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Abstract 

As XML prevails over the Internet, the efficient retrieval 
of XML data becomes important. Research to improve 
query response times has been largely concentrated on 
indexing XML documents and processing regular path 
expressions. Another approach is to discover frequent 
query patterns since the answers to these queries can be 
stored and indexed. Mining frequent query patterns 
requires more than simple tree matching since the XML 
queries involves special characters such as “*” or “//”. 
In addition, the matching process can be expensive since 
the search space is exponential to the size of XML 
schema. In this paper, we present two mining algorithms, 
XQPMiner and XQPMinerTID, to discover frequent query 
pattern trees from a large collection of XML queries 
efficiently. Both algorithms exploit schema information to 
guide the enumeration of candidate subtrees, thus 
eliminating unnecessary node expansions. Experiments 
results show that the proposed methods are efficient and 
have good scalability. 
 
1. Introduction 

With the rapid increase in XML applications such as e-
business transactions, XML middleware systems, efficient 
delivery of XML data has become an important issue. 
Regular path expression (RPE) is a common feature of 
XML query languages[3,4]. Processing such RPE can be 
expensive since it involves navigation through the 
hierarchical structure of XML, which can be deeply 
nested. Much research efforts have been focused on the 
storage and indexing of XML documents, and the efficient 
evaluation of regular path expressions [8, 9,10]. 

Another approach to improve query response time is to 
discover frequent query patterns since the answers to these 
queries can be stored and indexed. Given an XML data 
source and the history of XML queries {q1,….,qN} issued 
against it, we can transform them into a corresponding 
history of query pattern trees D = {QPT1,….,QPTN}. This 
gives us a database of query pattern trees. Each transaction 
is then a query pattern tree QPTi while an itemset is a 
rooted subtree of QPTi. Mining frequent query patterns is 
equivalent to finding the rooted subtrees that occur 
frequently over the set of pattern trees D. This requires 
more than simple tree matching since the XML queries 
involves special characters such as “*” or “//”. In addition, 
the matching process can be expensive since the search 

space is exponential to the size of XML schema. Since the 
candidate patterns in this mining problem are rooted 
subtrees, an efficient enumeration technique is critical to 
reduce unnecessary node expansion and comparisons. 

In this paper, we describe two efficient mining 
algorithms, XQPMiner and XQPMinerTID, to discover 
the frequent query pattern trees from a large collection of 
XML queries. Both algorithms exploit schema information 
to guide the enumeration of candidate subtrees, thus 
eliminating unnecessary node expansions. To speed up the 
matching process required in determining the frequency 
counts of the enumerated subtrees, we develop an 
algorithm to quickly determine if a rooted subtree is 
contained in the query pattern trees. Experiments results 
on real datasets show that the proposed methods are 
efficient and have good scalability. 

The rest of the paper is organized as follows. Section 2 
first defines some basic concepts. Section 3 describes the 
XQPMiner algorithm. Section 4 presents the optimizations 
for XQPMiner. Section 5 gives the results of the 
experiments. We discuss related work in Section 6, before 
concluding in Section 7. 
 
2. Preliminaries 

We first define the concepts of query pattern trees and 
rooted subtrees that form the basis of the algorithms 
XQPMiner and XQPMinerTID. We also illustrate how an 
XML query can be transformed into a query pattern tree. 
In order to determine the frequent query patterns, we need 
to compute the frequency counts of rooted subtrees 
efficiently. This entails a tree pattern matching technique 
that takes into consideration the wildcards and relative 
paths that may occur in the query patterns. 

 
2.1 Query Pattern Tree 

Figure 1 shows an example Book DTD and the 
corresponding XML tree. The following query Q1,written 
in XQuery syntax [4], retrieves the title, author and price 
of books written by “Buneman”.  
Q1: for $b in document(book.xml) /book 

 where some $a in $b/author  
satisfies $a/lastname/data()=”Buneman” 

return <result>  
<book>{$b/title, $b/author, $b/price}<book> 

  </result> 
We can extract the following information from Q1 



Q1 {resultPattern = {/book/author, /book/title, /book/price}, 
predicates = {/book/author/lastname/data() = ”Buneman”}, 
documents = {book.xml}} 

where resultPattern is the schema pattern of the result, 
predicates are the filtering conditions used in the query, 
and documents are the XML data files involved.  
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Figure 1. Book DTD Tree. 

Next, we extract the paths from the set predicates by 
ignoring the selection conditions. For example, we can 
extract the path “/book/author/lastname/” from the 
predicate /book/author/lastname/data() = “Buneman” in 
Q1. We combine these extracted path expressions with the 
paths in the set resultPattern to generate the query pattern 
tree. Figure 2(a) shows the query pattern tree obtained for 
Q1. A query pattern tree may not only consist of element 
tag names, but also wildcard “*” and relative path “//”. 
Wildcards indicate the ANY label in DTD, while relative 
paths indicate zero or more labels (descendant-or-self). 
Formally, a query pattern tree can be defined as follows. 

Definition 1 (Query Pattern Tree): A query pattern 
tree is a rooted tree QPT = <V, E>, where V is the vertex 
set, and E is the edge set. The root is denoted as 
Root(QPT). We denote each edge e by (v1, v2) where node 
v1 is the parent of node v2. Each vertex v has a label with 
its value in {“*”, “//”, tagSet}, where tagSet is the set of 
all element and attribute names in the underlying DTD. 
We denote the label of a vertex v as v.label. 
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some minimum support level. The total occurrence of a 
rooted subtree RST in D is denoted as freq(RST), and its 
support is given by supp(RST) = freq(RST)/|D|. For some 
positive number σ, we say that an RST is σ-frequent in D 
if supp(RST) ≥ σ. Figure 3 shows a database of three 
query pattern trees and a frequent root subtree. RST 
occurs in QPT1 and QPT2. Hence, its frequency is 
freq(RST) = 2, with a support of supp(RST) = 2/3. 
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Figure 3. Database of Query Pattern Trees and a 
Frequent Rooted Subtree. 

 
2.3 Tree Pattern Matching 

In general, a tree T = <V, E> matches another tree T’ 
= <V’, E’> if there exists a mapping ϕ such that 
1. Root(T’) = ϕ (Root(T)) and ∀v ∈ V, ∃v’∈ V’s.t. v’ = 

ϕ (v) where v.label = v’.label 
2. ϕ preserves the parent-child relation: if (v1,v2) ∈ E, 

then (ϕ(v1), ϕ(v2)) ∈ E’  
then we say that T is a subtree of T’ or T is contained in T’. 

This naïve definition is not applicable to our tree 
matching problem due to the presence of wildcards and 
relative paths in the query pattern trees. Figure 4 shows 
two query trees T1 and T2. Intuitively, the path 
“book/section/figure/title” in T2 matches the path 
“book//title” in T1 since “//” in “book//title” indicates zero 
or more labels between the nodes book and title. Since the 
wildcard “*” can be substituted by ANY single node, then 
“book/section/figure/image” matches “book/section/*/ 
image”. We say that T2 matches T1. In other words, T2 is 
contained in T1, written as T2 ⊆ T1.  
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Figure 4. Example of Pattern Tree Containment. 

While one could try to expand the non-deterministic 
paths such as “book//title” to become a deterministic path 
“book/section/figure/title”, this is only feasible when the 
XML DTD (or schema) is a directed acyclic graph. The 
expansion method will fail if the DTD contains cycles. 
Nonetheless, expanding “//” remains crucial. This is 
because without the context information, one cannot tell 
whether a path is contained in “//” or not.  

Figure 5 shows a query pattern containing two relative 
path expressions and three rooted subtrees. RST1 and 



RST2 are contained in QPT since the paths “/book/ 
section/figure/title” and “/book/section/figure/image” are 
contained in “/book//title” and “/book//image” respectively. 
The matching paths have common leaf nodes as their 
context. But it is not clear if RST3 is contained in QPT 
since we cannot merge the two child nodes “//” of “book” 
because nodes “title” and “image” may not share the same 
parent node. Hence, the expansion of “//” is necessary.  
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Figure 5. Matching Root Subtrees with a Complex 
Query Pattern. 

We expand the relative paths “//” in a query pattern 
tree as follows. Suppose the node “//” has a child n. If no 
cycles exist in the underlying XML schema, then the 
expansion is straightforward. However, if a cycle exists 
and one of the expanded paths is “root/…/p/n” where the 
parent of n (node p) has a child that points back to p’s 
ancestor, then we will need to introduce a node “//” 
between p and n.  

Consider the XML schema in Figure 1 and the query 
pattern tree QPT in Figure 5. As the schema contains 
cycles, the path “book//title” is expanded into an infinite 
number of paths including book/title, book/section/title, or 
book/section*/title, etc. The path book//image can be 
expanded similarly. We can concisely represent the set of 
possible expansions by the expandedQPT in Figure 5. In 
this way, we augment the initial query pattern tree with 
context information, and remove cycles in query pattern 
trees. It is clear that RST3 is contained in QPT. 

We also observe that the labels in two pattern trees 
satisfy the partial order relationship ≤. Given a label x, we 
have x≤x, or two nodes with the same label matches. 
Similarly, we have * ≤ * and //≤//. In order to match nodes 
involving wildcards and relative paths, we have x≤*≤//, 
that is, a node with label x matches a wildcard, which in 
turn matches a node with label //. 

Definition 4 (Query Pattern Tree Matching): Given 
a query pattern tree QPT and a rooted subtree RST, we say 
that RST is contained in a QPT if the following hold: 
1. The root nodes in RST and QPT have the same label. 
2. If a node w∈RST is matched with node v∈QPT, then it 

satisfies (a) w.label ≤ v.label, and (b) each subtree of w 
is contained in some subtree of QPT. 

 
3. Discovering Frequent Rooted Subtrees 

In the context of mining frequent query pattern trees, 
the database of transactions D is a set of pattern trees. 

Each transaction t∈D is a labeled directed pattern tree 
extracted from an XML query. Given a minimum support 
minSupp, we would like to find the frequently occuring 
rooted subtrees in at least minSup*|D| transactions. In this 
section, we describe the algorithm XQPMiner for 
discovering frequent query patterns. 

The main framework of XQPMiner is shown in Figure 
6. XQPMiner employs the Apriori [2] style to generate 
frequent rooted subtrees. The notation RSTk+1 denotes a 
k+1-edge rooted subtree; Fk+1 is a set of frequent k+1-edge 
rooted subtrees; and Ck+1 is a set of k+1-edge candidate 
RSTs. The edges correspond to items in traditional 
frequent itemset discovery.  XQPMiner increases the size 
of frequent RSTs by adding an edge one at a time.  

XQPMiner initially enumerates all the frequent 1-edge 
RSTs by scanning D once. The subsequent pass k consists 
of two phases. In the first phase, the algorithm RST-Gen 
first generates the candidate set Ck+1 by using the 
previously found frequent set Fk and pruning those 
unqualified candidates. Then it counts the frequency for 
each of these candidates, and removes those RSTs that do 
not satisfy the minimal support requirement. In the second 
phase, the algorithm Contains determines if RSTk+1 is 
contained in the pattern tree t. 

Algorithm XQPMiner (D, minSupp)  
Input: D—pattern tree transaction database 
            minSupp—the minimum support 
Output: Set of all frequent RST sets 
1. F1={all frequent 1-edge rooted subtrees in D}; 
2. for (k=1; Fk≠φ;k++) do  
          /*generate frequent rooted subtrees*/ 
3.      Ck+1=RST-Gen (Fk);  
4.      for each transaction t∈D do  
5.         for each candidate RSTk+1∈Ck+1 do  
6.            if Contains (t,RSTk+1) then/* prune */ 
7.              RSTk+1.count++; 
8.      Fk+1={RSTk+1∈Ck+1|RSTk+1.count ≥minSupp*|D|}; 
9. return {Fi|i=1,…,k-1}; 

Figure 6. Algorithm to Find Frequent RSTs. 
 
3.1 Generation of Candidate RSTs 

This step enumerates all the frequent rooted subtrees in 
D. We examine two important issues, namely, how to 
generate candidate RSTs without repetition, and how to 
prune the candidates RST early and quickly. 

The first issue is also known as the RST enumeration 
problem. In order to reduce the number of candidate RSTs 
generated, we propose to use a schema-guided right most 
expansion enumeration method. We construct a global 
query pattern tree G-QPT by merging the query pattern 
trees in the database. Figure 7 shows the global query 
pattern obtained from QPT1, QPT2, and QPT3 in Figure 3.  



The schema-guided enumeration method works as 
follows. Starting with all the possible 1-edge RSTs, we use 
the G-QPT to systematically guide the generation of 2-
edge RSTs level-wise, from which 3-edge RSTs are 
obtained, and so on. Figure 8(a) shows a 2-edge RST R 
and the set of corresponding 3-edge RSTs obtained based 
on the G-QPT in Figure 7.  

The method in [13] do not use schema information to 
guide the generation of candidate subtrees. As a result, a 
large number of candidate trees will be produced, 
including unnecessary and invalid trees. Figure 8(b) shows 
all the possible 3-edge RSTs that shares the same prefix as 
R produced. Note the vast difference in the number of 
RSTs produced when schema information is not utilized. 
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Figure 7.  Global Query Pattern Tree for the Query 
Patterns in Figure 3. 
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Figure 8. Schema versus Non-schema Guided 
Enumeration of RSTs.  

The second issue is to prune the candidates RST early. 
A key idea used in the efficient mining of association rules 
is the Apriori property [2]: If one subset of an itemset is 
not frequent, then the itemset itself cannot be frequent. 
This allows one to use the frequent itemsets of size k-1 as 
filters for candidate itemsets of size k. This property is 
also true for frequent query pattern mining. If a k-edge 
RST is frequent, then all its (k-1)-edge RSTs must be 
frequent. We use this property to prune candidate RSTs. 

The candidate generation algorithm RST-Gen is 
shown in Figure 9. Its input is a set of frequent k-edge 
RST Fk from which a set of candidate (k+1)-edge rooted 

subtrees Ck+1 is generated. For each frequent k-edge 
k

iRST ∈ Fk, all the possible (k+1)-edge RSTs are 
enumerated based on the schema (Line 3). Lines 4-7 prune 
infrequent rooted subtrees by checking each k-edge rooted 
subtree in the (k+1)-edge RSTk+1. If any of the k-edge 
RST does not exist in the set of frequent k-edge RSTs, 
then RSTk+1 is not frequent and will not be added to the 
candidate set Ck+1. Finally, Line 8 returns the (k+1)-edge 
candidate set Ck+1, where the k+1-edge RSTs will be 
subsequently matched against the query pattern tree 
database to count their frequency. 

Algorithm RST-Gen (Fk) 
Input: Fk – Set of frequent k-edge RSTs   
Output: Candidate set Ck+1 
1. Ck+1=φ;  

2. for each k
iRST ∈Fk do 

3.    S = enumerate ( k
iRST );  

4.    for each k+1-edge RSTk+1 ∈ S do  
5.        if ∃ leaf node l0 ∈ {n | n is a leaf node in RSTk+1} and  
              RSTk is a k-edge RSTs obtained by removing l0 from 
              RSTk+1 s.t. RSTk ∉ Fk 
6.      then S = S - RSTk; 
7.  Ck+1 = Ck+1 ∪ S; 
8. return Ck+1; 

Figure 9. Algorithm to Generate Candidate RSTs. 
 
3.2 Containment of RST in a Pattern Tree 

After generating the set of candidate rooted subtrees, 
the next step is to count their support in the database of 
QPTs. Traditionally, it is relatively straightforward to test 
if a candidate itemset is contained in a transaction, since 
an itemset is a set. Here, a candidate is a rooted subtree. 
This requires tree matching which is expensive. Further, 
the matching process is complicated by the presence of  
“*” and “//” in XML queries.  

Figure 10 shows the Contains algorithm that we have 
designed to determine whether a rooted subtree is 
contained in a query pattern tree. The input trees are 
compared recursively from the root to the leaf nodes. The 
underlying matching criterion is based on the partial order 
definition given in Section 2. That is, given two nodes w ∈ 
RST and v ∈ QPT, if they satisfy the partial order w.label 
≤ v.label and each subtree of w is contained in some 
subtree of QPT, we say the node w is matched with the 
node v. We will now elaborate on all the possible 
matching scenarios: 

Case 1: w is a leaf node.  
(a) We check whether w has the more specific label, or its 

label is not contained in v.label. If v.label is not “//”, 
then nodes w and v can be matched directly using 



w.label ≤ v.label. The following sub-cases requires 
special attention: 
i. w.label = "//" or "*". Then the RST is in a 

transitional state, and we need to examine edges 
further down the tree before deciding if the RST is 
actually contained in the QPT. For the moment, the 
algorithm will return the result of the comparison 
w.label ≤ v.label.  

ii. If w.label appears in the set of labels of node v’s 
ancestors (that is, recursion exists in the schema), 
then the containment is also determined by w.label ≤ 
v.label. This decision is related to Case 3, which we 
will explain and illustrate with an example later. 

(b) If v.label = "//", then w.label ≤ v.label should hold 
according to the partial order relationship. However, 
without looking into the context information of the two 
nodes, we cannot claim that w is contained in v.  

Consider “book//[v]price” and “book/section[w]” where 
the nodes enclosed in square brackets are currently being 
compared. We cannot conclude that w is contained in v 
without looking ahead at node v’s children. If any of v’s 
child node n satisfies the partial order w.label ≤ n.label, 
then w is contained in v. If we have “book/section/title[w]” 
and “book/section//[v]title”, then w is contained in v.  

Case 2: w is not a leaf node, and v is a leaf node. 
Since w is more specific than v, it is not possible for w to 
be contained in v. An example of this case is v = “section” 
and w = “section/title”.  

Case 3: Both w and v are not leaf nodes. 
If w.label ≤ v.label does not hold, then w is not contained 
in v. Otherwise, if w.label ≤ v.label holds, then Line 10 
tries to compute whether all the subtrees of w is contained 
in those of v. If yes, then the algorithm will return true. 
Otherwise, if v.label = “//”, then by treating it as a zero 
length path, Lines 11-12 will check whether w is contained 
in one of v’s children. If it is not, then Lines 13-14 will 
consider v.label=“//” as having multiple nodes and test if 
the subtrees of w are contained in v.  

We will now illustrate the algorithm with an example. 
Suppose we want to match “book/section/section[w]/ 
section[w’]” with “book/section//[v]title[v’]”. Both w and 
v are not leaf nodes, and we have w.label = “section” ≤ 
v.label=“//”. The algorithm will first determine if the 
subtrees of w are contained in some subtrees of v, that is, it 
will try to match w’ with v’ (Case 3). When this fails, the 
algorithm will examine if any children of v contains w, that 
is, treat “//” as 0 length. Otherwise, the algorithm tries the 
multi-label choice for “//”. Lines 13-14 accomplishes this 
by considering w as a node that is contained in v and 
decides if w’ is contained in v. Since w’ is a leaf node, and 
w’.label appears in the label set of v’s ancestors (Case 1), 
the algorithm returns true.  

4. Optimizations for XQPMiner 
By analyzing the mining framework in Figure 6, 

optimization techniques can be applied to the candidate 
generation phase (Line 3) and the frequency counting 
phase (Lines 4-7). We employ a prefix tree to index the 
frequent RSTs to facilitate pruning during the generation 
of candidate RSTs. We also use transaction IDs (TIDs) to 
reduce the number of tree matching needed during the 
counting step. 

Figure 10. Pattern Tree Containment Algorithm. 
 
4.1 Encoding Query Pattern Trees 

The nodes in a global query pattern tree can be 
numbered using a pre-order traversal. The nodes in the 
source query pattern trees will be numbered according to 
this encoding scheme. Figure 7 shows an example of a 
numbered global query pattern tree G-QPT and a query 
pattern tree QPT1. This numbering scheme allows us to 
simplify the XML representation of the query pattern trees 
in the database. For example, QPT1 in Figure 7 can be 
simplified to <1><2></2><3></3><8></8></1> 

Algorithm Contains (QPT, RST) 
Input: QPT— Query pattern tree 

      RST— Candidate RST 
Output: if RST⊆ QPT return true; else return false 

return SubtreeMatching (QPT.root, RST.root); 
function: SubtreeMatching (v, w) 
Input: v,w are nodes in tree pattern T1, T2 respectively; 
Output: if w ⊆ v return true; else return false.  
    /* Case 1: w is a leaf node */ 
1. if (IsLeaf(w)) 
2.    if (v.label=“//” and (w.label∉{n.label | n ∈ ancestors(v)}) 
           and (w.label≠“//” or “*”)  then     //will be pruned later  
3.        if ∃n∈child(v),s.t. w.label ≤n.label then   
4.            return true;     
5.        else return false;   
6.    else return  (w.label≤v.label);  
    /* Case 2: w is not a leaf node, and v is a leaf node */ 
7. if (IsLeaf (v)) or (¬ (w.label ≤ v.label)) then 
        /* v is a leaf while w is not or (¬(w.label≤v.label) */ 
8.    return false;  
    /* Case 3:  Both w and v are not leaf nodes,  
                      and w.label≤v.label holds */ 
9. else 
10.   result = 
             ))','((

)(')('
wvchingSubtreeMat

vchildvwchildw
∨∧

∈∈
; 

11.   if (result=false) and (v.label=’//’) then 
12.      result= ),'(

)('
wvchingSubtreeMat

vchildv
∨

∈
; 

13.   if (result=false) and (v.label=’//’) then 
14.      result= )',(

)('
wvchingSubtreeMat

wchildw
∧

∈
; 

15.   return result; 



By omitting the brackets and replacing each end tag 
with –1, we can shorten the representation to “1,2,-1,3-
1,8,-1”. Note the last end tag need not be included. This 
string encoding scheme is often used to encode a tree to 
facilitate comparison [7,13]. This also reduces the memory 
requirement during the mining process since the candidate 
rooted subtrees are now encoded as strings. Tree 
operations now become string operations.  
 
4.2 Indexing Frequent RSTs 

When generating a (k+1)-edge rooted subtree RSTk+1 
from some k-edge RST, we need to determine if all the 
possible k-edge rooted subtrees in RSTk+1 are frequent. To 
facilitate this checking, we employ a prefix tree to index 
the previously generated frequent RSTs. The prefix tree 
behaves like a hash tree. That is, the RSTs stored in the 
tree are indexed using the string encoding (with the -1’s 
removed) described in the previous section. The lookup 
time of the prefix tree is about O(L), where L is the length 
of the string encoding. 
 
4.3 Using Transaction IDs 

Since tree matchings are expensive, it is critical to 
reduce them in the mining process. Transaction IDs are 
often used in [2] to expedite the mining process. In this 
section, we examine how TIDs can help reduce the 
number of tree matching.  

Given a RSTk, we know that the expansion along the 
right most branch will generate all the (k+1)-edge RSTs 
that share the same prefix as RSTk. The level-wise 
approach that we have adopted would enumerate all the k-
edge RSTs before going on to generate the (k+1)-edge 
RSTs. We observe that for each RSTk, the RSTk+1 is 
enumerated by expanding the nodes along the right most 
branch of RSTk. We divide the enumeration of RSTk into 
two sets: (1) those generated by expanding the right most 
leaf node denoted as Gleaf; and (2) those generated by 
expanding the nodes along the right most branch except 
the leaf node, which is denoted as Ginternal. For RSTk+1 ∈ 
Ginternal, it has at least two distinct embedded k-edge RSTs:  
1. RSTk without expansion (Figure 11(a)), 
2. RSTk with the right most leaf node removed from 

RSTk+1 (Figure 11(c)).  
These embedded k-edge RSTs do not require tree 
matching as the information is already stored in the prefix 
tree. Assuming the transactions (QPTs) which contain 
RSTk and kRST1 (Figure 11) are denoted as RSTk.TIDList 

and kRST1 .TIDList respectively. Clearly, RSTk+1.TIDList 

= RSTk.TIDList ∩ kRST1 .TIDList. Consequently, it is not 
necessary to matched RSTk+1 against the query pattern 
trees in the database. This implies that all the RSTs in 
Ginternal need not be matched. 
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Figure 11. Non-rightmost Leaf Node Expansion. 

Algorithm RST-GenTID (Fk, support, Fk+1,Ck+1) 
Input: Fk -frequent k-edge RSTs,   

support = minSupp*|D| 
            Fk+1, Ck+1 /*also used for return result */ 
Output: Candidate set Ck+1 and part of Fk+1 
1. Ck+1=φ; Fk+1=φ; 

2. for each k
iRST ∈Fk do 

3.     Gleaf  = {RSTs obtained by expanding right most leaf  

                      node of k
iRST }; 

4.     for each k+1-edge RSTk+1∈ Gleaf  do/* prune */ 
5.       if exists a leaf node l0 ∈ {n | n is a leaf node RSTk+1} 
             and RSTk=k-edge RSTs obtained by removing l0  
             from RSTk+1 s.t. RSTk ∉ Fk  then 
6.           S=S - RSTk; 
7.   Ck+1= Ck+1∪Gleaf; 
8.   Ginternal = {RSTs obtained by expanding nodes on right 

               most branch of k
iRST except the leaf node}; 

9.   for each k+1-edge RSTk+1∈ Ginternal  do 
10.     find one embedded k-edge RSTs k

pRST of RSTk+1 s.t. 

                   k
pRST ≠ k

iRST holds; 

11.     RSTk+1.TIDList= k
pRST .TIDList∩ k

iRST .TIDList; 

12.     RSTk+1.count=|rst.tidList|; 
13.     if (RSTk+1.count ≥ support) 
14.         Fk+1← RSTk+1; /* add this RST in Fk+1 */ 
15. return; 

Figure 12. Algorithm RST-GenTID 

With the use of TIDs, the candidate generation 
algorithm RST-Gen is modified to RST-GenTID (see 
Figure 12). Lines 3-7 perform the candidate generation. 
We first obtain the set of Gleaf, and prune all invalid 
candidates. The prefix tree is used to quickly determine if 
the embedded k-edge RST of the (k+1)-edge RST is 
frequent. Finally, we add Gleaf to the candidate set Ck+1, 
which will be matched against QPTs in the database.  
Lines 8-14 generate the set of Ginternal and compute the 
frequencies of the RSTs by using TIDs without involving 
expensive tree matchings. If the (k+1)-edge RSTk+1 
satisfies the minimum support, then it is added to the Fk+1. 

Figure 13 shows the XQPMinerTID algorithm. The 
difference between XQPMiner and XQPMinerTID lies in 
the fact that XQPMinerTID obtains a portion of the 
frequent RSTs without the need to match them to the 
query pattern trees in the database. 



Algorithm XQPMinerTID (D, minSupp) 
Input: D—pattern tree transaction database 
           minSupp—the minimum support 
Output: Set of all frequent RST sets 
1.F1={all frequent 1-edge rooted subtrees in D}; 
2.support= minSupp*|D|; 
3.for (k=1; Fk≠φ;k++) do  
4.   Fk+1=φ; Ck+1=φ; 
/* generate frequent rooted subtrees */ 
5.   RST-GenTID(Fk,support,Fk+1, Ck+1);  
6.   for each transaction t∈D do  
7.      for each candidate RSTk+1∈Ck+1 do 
8.         if Contains(t,RSTk+1) then//prune stage 
9.            RSTk+1.TIDlist←t.TID;        
10.          RSTk+1.count++; 
11.  Fk+1←{RSTk+1∈Ck+1|RSTk+1.count ≥ support}; 
12.return {Fi|i=1,…,k-1}; 

Figure 13. Algorithm XQPMinerTID. 
 
5. Performance Study 

We implement the algorithms in C++, and carry out 
experiments to evaluate the performance of our algorithms. 
All the experiments are performed on a 2.4GHz PC with 
1GB RAM, running Windows XP. 

We use the DBLP.DTD and Shakespears’ Play.DTD 
as the schemas of XML data sources. A DTD graph is 
converted into a DTD tree by introducing some “//” and 
“*” nodes, from which the G-QPT is obtained. To 
generate the QPTs of XML queries, we first enumerate all 
the RSTs of the G-QPT. Next, we use the Zipfian 
distributions to produce the transaction file of QPTs from 
the RSTs. The Zipfian distribution is used because Web 
queries and surfing patterns typically conform to Zipf’s 
law. 

Each dataset consists of 200,000 QPTs, which follows 
the Zipfian distribution. Table 1 lists the different 
characteristics of the two datasets used.  

Table 1. Properties of Datasets. 
                 Datasets DBLP Shakespears 

Play 
Num. of nodes 98 67 
Max depth 8 6 
Num. of // 13 0 

 
G-QPT 

Max fanout 12 9 
Ave # of nodes 7.4 7.5 
Max depth 8 6 

QPT in 
DB 

Max fanout 12 9 
 
5.1 Effect of minSupp Values on Response Time 

This experiment on the DBLP dataset investigates the 
impact of minSupp value on response time. The results are 
shown in Figure 14. With the decrease of minSupp value, 

XQPMinerTID outperforms XQPMiner significantly. 
XQPMinerTID is about 49 times faster at support 1% and 
leaps to about 60 times faster at support 0.1% compared to 
XQPMiner. This is because there are more RSTs to be 
compared when the support value is lower. XQPMiner 
matches each RST candidate generated against the QPTs 
in the database while XQPMinerTID is able to avoid a 
large number of expensive tree matching by using TIDs. 
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Figure 14. Response Times when Minimum Support 
Varies (DBLP dataset). 
 
5.2 Effect of Schema Size on Response Time 

Next, we compare our schema-guided enumeration 
approach with non-schema guided approach proposed in 
[13]. We will call the latter method ZakiTID. This 
experiment is carried out on the Shakespears’ Play 
datasets. Since ZakiTID does not handle “*” and “//”, we 
generate QPTs without these tags. We vary the number of 
nodes in the schema, but maintain the same number of 
frequent RSTs. Figure 15 presents the results. 
XQPMinerTID outperforms ZakiTID by 5 to 7 times for 
the schema with 23 nodes. This soars to 26 to 36 times 
when the size of the schema increases to 67 nodes. This is 
because without the schema information, Zaki’s 
enumeration method will produce a large number of 
unnecessary candidates. In contrast, XQPMinerTID is 
almost unaffected since the response time of 
XQPMinerTID depends only on the set of frequent query 
patterns to be mined. 
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Figure 15. Response Times for Schema-guided and 
Non-schema Guided RST Enumeration. 
 



5.3 Effect of Number of QPTs on Response Time 
In this experiment, we investigate the impact of the 

number of transactions (or QPTs) in the database on 
response time. The results for the DBLP dataset are shown 
in Figure 16. Both algorithms scale linearly with the size 
of dataset. XQPMinerTID is about 20 to 30 times faster 
than XQPMiner. The many recursions in the DBLP global 
query pattern tree, and the large number of nodes in the G-
QPT (98 nodes) results in high tree matching cost. In 
contrast, XQPMinerTID takes much less time for 
XQPMiner as unnecessary tree matches are avoided by 
using TIDs. 
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Figure 16. Response Times when the Number of QPTs 
Increases. 
 
6. Related Work 

Finding frequent substructures from graphs gains its 
focus in DNA/RNA research. [12] devises an algorithm to 
discover approximate common subtrees in multiple RNA 
secondary structures in genomics. [5] presents an efficient 
algorithm for finding frequent substructure from labeled 
graphs and applies it to the problem of function prediction 
of chemical compounds. [6] deals with the problem of 
frequent subgraphs, especially, the issues of graph 
isomorphism. All these methods are not applicable to 
discover frequent tree patterns with wildcards and relative 
paths. 

The closest work to ours is [11] which finds the 
frequent substructures from a collection of semi-structured  
Web documents. [11] uses a tree matching algorithm to 
count the support of candidate substructures by 
introducing the wildcard ‘?’ in the subtree to match any 
label in the path. The naïve expansion of recursive nodes 
fails to capture the precise semantic of recursion. Again, 
this method cannot be used to mine XML query patterns 
because the query patterns contains the special characters 
‘*’ and ‘//’. 

[13] develops a frequent subtree mining algorithm to 
discover the user navigation patterns in web surfing. The 
subtree is a generalized one where its interior nodes can 
shrink. However, the method does not handle ‘*’ and ‘//’ 
which are peculiar to XML queries. In addition, for each 
leaf node of the current pattern, all the possible node 

expansions have to be tested because there is no schema 
information to guide their enumeration. Hence, the 
enumeration is inefficient. [1] deals with the same problem 
by enumerating subtrees in a similar way to [13]. 

 
7. Conclusion 

In this paper, we have described a schema-guided 
mining approach to discover frequent rooted subtrees from 
XML queries. This approach allows us to enumerate only 
valid candidates RSTs. We have also developed a tree 
pattern containment algorithm that takes into account the 
relative path “//” and wildcare “*” when matching RSTs 
with query pattern trees. Several optimizations have also 
been proposed, in particular, using TIDs to reduce the 
number of tree matchings needed. Experiments results 
reveal that XQPMinerTID outperforms XQPMiner by a 
factor of 6-60, and has good scalability. 
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