Recommended “Pre-requisites”

- CS1102: Data Structures and Algorithms
- LSM1102: Molecular Genetics
Objectives

- Develop flexible and logical problem solving skill
- Understand bioinformatics problems
- Appreciate techniques and approaches to bioinformatics

To achieve the goals above, we expose the students to a series of case studies spanning gene feature recognition, gene expression and proteomic analysis, gene finding, sequence homology interpretation, phylogeny analysis, physical mapping, and genome sequencing.

What to Expect

- Time Table
- Course Syllabus
- Course Homepage
- Teaching Style
- Project, Assignments, Exams
- Readings
- Assessment
Time Table

- **Lecture**
 - Friday 2:00pm – 4:00pm, COM1-212
- **Tutorial**
 - T. B. A.
- **Consultation**
 - Any time, just drop by my office 😊
- **Office**
 - COM1, Level 3, Room 34
- **Email**
 - wongls@comp.nus.edu.sg

Course Syllabus

- **Essence of Bioinformatics**
 - molecular biology
 - tools and instruments for molecular biology
 - themes and applications of bioinformatics
- **Essence of Knowledge Discovery**
 - classification performance measures
 - feature selection techniques
 - machine learning techniques
- **Gene Feature Recognition from Genomic DNA**
 - feature generation, selection, & integration
 - translation initiation site (TIS) recognition
 - Transcription start site (TSS) recognition
- **Gene Expression and Proteome Analysis**
 - Microarray and mass-spec basics
 - classification of gene expression profiles
 - classification of proteomic profiles
 - clustering of gene expression profiles
 - molecular network reconstruction
- **Essence of Seq Comparison**
 - Dynamic programming basics
 - Sequence comparison and alignment basics
 - Needleman-Wunsch global alignment algorithm
 - Smith-Waterman local alignment algorithm
- **Seq Homology Interpretation**
 - protein function prediction by sequence alignment
 - protein function prediction by phylogenetic profiling
 - active site and domain prediction
 - key mutation site prediction
- **Gene Finding**
 - Overview of gene finding
 - GRAIL
 - Handling of frame shifts and in-dels
- **Phylogenetic Trees**
 - Phylogeny reconstruction method basics
 - origin of Polynesians & Europeans
 - Large-scale sequencing basics
- **Physical Mapping and Genome Sequencing**
 - Physical mapping basics
 - sequence assembly algorithm
 - shortest common superstring problem
Course Homepage

• **IVLE**
 - http://ivle.nus.edu.sg/Lms/course/course_studentview.aspx?CourseID=%7b89a84ffe-68a0-4ed6-aebe-f0f70311ca91%7d

• **Lecture Slides & etc**

Teaching Style

• **Bioinformatics is a broad area**

• **Need to learn a lot of material by yourself**
 - Reading books
 - Reading papers
 - Practice on the web

• **Don’t expect to be told everything**
Assignments, Project, & Exam

- **Assignments**
 - Probably 4 assignments
 - Some are simple programming assignments

- **Project**
 - Based on a case study in the class
 - 8-10 pages of report expected

- **Exam**
 - No mid-term exam … I hope!
 - 1 final open-book exam

Be Honest

- **Exam**
 - Absence w/o good cause results in ZERO mark
 - Cheating results in ZERO mark

- **Discussion on assignments is allowed**

- **Blatant plagiarism is not allowed**
 - Offender gets ZERO mark for assignment or exam
 - Penalty applies to those who copied AND those who allowed their assignments to be copied
Background Readings

- Limsoon Wong, *The Practical Bioinformatician*, WSPC, 2004

Assessment

- **Continuous Assessment: 50%**
- **Final Exam: 50%**
What comes after CS2220

- **CS2220 Introduction to Computational Biology**
 - Understand bioinformatics problems; interpretational skills

- **CS3225 Combinatorial Methods in Bioinformatics**

- **CS4220 Knowledge Discovery Methods in Bioinformatics**
 - Clustering; classification; association rules; SVM, HMM; Mining of seq, trees, & graphs

- **CS5238 Advanced Combinatorial Methods in Bioinformatics**
 - Seq alignment, whole-genome alignment, suffix tree, seq indexing, motif finding, RNA sec struct prediction, phylogeny reconstruction

- **CS6280 Computational Systems Biology**
 - Dynamics of biochemical and signaling networks; modeling, simulating, & analyzing them

- Etc ...

Any questions?

I hope you will enjoy this class ☺