our work is in investigating how local
structure information can help remote homology detection.
By using local structure features, we seek to develop an ap-
proach that has a natural biological interpretation. Further,
we have described an integrated framework to construct fea-
ture vectors that encode structure information. The local
structure is encoded into the feature vector so that parts
of the three-dimension “signature” is captured. The use of
support vector machines also enables learning to take place
in high dimensional feature space. Our experiment results
confirm that it is important to incorporate structure infor-
mation in the feature space.

Efficiency is another advantage of SVM-I-sites compared to
SVM-pairwise. SVM-I-sites is more efficient in the vector-
ization step, thus making it a more practical solution for
large databases.

In addition, SVM-I-sites method shares many advantages
as SVM-pairwise. First, it does away with the need for pro-
file HMM topology and parameterization. Second, it learns
from both positive and negative training examples, while a
profile method is trained solely on a collection of positive
examples. Third, it does not require a multiple alignment
of the training set sequence which may not be possible for
distantly related protein sequences.

Current work ignores the local structure order. This may re-
sult in proteins containing the same local structure but with
different orders being classified into the same superfamily.
Ongoing work includes investigating how the local structure
order influence the remote homology detection performance.
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