
Mining Frequent Query Patterns from XML Queries

Liang Huai Yang Mong Li Lee Wynne Hsu Sumit Acharya
School of Computing, National University of Singapore
{yanglh, leeml, whsu}@comp.nus.edu.sg, sumita@iiitb.ac.in

Abstract

As XML prevails over the Internet, the efficient retrieval
of XML data becomes important. Research to improve
query response times has been largely concentrated on
indexing XML documents and processing regular path
expressions. Another approach is to discover frequent
query patterns since the answers to these queries can be
stored and indexed. Mining frequent query patterns
requires more than simple tree matching since the XML
queries involves special characters such as “*” or “//”.
In addition, the matching process can be expensive since
the search space is exponential to the size of XML
schema. In this paper, we present two mining algorithms,
XQPMiner and XQPMinerTID, to discover frequent query
pattern trees from a large collection of XML queries
efficiently. Both algorithms exploit schema information to
guide the enumeration of candidate subtrees, thus
eliminating unnecessary node expansions. Experiments
results show that the proposed methods are efficient and
have good scalability.

1. Introduction

With the rapid increase in XML applications such as e-
business transactions, XML middleware systems, efficient
delivery of XML data has become an important issue.
Regular path expression (RPE) is a common feature of
XML query languages[3,4]. Processing such RPE can be
expensive since it involves navigation through the
hierarchical structure of XML, which can be deeply
nested. Much research efforts have been focused on the
storage and indexing of XML documents, and the efficient
evaluation of regular path expressions [8, 9,10].

Another approach to improve query response time is to
discover frequent query patterns since the answers to these
queries can be stored and indexed. Given an XML data
source and the history of XML queries {q1,….,qN} issued
against it, we can transform them into a corresponding
history of query pattern trees D = {QPT1,….,QPTN}. This
gives us a database of query pattern trees. Each transaction
is then a query pattern tree QPTi while an itemset is a
rooted subtree of QPTi. Mining frequent query patterns is
equivalent to finding the rooted subtrees that occur
frequently over the set of pattern trees D. This requires
more than simple tree matching since the XML queries
involves special characters such as “*” or “//”. In addition,
the matching process can be expensive since the search

space is exponential to the size of XML schema. Since the
candidate patterns in this mining problem are rooted
subtrees, an efficient enumeration technique is critical to
reduce unnecessary node expansion and comparisons.

In this paper, we describe two efficient mining
algorithms, XQPMiner and XQPMinerTID, to discover
the frequent query pattern trees from a large collection of
XML queries. Both algorithms exploit schema information
to guide the enumeration of candidate subtrees, thus
eliminating unnecessary node expansions. To speed up the
matching process required in determining the frequency
counts of the enumerated subtrees, we develop an
algorithm to quickly determine if a rooted subtree is
contained in the query pattern trees. Experiments results
on real datasets show that the proposed methods are
efficient and have good scalability.

The rest of the paper is organized as follows. Section 2
first defines some basic concepts. Section 3 describes the
XQPMiner algorithm. Section 4 presents the optimizations
for XQPMiner. Section 5 gives the results of the
experiments. We discuss related work in Section 6, before
concluding in Section 7.

2. Preliminaries

We first define the concepts of query pattern trees and
rooted subtrees that form the basis of the algorithms
XQPMiner and XQPMinerTID. We also illustrate how an
XML query can be transformed into a query pattern tree.
In order to determine the frequent query patterns, we need
to compute the frequency counts of rooted subtrees
efficiently. This entails a tree pattern matching technique
that takes into consideration the wildcards and relative
paths that may occur in the query patterns.

2.1 Query Pattern Tree

Figure 1 shows an example Book DTD and the
corresponding XML tree. The following query Q1,written
in XQuery syntax [4], retrieves the title, author and price
of books written by “Buneman”.
Q1: for $b in document(book.xml) /book

 where some $a in $b/author
satisfies $a/lastname/data()=”Buneman”

return <result>
<book>{$b/title, $b/author, $b/price}<book>

 </result>
We can extract the following information from Q1

Q1 {resultPattern = {/book/author, /book/title, /book/price},
predicates = {/book/author/lastname/data() = ”Buneman”},
documents = {book.xml}}

where resultPattern is the schema pattern of the result,
predicates are the filtering conditions used in the query,
and documents are the XML data files involved.

author+

book

title section+

address
title

title

source

para*firstname

lastname

figure*

image width height
section*

publisher

price

year

Figure 1. Book DTD Tree.

Next, we extract the paths from the set predicates by
ignoring the selection conditions. For example, we can
extract the path “/book/author/lastname/” from the
predicate /book/author/lastname/data() = “Buneman” in
Q1. We combine these extracted path expressions with the
paths in the set resultPattern to generate the query pattern
tree. Figure 2(a) shows the query pattern tree obtained for
Q1. A query pattern tree may not only consist of element
tag names, but also wildcard “*” and relative path “//”.
Wildcards indicate the ANY label in DTD, while relative
paths indicate zero or more labels (descendant-or-self).
Formally, a query pattern tree can be defined as follows.

Definition 1 (Query Pattern Tree): A query pattern
tree is a rooted tree QPT = <V, E>, where V is the vertex
set, and E is the edge set. The root is denoted as
Root(QPT). We denote each edge e by (v1, v2) where node
v1 is the parent of node v2. Each vertex v has a label with
its value in {“*”, “//”, tagSet}, where tagSet is the set of
all element and attribute names in the underlying DTD.
We denote the label of a vertex v as v.label.

t
Q
R

t

2

t
{
f

some minimum support level. The total occurrence of a
rooted subtree RST in D is denoted as freq(RST), and its
support is given by supp(RST) = freq(RST)/|D|. For some
positive number σ, we say that an RST is σ-frequent in D
if supp(RST) ≥ σ. Figure 3 shows a database of three
query pattern trees and a frequent root subtree. RST
occurs in QPT1 and QPT2. Hence, its frequency is
freq(RST) = 2, with a support of supp(RST) = 2/3.

price

firstname

title

QPT2 RSTQPT1
lastname

author

price

book

title

author

price

book

title

QPT3

book

title

//author

book

Figure 3. Database of Query Pattern Trees and a
Frequent Rooted Subtree.

2.3 Tree Pattern Matching

In general, a tree T = <V, E> matches another tree T’
= <V’, E’> if there exists a mapping ϕ such that
1. Root(T’) = ϕ (Root(T)) and ∀v ∈ V, ∃v’∈ V’s.t. v’ =

ϕ (v) where v.label = v’.label
2. ϕ preserves the parent-child relation: if (v1,v2) ∈ E,

then (ϕ(v1), ϕ(v2)) ∈ E’
then we say that T is a subtree of T’ or T is contained in T’.

This naïve definition is not applicable to our tree
matching problem due to the presence of wildcards and
relative paths in the query pattern trees. Figure 4 shows
two query trees T1 and T2. Intuitively, the path
“book/section/figure/title” in T2 matches the path
“book//title” in T1 since “//” in “book//title” indicates zero
or more labels between the nodes book and title. Since the
wildcard “*” can be substituted by ANY single node, then
“book/section/figure/image” matches “book/section/*/
image”. We say that T2 matches T1. In other words, T2 is
contained in T1, written as T2 ⊆ T1.

section
⊇

book
author

book
author

//

bookbook
(a) Query Pattern Tree for Q1
author pricetitle
Figure 2. Query Patt

Definition 2 (Rooted Subtr
ree QPT = <V, E>, a rooted s
PT is a subtree of QPT if it s
oot (RST) = Root (QPT), and

Figure 2(b) shows a rooted s
ree in Figure 2(a).

.2 Frequent Query Patter
Having transformed a set of

rees, we obtain a database of
QPT1,….,QPTN}. The query p
ind all the frequent rooted sub
(b) A Rooted Subtree
authortitle
ern Tree for Q1.

ee): Given a query pattern
ubtree RST = <V’, E’> of
atisfies the conditions: (1)
(2) V’⊆ V, E’ ⊆ E.
ubtree of the query pattern

n Trees
 queries into query pattern
 query pattern trees D =

attern mining problem is to
trees that occur in D with

title image

figure

T2

title image

T1

address

Figure 4. Example of Pattern Tree Containment.

While one could try to expand the non-deterministic
paths such as “book//title” to become a deterministic path
“book/section/figure/title”, this is only feasible when the
XML DTD (or schema) is a directed acyclic graph. The
expansion method will fail if the DTD contains cycles.
Nonetheless, expanding “//” remains crucial. This is
because without the context information, one cannot tell
whether a path is contained in “//” or not.

Figure 5 shows a query pattern containing two relative
path expressions and three rooted subtrees. RST1 and

RST2 are contained in QPT since the paths “/book/
section/figure/title” and “/book/section/figure/image” are
contained in “/book//title” and “/book//image” respectively.
The matching paths have common leaf nodes as their
context. But it is not clear if RST3 is contained in QPT
since we cannot merge the two child nodes “//” of “book”
because nodes “title” and “image” may not share the same
parent node. Hence, the expansion of “//” is necessary.

RST 2 RST 3

book
book

section
section

RST 1

book

figure figure
figure

title titleimage image

section

QPT

book

section

title

title

figure

image

//

expanded QPT

book

title image

// //

Figure 5. Matching Root Subtrees with a Complex
Query Pattern.

We expand the relative paths “//” in a query pattern
tree as follows. Suppose the node “//” has a child n. If no
cycles exist in the underlying XML schema, then the
expansion is straightforward. However, if a cycle exists
and one of the expanded paths is “root/…/p/n” where the
parent of n (node p) has a child that points back to p’s
ancestor, then we will need to introduce a node “//”
between p and n.

Consider the XML schema in Figure 1 and the query
pattern tree QPT in Figure 5. As the schema contains
cycles, the path “book//title” is expanded into an infinite
number of paths including book/title, book/section/title, or
book/section*/title, etc. The path book//image can be
expanded similarly. We can concisely represent the set of
possible expansions by the expandedQPT in Figure 5. In
this way, we augment the initial query pattern tree with
context information, and remove cycles in query pattern
trees. It is clear that RST3 is contained in QPT.

We also observe that the labels in two pattern trees
satisfy the partial order relationship ≤. Given a label x, we
have x≤x, or two nodes with the same label matches.
Similarly, we have * ≤ * and //≤//. In order to match nodes
involving wildcards and relative paths, we have x≤*≤//,
that is, a node with label x matches a wildcard, which in
turn matches a node with label //.

Definition 4 (Query Pattern Tree Matching): Given
a query pattern tree QPT and a rooted subtree RST, we say
that RST is contained in a QPT if the following hold:
1. The root nodes in RST and QPT have the same label.
2. If a node w∈RST is matched with node v∈QPT, then it

satisfies (a) w.label ≤ v.label, and (b) each subtree of w
is contained in some subtree of QPT.

3. Discovering Frequent Rooted Subtrees

In the context of mining frequent query pattern trees,
the database of transactions D is a set of pattern trees.

Each transaction t∈D is a labeled directed pattern tree
extracted from an XML query. Given a minimum support
minSupp, we would like to find the frequently occuring
rooted subtrees in at least minSup*|D| transactions. In this
section, we describe the algorithm XQPMiner for
discovering frequent query patterns.

The main framework of XQPMiner is shown in Figure
6. XQPMiner employs the Apriori [2] style to generate
frequent rooted subtrees. The notation RSTk+1 denotes a
k+1-edge rooted subtree; Fk+1 is a set of frequent k+1-edge
rooted subtrees; and Ck+1 is a set of k+1-edge candidate
RSTs. The edges correspond to items in traditional
frequent itemset discovery. XQPMiner increases the size
of frequent RSTs by adding an edge one at a time.

XQPMiner initially enumerates all the frequent 1-edge
RSTs by scanning D once. The subsequent pass k consists
of two phases. In the first phase, the algorithm RST-Gen
first generates the candidate set Ck+1 by using the
previously found frequent set Fk and pruning those
unqualified candidates. Then it counts the frequency for
each of these candidates, and removes those RSTs that do
not satisfy the minimal support requirement. In the second
phase, the algorithm Contains determines if RSTk+1 is
contained in the pattern tree t.

Algorithm XQPMiner (D, minSupp)
Input: D—pattern tree transaction database
 minSupp—the minimum support
Output: Set of all frequent RST sets
1. F1={all frequent 1-edge rooted subtrees in D};
2. for (k=1; Fk≠φ;k++) do
 /*generate frequent rooted subtrees*/
3. Ck+1=RST-Gen (Fk);
4. for each transaction t∈D do
5. for each candidate RSTk+1∈Ck+1 do
6. if Contains (t,RSTk+1) then/* prune */
7. RSTk+1.count++;
8. Fk+1={RSTk+1∈Ck+1|RSTk+1.count ≥minSupp*|D|};
9. return {Fi|i=1,…,k-1};

Figure 6. Algorithm to Find Frequent RSTs.

3.1 Generation of Candidate RSTs

This step enumerates all the frequent rooted subtrees in
D. We examine two important issues, namely, how to
generate candidate RSTs without repetition, and how to
prune the candidates RST early and quickly.

The first issue is also known as the RST enumeration
problem. In order to reduce the number of candidate RSTs
generated, we propose to use a schema-guided right most
expansion enumeration method. We construct a global
query pattern tree G-QPT by merging the query pattern
trees in the database. Figure 7 shows the global query
pattern obtained from QPT1, QPT2, and QPT3 in Figure 3.

The schema-guided enumeration method works as
follows. Starting with all the possible 1-edge RSTs, we use
the G-QPT to systematically guide the generation of 2-
edge RSTs level-wise, from which 3-edge RSTs are
obtained, and so on. Figure 8(a) shows a 2-edge RST R
and the set of corresponding 3-edge RSTs obtained based
on the G-QPT in Figure 7.

The method in [13] do not use schema information to
guide the generation of candidate subtrees. As a result, a
large number of candidate trees will be produced,
including unnecessary and invalid trees. Figure 8(b) shows
all the possible 3-edge RSTs that shares the same prefix as
R produced. Note the vast difference in the number of
RSTs produced when schema information is not utilized.

book

author pricetitle

1

2 3 8

book

6

titlefirst last

8

7

1

32

4 5

(a) G-QPT (b) RST 1

author
title

//
price

Figure 7. Global Query Pattern Tree for the Query
Patterns in Figure 3.

1

2 3

1

32

5

1

32

4

1

32 6

1

32 8

RST1
3

RST2
3 RST4

3RST3
3

a--author
b--book
f --f irstname
l--lastname
p--price
t--title

(a) Schema-guided enumeration
R

(b) Nonschema-guided enumeration

b

at

a

b

at

b

b

at

f

b

at

l

b

at

p

b

at

t

b

t a

R
Legend:

b

at //

b

at p

b

at t

b

at l

b

at a

b

at

b

at fb

b

at

//

Figure 8. Schema versus Non-schema Guided
Enumeration of RSTs.

The second issue is to prune the candidates RST early.
A key idea used in the efficient mining of association rules
is the Apriori property [2]: If one subset of an itemset is
not frequent, then the itemset itself cannot be frequent.
This allows one to use the frequent itemsets of size k-1 as
filters for candidate itemsets of size k. This property is
also true for frequent query pattern mining. If a k-edge
RST is frequent, then all its (k-1)-edge RSTs must be
frequent. We use this property to prune candidate RSTs.

The candidate generation algorithm RST-Gen is
shown in Figure 9. Its input is a set of frequent k-edge
RST Fk from which a set of candidate (k+1)-edge rooted

subtrees Ck+1 is generated. For each frequent k-edge
k

iRST ∈ Fk, all the possible (k+1)-edge RSTs are
enumerated based on the schema (Line 3). Lines 4-7 prune
infrequent rooted subtrees by checking each k-edge rooted
subtree in the (k+1)-edge RSTk+1. If any of the k-edge
RST does not exist in the set of frequent k-edge RSTs,
then RSTk+1 is not frequent and will not be added to the
candidate set Ck+1. Finally, Line 8 returns the (k+1)-edge
candidate set Ck+1, where the k+1-edge RSTs will be
subsequently matched against the query pattern tree
database to count their frequency.

Algorithm RST-Gen (Fk)
Input: Fk – Set of frequent k-edge RSTs
Output: Candidate set Ck+1
1. Ck+1=φ;

2. for each k
iRST ∈Fk do

3. S = enumerate (k
iRST);

4. for each k+1-edge RSTk+1 ∈ S do
5. if ∃ leaf node l0 ∈ {n | n is a leaf node in RSTk+1} and
 RSTk is a k-edge RSTs obtained by removing l0 from
 RSTk+1 s.t. RSTk ∉ Fk
6. then S = S - RSTk;
7. Ck+1 = Ck+1 ∪ S;
8. return Ck+1;

Figure 9. Algorithm to Generate Candidate RSTs.

3.2 Containment of RST in a Pattern Tree

After generating the set of candidate rooted subtrees,
the next step is to count their support in the database of
QPTs. Traditionally, it is relatively straightforward to test
if a candidate itemset is contained in a transaction, since
an itemset is a set. Here, a candidate is a rooted subtree.
This requires tree matching which is expensive. Further,
the matching process is complicated by the presence of
“*” and “//” in XML queries.

Figure 10 shows the Contains algorithm that we have
designed to determine whether a rooted subtree is
contained in a query pattern tree. The input trees are
compared recursively from the root to the leaf nodes. The
underlying matching criterion is based on the partial order
definition given in Section 2. That is, given two nodes w ∈
RST and v ∈ QPT, if they satisfy the partial order w.label
≤ v.label and each subtree of w is contained in some
subtree of QPT, we say the node w is matched with the
node v. We will now elaborate on all the possible
matching scenarios:

Case 1: w is a leaf node.
(a) We check whether w has the more specific label, or its

label is not contained in v.label. If v.label is not “//”,
then nodes w and v can be matched directly using

w.label ≤ v.label. The following sub-cases requires
special attention:
i. w.label = "//" or "*". Then the RST is in a

transitional state, and we need to examine edges
further down the tree before deciding if the RST is
actually contained in the QPT. For the moment, the
algorithm will return the result of the comparison
w.label ≤ v.label.

ii. If w.label appears in the set of labels of node v’s
ancestors (that is, recursion exists in the schema),
then the containment is also determined by w.label ≤
v.label. This decision is related to Case 3, which we
will explain and illustrate with an example later.

(b) If v.label = "//", then w.label ≤ v.label should hold
according to the partial order relationship. However,
without looking into the context information of the two
nodes, we cannot claim that w is contained in v.

Consider “book//[v]price” and “book/section[w]” where
the nodes enclosed in square brackets are currently being
compared. We cannot conclude that w is contained in v
without looking ahead at node v’s children. If any of v’s
child node n satisfies the partial order w.label ≤ n.label,
then w is contained in v. If we have “book/section/title[w]”
and “book/section//[v]title”, then w is contained in v.

Case 2: w is not a leaf node, and v is a leaf node.
Since w is more specific than v, it is not possible for w to
be contained in v. An example of this case is v = “section”
and w = “section/title”.

Case 3: Both w and v are not leaf nodes.
If w.label ≤ v.label does not hold, then w is not contained
in v. Otherwise, if w.label ≤ v.label holds, then Line 10
tries to compute whether all the subtrees of w is contained
in those of v. If yes, then the algorithm will return true.
Otherwise, if v.label = “//”, then by treating it as a zero
length path, Lines 11-12 will check whether w is contained
in one of v’s children. If it is not, then Lines 13-14 will
consider v.label=“//” as having multiple nodes and test if
the subtrees of w are contained in v.

We will now illustrate the algorithm with an example.
Suppose we want to match “book/section/section[w]/
section[w’]” with “book/section//[v]title[v’]”. Both w and
v are not leaf nodes, and we have w.label = “section” ≤
v.label=“//”. The algorithm will first determine if the
subtrees of w are contained in some subtrees of v, that is, it
will try to match w’ with v’ (Case 3). When this fails, the
algorithm will examine if any children of v contains w, that
is, treat “//” as 0 length. Otherwise, the algorithm tries the
multi-label choice for “//”. Lines 13-14 accomplishes this
by considering w as a node that is contained in v and
decides if w’ is contained in v. Since w’ is a leaf node, and
w’.label appears in the label set of v’s ancestors (Case 1),
the algorithm returns true.

4. Optimizations for XQPMiner
By analyzing the mining framework in Figure 6,

optimization techniques can be applied to the candidate
generation phase (Line 3) and the frequency counting
phase (Lines 4-7). We employ a prefix tree to index the
frequent RSTs to facilitate pruning during the generation
of candidate RSTs. We also use transaction IDs (TIDs) to
reduce the number of tree matching needed during the
counting step.

Figure 10. Pattern Tree Containment Algorithm.

4.1 Encoding Query Pattern Trees

The nodes in a global query pattern tree can be
numbered using a pre-order traversal. The nodes in the
source query pattern trees will be numbered according to
this encoding scheme. Figure 7 shows an example of a
numbered global query pattern tree G-QPT and a query
pattern tree QPT1. This numbering scheme allows us to
simplify the XML representation of the query pattern trees
in the database. For example, QPT1 in Figure 7 can be
simplified to <1><2></2><3></3><8></8></1>

Algorithm Contains (QPT, RST)
Input: QPT— Query pattern tree

 RST— Candidate RST
Output: if RST⊆ QPT return true; else return false

return SubtreeMatching (QPT.root, RST.root);
function: SubtreeMatching (v, w)
Input: v,w are nodes in tree pattern T1, T2 respectively;
Output: if w ⊆ v return true; else return false.
 /* Case 1: w is a leaf node */
1. if (IsLeaf(w))
2. if (v.label=“//” and (w.label∉{n.label | n ∈ ancestors(v)})
 and (w.label≠“//” or “*”) then //will be pruned later
3. if ∃n∈child(v),s.t. w.label ≤n.label then
4. return true;
5. else return false;
6. else return (w.label≤v.label);
 /* Case 2: w is not a leaf node, and v is a leaf node */
7. if (IsLeaf (v)) or (¬ (w.label ≤ v.label)) then
 /* v is a leaf while w is not or (¬(w.label≤v.label) */
8. return false;
 /* Case 3: Both w and v are not leaf nodes,
 and w.label≤v.label holds */
9. else
10. result =
))','((

)(')('
wvchingSubtreeMat

vchildvwchildw
∨∧

∈∈
;

11. if (result=false) and (v.label=’//’) then
12. result=),'(

)('
wvchingSubtreeMat

vchildv
∨

∈
;

13. if (result=false) and (v.label=’//’) then
14. result=)',(

)('
wvchingSubtreeMat

wchildw
∧

∈
;

15. return result;

By omitting the brackets and replacing each end tag
with –1, we can shorten the representation to “1,2,-1,3-
1,8,-1”. Note the last end tag need not be included. This
string encoding scheme is often used to encode a tree to
facilitate comparison [7,13]. This also reduces the memory
requirement during the mining process since the candidate
rooted subtrees are now encoded as strings. Tree
operations now become string operations.

4.2 Indexing Frequent RSTs

When generating a (k+1)-edge rooted subtree RSTk+1
from some k-edge RST, we need to determine if all the
possible k-edge rooted subtrees in RSTk+1 are frequent. To
facilitate this checking, we employ a prefix tree to index
the previously generated frequent RSTs. The prefix tree
behaves like a hash tree. That is, the RSTs stored in the
tree are indexed using the string encoding (with the -1’s
removed) described in the previous section. The lookup
time of the prefix tree is about O(L), where L is the length
of the string encoding.

4.3 Using Transaction IDs

Since tree matchings are expensive, it is critical to
reduce them in the mining process. Transaction IDs are
often used in [2] to expedite the mining process. In this
section, we examine how TIDs can help reduce the
number of tree matching.

Given a RSTk, we know that the expansion along the
right most branch will generate all the (k+1)-edge RSTs
that share the same prefix as RSTk. The level-wise
approach that we have adopted would enumerate all the k-
edge RSTs before going on to generate the (k+1)-edge
RSTs. We observe that for each RSTk, the RSTk+1 is
enumerated by expanding the nodes along the right most
branch of RSTk. We divide the enumeration of RSTk into
two sets: (1) those generated by expanding the right most
leaf node denoted as Gleaf; and (2) those generated by
expanding the nodes along the right most branch except
the leaf node, which is denoted as Ginternal. For RSTk+1 ∈
Ginternal, it has at least two distinct embedded k-edge RSTs:
1. RSTk without expansion (Figure 11(a)),
2. RSTk with the right most leaf node removed from

RSTk+1 (Figure 11(c)).
These embedded k-edge RSTs do not require tree
matching as the information is already stored in the prefix
tree. Assuming the transactions (QPTs) which contain
RSTk and kRST1 (Figure 11) are denoted as RSTk.TIDList

and kRST1 .TIDList respectively. Clearly, RSTk+1.TIDList

= RSTk.TIDList ∩ kRST1 .TIDList. Consequently, it is not
necessary to matched RSTk+1 against the query pattern
trees in the database. This implies that all the RSTs in
Ginternal need not be matched.

RSTk+1

x

rm

(b) a k+1-edge RST

......

r1
r2

r1

RSTk

rm

(a) a k-edge RST

......
r2

rm-1

r1

RSTk
x

r2

(c) a k-edge RSTs in

rm-1
rm-1

RSTk+1

Figure 11. Non-rightmost Leaf Node Expansion.

Algorithm RST-GenTID (Fk, support, Fk+1,Ck+1)
Input: Fk -frequent k-edge RSTs,

support = minSupp*|D|
 Fk+1, Ck+1 /*also used for return result */
Output: Candidate set Ck+1 and part of Fk+1
1. Ck+1=φ; Fk+1=φ;

2. for each k
iRST ∈Fk do

3. Gleaf = {RSTs obtained by expanding right most leaf

 node of k
iRST };

4. for each k+1-edge RSTk+1∈ Gleaf do/* prune */
5. if exists a leaf node l0 ∈ {n | n is a leaf node RSTk+1}
 and RSTk=k-edge RSTs obtained by removing l0
 from RSTk+1 s.t. RSTk ∉ Fk then
6. S=S - RSTk;
7. Ck+1= Ck+1∪Gleaf;
8. Ginternal = {RSTs obtained by expanding nodes on right

 most branch of k
iRST except the leaf node};

9. for each k+1-edge RSTk+1∈ Ginternal do
10. find one embedded k-edge RSTs k

pRST of RSTk+1 s.t.

 k
pRST ≠ k

iRST holds;

11. RSTk+1.TIDList= k
pRST .TIDList∩ k

iRST .TIDList;

12. RSTk+1.count=|rst.tidList|;
13. if (RSTk+1.count ≥ support)
14. Fk+1← RSTk+1; /* add this RST in Fk+1 */
15. return;

Figure 12. Algorithm RST-GenTID

With the use of TIDs, the candidate generation
algorithm RST-Gen is modified to RST-GenTID (see
Figure 12). Lines 3-7 perform the candidate generation.
We first obtain the set of Gleaf, and prune all invalid
candidates. The prefix tree is used to quickly determine if
the embedded k-edge RST of the (k+1)-edge RST is
frequent. Finally, we add Gleaf to the candidate set Ck+1,
which will be matched against QPTs in the database.
Lines 8-14 generate the set of Ginternal and compute the
frequencies of the RSTs by using TIDs without involving
expensive tree matchings. If the (k+1)-edge RSTk+1
satisfies the minimum support, then it is added to the Fk+1.

Figure 13 shows the XQPMinerTID algorithm. The
difference between XQPMiner and XQPMinerTID lies in
the fact that XQPMinerTID obtains a portion of the
frequent RSTs without the need to match them to the
query pattern trees in the database.

Algorithm XQPMinerTID (D, minSupp)
Input: D—pattern tree transaction database
 minSupp—the minimum support
Output: Set of all frequent RST sets
1.F1={all frequent 1-edge rooted subtrees in D};
2.support= minSupp*|D|;
3.for (k=1; Fk≠φ;k++) do
4. Fk+1=φ; Ck+1=φ;
/* generate frequent rooted subtrees */
5. RST-GenTID(Fk,support,Fk+1, Ck+1);
6. for each transaction t∈D do
7. for each candidate RSTk+1∈Ck+1 do
8. if Contains(t,RSTk+1) then//prune stage
9. RSTk+1.TIDlist←t.TID;
10. RSTk+1.count++;
11. Fk+1←{RSTk+1∈Ck+1|RSTk+1.count ≥ support};
12.return {Fi|i=1,…,k-1};

Figure 13. Algorithm XQPMinerTID.

5. Performance Study

We implement the algorithms in C++, and carry out
experiments to evaluate the performance of our algorithms.
All the experiments are performed on a 2.4GHz PC with
1GB RAM, running Windows XP.

We use the DBLP.DTD and Shakespears’ Play.DTD
as the schemas of XML data sources. A DTD graph is
converted into a DTD tree by introducing some “//” and
“*” nodes, from which the G-QPT is obtained. To
generate the QPTs of XML queries, we first enumerate all
the RSTs of the G-QPT. Next, we use the Zipfian
distributions to produce the transaction file of QPTs from
the RSTs. The Zipfian distribution is used because Web
queries and surfing patterns typically conform to Zipf’s
law.

Each dataset consists of 200,000 QPTs, which follows
the Zipfian distribution. Table 1 lists the different
characteristics of the two datasets used.

Table 1. Properties of Datasets.
 Datasets DBLP Shakespears

Play
Num. of nodes 98 67
Max depth 8 6
Num. of // 13 0

G-QPT

Max fanout 12 9
Ave # of nodes 7.4 7.5
Max depth 8 6

QPT in
DB

Max fanout 12 9

5.1 Effect of minSupp Values on Response Time

This experiment on the DBLP dataset investigates the
impact of minSupp value on response time. The results are
shown in Figure 14. With the decrease of minSupp value,

XQPMinerTID outperforms XQPMiner significantly.
XQPMinerTID is about 49 times faster at support 1% and
leaps to about 60 times faster at support 0.1% compared to
XQPMiner. This is because there are more RSTs to be
compared when the support value is lower. XQPMiner
matches each RST candidate generated against the QPTs
in the database while XQPMinerTID is able to avoid a
large number of expensive tree matching by using TIDs.

DBLP

0

20000

40000

60000

2 1.5 1 0.5 0.1
minimum support(%)

tim
e(

s)

XQPMiner
XQPMinerTID

Figure 14. Response Times when Minimum Support
Varies (DBLP dataset).

5.2 Effect of Schema Size on Response Time

Next, we compare our schema-guided enumeration
approach with non-schema guided approach proposed in
[13]. We will call the latter method ZakiTID. This
experiment is carried out on the Shakespears’ Play
datasets. Since ZakiTID does not handle “*” and “//”, we
generate QPTs without these tags. We vary the number of
nodes in the schema, but maintain the same number of
frequent RSTs. Figure 15 presents the results.
XQPMinerTID outperforms ZakiTID by 5 to 7 times for
the schema with 23 nodes. This soars to 26 to 36 times
when the size of the schema increases to 67 nodes. This is
because without the schema information, Zaki’s
enumeration method will produce a large number of
unnecessary candidates. In contrast, XQPMinerTID is
almost unaffected since the response time of
XQPMinerTID depends only on the set of frequent query
patterns to be mined.

Shakespears' Play, minSupp=0.5

0
500

1000
1500
2000
2500
3000

23 30 40 50 67
number of nodes in schema

tim
e(

s)

XQPMinerTID
ZakiTID

Figure 15. Response Times for Schema-guided and
Non-schema Guided RST Enumeration.

5.3 Effect of Number of QPTs on Response Time
In this experiment, we investigate the impact of the

number of transactions (or QPTs) in the database on
response time. The results for the DBLP dataset are shown
in Figure 16. Both algorithms scale linearly with the size
of dataset. XQPMinerTID is about 20 to 30 times faster
than XQPMiner. The many recursions in the DBLP global
query pattern tree, and the large number of nodes in the G-
QPT (98 nodes) results in high tree matching cost. In
contrast, XQPMinerTID takes much less time for
XQPMiner as unnecessary tree matches are avoided by
using TIDs.

D BLP
min imu m support(0.5%)

0
10000
20000
30000
40000
50000
60000
70000

10
0K

20
0K

30
0K

40
0K

50
0K

60
0K

70
0K

80
0K

90
0K

10
00

K

N u m of Tran sactions in each datase t

tim
e(

se
co

nd
s) XQPMiner

XQPMinerTID

Figure 16. Response Times when the Number of QPTs
Increases.

6. Related Work

Finding frequent substructures from graphs gains its
focus in DNA/RNA research. [12] devises an algorithm to
discover approximate common subtrees in multiple RNA
secondary structures in genomics. [5] presents an efficient
algorithm for finding frequent substructure from labeled
graphs and applies it to the problem of function prediction
of chemical compounds. [6] deals with the problem of
frequent subgraphs, especially, the issues of graph
isomorphism. All these methods are not applicable to
discover frequent tree patterns with wildcards and relative
paths.

The closest work to ours is [11] which finds the
frequent substructures from a collection of semi-structured
Web documents. [11] uses a tree matching algorithm to
count the support of candidate substructures by
introducing the wildcard ‘?’ in the subtree to match any
label in the path. The naïve expansion of recursive nodes
fails to capture the precise semantic of recursion. Again,
this method cannot be used to mine XML query patterns
because the query patterns contains the special characters
‘*’ and ‘//’.

[13] develops a frequent subtree mining algorithm to
discover the user navigation patterns in web surfing. The
subtree is a generalized one where its interior nodes can
shrink. However, the method does not handle ‘*’ and ‘//’
which are peculiar to XML queries. In addition, for each
leaf node of the current pattern, all the possible node

expansions have to be tested because there is no schema
information to guide their enumeration. Hence, the
enumeration is inefficient. [1] deals with the same problem
by enumerating subtrees in a similar way to [13].

7. Conclusion

In this paper, we have described a schema-guided
mining approach to discover frequent rooted subtrees from
XML queries. This approach allows us to enumerate only
valid candidates RSTs. We have also developed a tree
pattern containment algorithm that takes into account the
relative path “//” and wildcare “*” when matching RSTs
with query pattern trees. Several optimizations have also
been proposed, in particular, using TIDs to reduce the
number of tree matchings needed. Experiments results
reveal that XQPMinerTID outperforms XQPMiner by a
factor of 6-60, and has good scalability.

8. References

[1] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, S.

Arikawa. Efficient substructure discovery from large
semistructured data. 2nd SIAM Int’l Conference on Data
Mining, 2002.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. VLDB, 1994.

[3] J. Clark and S. DeRose. XML Path Language (XPath)
version 1.0. W3C recommendation, 1999.

[4] D. Chamberlin, D. Florescu, J. Robie, J. Simon, and M.
Stefanescu. XQuery: A Query Language for XML W3C
working draft. World Wide Web Consortium, 2001.

[5] L. Dehaspe, H. Toivonen, R. D. King. Finding Frequent
Substructures in Chemical Compounds. ACM SIGKDD,
pp: 30-36, 1998.

[6] A. Inokuchi, T. Washio, and H. Motoda. An Apriori-based
algorithm for mining frequent substructures from graph
data. 4th European Conf. on Principles and Practice of
Knowledge Discovery in Databases, pp:13-23, 2000.

[7] F. Luccio, A. M. Enriquez, P. O. Rieumont and L. Pagli.
“Exact Rooted Subtree Matching in Sublinear Time”. See
ftp://ftp.di.unipi.it/pub/techreports/TR-01-14.ps.Z

[8] R. Kaushik, P. Bohannon, J. Naughton, H. Korth. Covering
Indexes for Branching Path Queries. ACM SIGMOD, 2002.

[9] Q. Li and B. Moon. Indexing and querying XML data for
regular path expressions. VLDB, 2001.

[10] G. Gottlob, C. Koch, and R. Pichler. Efficient Algorithms
for Processing XPath Queries. VLDB'02, 2002.

[11] K. Wang, H. Liu, Discovering Structural Association of
Semistructured data, IEEE Transactions on Knowledge and
Data Engineering,12(3), pp:353-371, 2000.

[12] J. T. L. Wang, B. A. Shapiro, D. Shasha, K. Zhang, C.-Y.
Chang, Automated Discovery of Active Motifs in Multiple
RNA Secondary Structures. ACM SIGKDD, pp:70-75,
1996.

[13] M. Zaki. Efficiently Mining Frequent Trees in a Forest.
ACM SIGKDD, 2002.

