CS2220: Introduction to Computational Biology
Course Briefing, 12/1/07

Limsoon Wong
Recommended “Pre-requisites”

- CS1102: Data Structures and Algorithms
- LSM1102: Molecular Genetics
Objectives

- Develop flexible and logical problem solving skill
- Understand bioinformatics problems
- Appreciate techniques and approaches to bioinformatics

To achieve the goals above, we expose the students to a series of case studies spanning gene feature recognition, gene expression and proteomic analysis, gene finding, sequence homology interpretation, phylogeny analysis, physical mapping, and genome sequencing.
What to Expect

• Time Table
• Course Syllabus
• Course Homepage
• Teaching Style
• Project, Assignments, Exams
• Readings
• Assessment
Time Table

• Lecture
 □ Friday 2:00pm – 4:00pm, S1-405

• Tutorial
 □ Monday 10:00am – 11:00am, S16-432

• Consultation
 □ Friday 10:00am – 12:00nn

• Office
 □ S16 Level 6 Room 5

• Email
 □ wongls@comp.nus.edu.sg
Course Syllabus

- **Essence of Bioinformatics**
 - molecular biology
 - tools and instruments for molecular biology
 - themes and applications of bioinformatics

- **Essence of Knowledge Discovery**
 - classification performance measures
 - feature selection techniques
 - machine learning techniques

- **Gene Feature Recognition from Genomic DNA**
 - feature generation, selection, & integration
 - translation initiation site (TIS) recognition
 - Transcription start site (TSS) recognition

- **Gene Expression and Proteome Analysis**
 - Microarray and mass-spec basics
 - classification of gene expression profiles
 - classification of proteomic profiles
 - clustering of gene expression profiles
 - molecular network reconstruction

- **Essence of Seq Comparison**
 - Dynamic programming basics
 - Sequence comparison and alignment basics
 - Needleman-Wunsh global alignment algorithm
 - Smith-Waterman local alignment algorithm

- **Seq Homology Interpretation**
 - protein function prediction by sequence alignment
 - protein function prediction by phylogenetic profiling
 - active site and domain prediction
 - key mutation sites prediction

- **Gene Finding**
 - Overview of gene finding
 - GRAIL
 - Handling of frame shifts and in-dels

- **Phylogenetic Trees**
 - Phylogeny reconstruction method basics
 - origin of Polynesians & Europeans
 - Large-scale sequencing basics

- **Physical Mapping and Genome Sequencing**
 - Physical mapping basics
 - sequence assembly algorithm
 - shortest common superstring problem
Course Homepage

• **IVLE**

• **Lecture Slides & etc**
Teaching Style

• Bioinformatics is a broad area
• Need to learn a lot of material by yourself
 – Reading books
 – Reading papers
 – Practice on the web
• Don’t expect to be told everything
Assignments, Project, & Exam

• **Assignments**
 – Probably 4 assignments
 – Some are programming assignments

• **Project**
 – Based on a case study in the class
 – 8-10 pages of report expected

• **Exam**
 – No mid-term exam … I hope!
 – 1 final open-book exam
Be Honest

• Exam
 – Absence w/o good cause results in ZERO mark
 – Cheating results in ZERO mark
• Discussion on assignments is allowed
• Blatant plagiarism is not allowed
 – Offender gets ZERO mark for assignment or exam
 – Penalty applies to those who copied AND those who allowed their assignments to be copied
Background Readings

• Limsoon Wong, *The Practical Bioinformatician*, WSPC, 2004

Assessment

• Continuous Assessment: 50%
• Final Exam: 50%
What comes after CS2220

• **CS2220 Introduction to Computational Biology**
 - Understand bioinformatics problems; interpretational skills

• **CS3225 Combinatorial Methods in Bioinformatics**

• **CS4220 Knowledge Discovery Methods in Bioinformatics**
 - Clustering; classification; association rules; SVM; HMM; Mining of seq, trees, & graphs

• **CS5238 Advanced Combinatorial Methods in Bioinformatics**
 - Seq alignment, whole-genome alignment, suffix tree, seq indexing, motif finding, RNA structure prediction, phylogeny reconstruction

• **CS6280 Computational Systems Biology**
 - Dynamics of biochemical and signaling networks; modeling, simulating, & analyzing them

• Etc …
Any questions?

I hope you will enjoy this class 😊