For written notes on this lecture, please read Chapters 4 and 7 of *The Practical Bioinformatics*, and Koh & Wong, “Recognition of Polyadenylation Sites from Arabidopsis Genomic Sequences”.

CS2220: Introduction to Computational Biology

Lecture 3: Gene Feature Recognition

Limsoon Wong

Plan

Central Dogma

Some Relevant Biology

Players in Protein Synthesis

Transcription

- Synthesize mRNA from one strand of DNA
 - An enzyme RNA polymerase temporarily separates double-stranded DNA
 - It begins transcription at transcription start site
 - A → A, C → G, G → U, T
 - Once RNA polymerase reaches transcription stop site, transcription stops

- Additional “steps” for Eukaryotes
 - Transcription produces pre-mRNA that contains both introns & exons
 - 5’ cap & poly-A tail are added to pre-mRNA
 - RNA splicing removes introns & mRNA is made
 - mRNA are transported out of nucleus
Translation

- Synthesize protein from mRNA
- Each amino acid is encoded by consecutive seq of 3 nucleotides, called a codon
- The decoding table from codon to amino acid is called genetic code

- $4^3 = 64$ diff codons
 - Codons are not 1-to-1 corr to 20 amino acids
- All organisms use the same decoding table (except some mitochondrial genes)
- Amino acids can be classified into 4 groups. A single-base change in a codon is usu insufficient to cause a codon to code for an amino acid in diff group

Genetic Code

- Start codon
 - ATG (code for M)
- Stop codon
 - TAA
 - TAG
 - TGA

Example

Recognition of Translation Initiation Sites

An introduction to the World’s simplest TIS recognition system

Translation Initiation Site

A Sample cDNA

- What makes the second ATG the TIS?
Approach

- Training data gathering
- Signal generation
 - k-grams, distance, domain know-how, ...
- Signal selection
 - Entropy, χ^2, CFS, t-test, domain know-how...
- Signal integration
 - SVM, ANN, PCL, CART, C4.5, kNN, ...

Training & Testing Data

- Vertebrate dataset of Pedersen & Nielsen [ISMB'97]
 - 3312 sequences
 - 13503 ATG sites
 - 3312 (24.5%) are TIS
 - 10191 (75.5%) are non-TIS
 - Use for 3-fold x-validation expts

Signal Generation

- K-grams (ie., k consecutive letters)
 - K = 1, 2, 3, 4, 5, ...
 - Window size vs. fixed position
 - Up-stream, downstream vs. any where in window
 - In-frame vs. any frame

Signal Generation: An Example

- Window ± 100 bases
 - In-frame, downstream
 - GCT = 1, TTT = 1, ATG = 1...
 - Any-frame, downstream
 - GCT = 3, TTT = 2, ATG = 2...
 - In-frame, upstream
 - GCT = 2, TTT = 0, ATG = 0, ...

Feature Generation - Summary

Raw Data

An ATG segment – positive sample

A feature vector — upstream/downstream inframe 3 grams

Too Many Features

- For each value of k, there are $4^k \times 3 \times 2$ k-grams
- If we use $k = 1, 2, 3, 4, 5$, we have 24 + 96 + 384 + 1536 + 6144 = 8184 features!
- This is too many for most machine learning algorithms
Signal Selection (Basic Idea)

• Choose a signal with low intra-class distance
• Choose a signal with high inter-class distance

Signal Selection (e.g., t-statistics)

The t-stat of a signal is defined as:

\[t = \frac{|\mu_1 - \mu_2|}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \]

where \(\sigma_i^2 \) is the variance of that signal in class \(i \), \(\mu_i \) is the mean of that signal in class \(i \), and \(n_i \) is the size of class \(i \).

Signal Selection (e.g., MIT-correlation)

The MIT-correlation value of a signal is defined as:

\[MIT = \frac{|\mu_1 - \mu_2|}{\sigma_1 + \sigma_2} \]

where \(\sigma_i \) is the standard deviation of that signal in class \(i \) and \(\mu_i \) is the mean of that signal in class \(i \).

Signal Selection (e.g., \(\chi^2 \))

The \(\chi^2 \) value of a signal is defined as:

\[\chi^2 = \sum_{i=1}^{m} \sum_{j=1}^{k} \left(\frac{A_{ij} - E_{ij}}{E_{ij}} \right)^2 \]

where \(m \) is the number of intervals, \(k \) the number of classes, \(A_{ij} \) the number of samples in the \(i \)th interval, \(j \)th class, \(R_j \) the number of samples in the \(i \)th interval, \(C_j \) the number of samples in the \(j \)th class, and \(E_{ij} \) the expected frequency of \(A_{ij} \) (\(E_{ij} = R_j + C_j/N \)).

Example

- Suppose you have a sample of 50 men and 50 women and the following weight distribution is observed:

<table>
<thead>
<tr>
<th></th>
<th>obs</th>
<th>exp</th>
<th>obs – exp²/exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW</td>
<td>40</td>
<td>60*50/100=30</td>
<td>3.3</td>
</tr>
<tr>
<td>HW</td>
<td>20</td>
<td>60*50/100=30</td>
<td>3.3</td>
</tr>
<tr>
<td>LM</td>
<td>10</td>
<td>40*50/100=20</td>
<td>5.0</td>
</tr>
<tr>
<td>LW</td>
<td>30</td>
<td>40*50/100=20</td>
<td>5.0</td>
</tr>
</tbody>
</table>

\[\chi^2 = 16.6 \]

P = 0.00004,

df = 1

So weight and sex are not independent

- Is weight a good attribute for distinguishing men from women?

Signal Selection (e.g., CFS)

- Instead of scoring individual signals, how about scoring a group of signals as a whole?

- CFS
 - Correlation-based Feature Selection
 - A good group contains signals that are highly correlated with the class, and yet uncorrelated with each other

Exercise: What is the main challenge in implementing CFS?
Distributions of Two Example 3-Grams

\[\chi^2 = 1672.97447 \]
\[\chi^2 = 0 \]

• Which is the better one?

Sample k-grams Selected by CFS for Recognizing TIS

- Kozak consensus
- Leaky scanning
- Stop codon
- Codon bias?

Sample k-grams Selected by CFS for Recognizing TIS

- Position –3
- in-frame upstream ATG
- in-frame downstream
 - TAA, TAG, TGA
 - CTG, GAC, GAG, and GCC

Signal Integration

- kNN
 - Given a test sample, find the k training samples that are most similar to it. Let the majority class win
- SVM
 - Given a group of training samples from two classes, determine a separating plane that maximises the margin of error
- Naïve Bayes, ANN, C4.5, ...

Results (3-fold x-validation)

Exercise: What is TP/(TP+FP)?

<table>
<thead>
<tr>
<th>Model</th>
<th>TP/(TP+FN)</th>
<th>TN/(TN+FP)</th>
<th>TP/(TP+FP)</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naïve Bayes</td>
<td>84.3%</td>
<td>86.1%</td>
<td>66.3%</td>
<td>85.7%</td>
</tr>
<tr>
<td>SVM</td>
<td>73.9%</td>
<td>93.2%</td>
<td>77.9%</td>
<td>88.5%</td>
</tr>
<tr>
<td>Neural Network</td>
<td>77.6%</td>
<td>93.2%</td>
<td>78.8%</td>
<td>89.4%</td>
</tr>
<tr>
<td>Decision Tree</td>
<td>74.0%</td>
<td>94.4%</td>
<td>81.1%</td>
<td>89.4%</td>
</tr>
</tbody>
</table>

Improvemen by Voting

- Apply any 3 of Naïve Bayes, SVM, Neural Network, & Decision Tree. Decide by majority

<table>
<thead>
<tr>
<th>Model</th>
<th>TP/(TP+FN)</th>
<th>TN/(TN+FP)</th>
<th>TP/(TP+FP)</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB+SVM+NN</td>
<td>79.2%</td>
<td>92.1%</td>
<td>76.5%</td>
<td>88.9%</td>
</tr>
<tr>
<td>NB+SVM+Tree</td>
<td>78.8%</td>
<td>92.0%</td>
<td>76.2%</td>
<td>88.8%</td>
</tr>
<tr>
<td>NB+NN+Tree</td>
<td>77.6%</td>
<td>94.5%</td>
<td>82.1%</td>
<td>90.4%</td>
</tr>
<tr>
<td>SVM+NN+Tree</td>
<td>75.9%</td>
<td>94.3%</td>
<td>81.2%</td>
<td>89.8%</td>
</tr>
<tr>
<td>Rest of 4</td>
<td>84.3%</td>
<td>94.4%</td>
<td>81.1%</td>
<td>89.4%</td>
</tr>
<tr>
<td>Worst of 4</td>
<td>73.9%</td>
<td>86.5%</td>
<td>66.5%</td>
<td>85.7%</td>
</tr>
</tbody>
</table>

Improvemen by Scanning

- Apply Naïve Bayes or SVM left-to-right until first ATG predicted as positive. That’s the TIS
- Naïve Bayes & SVM models were trained using TIS vs. Up-stream ATG

<table>
<thead>
<tr>
<th>Model</th>
<th>TP/(TP+FN)</th>
<th>TN/(TN+FP)</th>
<th>TP/(TP+FP)</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>84.3%</td>
<td>86.1%</td>
<td>66.3%</td>
<td>85.7%</td>
</tr>
<tr>
<td>SVM</td>
<td>73.9%</td>
<td>93.2%</td>
<td>77.9%</td>
<td>88.5%</td>
</tr>
<tr>
<td>NB+Scanning</td>
<td>87.3%</td>
<td>96.1%</td>
<td>87.9%</td>
<td>93.9%</td>
</tr>
<tr>
<td>SVM+Scanning</td>
<td>88.5%</td>
<td>96.3%</td>
<td>88.6%</td>
<td>94.4%</td>
</tr>
</tbody>
</table>
Performance Comparisons

<table>
<thead>
<tr>
<th>Technique</th>
<th>TP/(TP + FN)</th>
<th>TN/(TN + FP)</th>
<th>TP/(TP + FP)</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>84.3%</td>
<td>86.1%</td>
<td>66.3%</td>
<td>85.7%</td>
</tr>
<tr>
<td>Decision Tree</td>
<td>74.0%</td>
<td>94.4%</td>
<td>81.1%</td>
<td>89.4%</td>
</tr>
<tr>
<td>NB+NN+Tree</td>
<td>77.6%</td>
<td>94.5%</td>
<td>82.1%</td>
<td>90.4%</td>
</tr>
<tr>
<td>SVM+Scanning</td>
<td>88.5%</td>
<td>96.3%</td>
<td>88.6%</td>
<td>94.4%*</td>
</tr>
<tr>
<td>Pedersen&Nielsen</td>
<td>78%</td>
<td>87%</td>
<td>-</td>
<td>85%</td>
</tr>
<tr>
<td>Zien</td>
<td>69.9%</td>
<td>94.1%</td>
<td>-</td>
<td>88.1%</td>
</tr>
<tr>
<td>Hatzigeorgiou</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>94%*</td>
</tr>
</tbody>
</table>

* result not directly comparable

Technique Comparisons

- **Pedersen&Nielsen** [ISMB'97]
 - Neural network
 - No explicit features
- **Zien** [Bioinformatics'99]
 - SVM+kernel engineering
 - No explicit features
- **Hatzigeorgiou** [Bioinformatics'02]
 - Multiple neural networks
 - Scanning rule
 - No explicit features

- **Our approach**
 - Explicit feature generation
 - Explicit feature selection
 - Use any machine learning method w/o any form of complicated tuning
 - Scanning rule is optional

mRNA→protein

How about using k-grams from the translation?

Exercise: List the first 10 amino acid in our example sequence

Amino-Acid Features

Kozak consensus

- Position -3
- Start codon
- in-frame upstream AUG
- in-frame downstream -TAR, TAG, TGA
- CTC, GAC, GAG, and GCC
Independent Validation Sets

- **A. Hatzigeorgiou:**
 - 480 fully sequenced human cDNAs
 - 188 left after eliminating sequences similar to training set (Pedersen & Nielsen’s)
 - 3.42% of ATGs are TIS

- **Our own:**
 - well characterized human gene sequences from chromosome X (565 TIS) and chromosome 21 (180 TIS)

Validation Results (on Hatzigeorgiou’s)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Precision</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM(linear)</td>
<td>96.28%</td>
<td>89.19%</td>
<td>25.31%</td>
<td>89.42%</td>
</tr>
<tr>
<td>SVM(quad)</td>
<td>94.14%</td>
<td>90.13%</td>
<td>26.79%</td>
<td>90.28%</td>
</tr>
<tr>
<td>Ensemble Trees</td>
<td>92.02%</td>
<td>92.71%</td>
<td>32.52%</td>
<td>92.68%</td>
</tr>
</tbody>
</table>

- Using top 100 features selected by entropy and trained on Pedersen & Nielsen’s dataset

Validation Results (on Chr X and Chr 21)

- Using top 100 features selected by entropy and trained on Pedersen & Nielsen’s

About the Inventor: Huiqing Liu

- **Huiqing Liu**
 - PhD, NUS, 2004
 - Currently Senior Scientist at Centocor
 - Asian Innovation Gold Award 2003
 - New Jersey Cancer Research Award for Scientific Excellence 2008
 - Gallo Prize 2008

Recognition of Transcription Start Sites

An introduction to the World’s best TSS recognition system: A heavy tuning approach
Structure of Dragon Promoter Finder

Data Analysis Within Submodel

Promoter, Exon, Intron Sensors

Promoter, Exon, Intron Sensors

Just to make sure you know what I mean…

Exercise: How many rows should this 2-mer table have? How many rows should the pentamer table have?

<table>
<thead>
<tr>
<th>DNA seq of length 10:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Seq₁ = ACCGAGTCTC</td>
</tr>
<tr>
<td>- Seq₂ = AGTGTACCTG</td>
</tr>
<tr>
<td>- Seq₃ = AGTTCGTATG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DNA seq of length 10:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Seq₁ = ACCGAGTTCTC</td>
</tr>
<tr>
<td>- Seq₂ = AGTGTACCTG</td>
</tr>
<tr>
<td>- Seq₃ = AGTTCGTATG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Just to make sure you know what I mean…</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Give me 3 DNA seq of length 10:</td>
</tr>
<tr>
<td>- Seq₁ = ACCGAGTCTC</td>
</tr>
<tr>
<td>- Seq₂ = AGTGTACCTG</td>
</tr>
<tr>
<td>- Seq₃ = AGTTCGTATG</td>
</tr>
<tr>
<td>Then</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>A 3/3 0/3 0/3</td>
</tr>
<tr>
<td>C 0/3 1/3 1/3</td>
</tr>
<tr>
<td>T 0/3 2/3 0/3</td>
</tr>
<tr>
<td>G 0/3 0/3 2/3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Just to make sure you know what I mean…</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Give me 3 DNA seq of length 10:</td>
</tr>
<tr>
<td>- Seq₁ = ACCGAGTTCTC</td>
</tr>
<tr>
<td>- Seq₂ = AGTGTACCTG</td>
</tr>
<tr>
<td>- Seq₃ = AGTTCGTATG</td>
</tr>
<tr>
<td>Then</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>A 0/3 0/3 0/3</td>
</tr>
<tr>
<td>C 0/3 0/3 0/3</td>
</tr>
<tr>
<td>T 0/3 0/3 1/3</td>
</tr>
<tr>
<td>G 0/3 0/3 1/3</td>
</tr>
</tbody>
</table>

Each model has two submodels based on GC content

Window size

Exercise: Why are the submodels based on GC content?
Data Preprocessing & ANN

Tuning parameters

Simple feedforward ANN
trained by the Bayesian
regularisation method

\[
\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}
\]

\[
\text{net} = \sum s_i w_i
\]

Accuracy Comparisons

Training Data Criteria & Preparation

• Contain both positive and negative sequences
• Sufficient diversity, resembling different transcription start mechanisms
• Sufficient diversity, resembling different non-promoters
• Sanitized as much as possible
• TSS taken from
 – 793 vertebrate promoters from EPD
 – -200 to +50 bp of TSS
• non-TSS taken from
 – GenBank,
 – 800 exons
 – 4000 introns,
 – 250 bp,
 – non-overlapping,
 – <50% identities

Testing Data Criteria & Preparation

• Seqs should be from the training or evaluation of other systems (no bias!)
• Seqs should be disjoint from training and tuning data sets
• Seqs should have TSS
• Seqs should be cleaned to remove redundancy, <50% identities

• 159 TSS from 147 human and human virus seqs
• cumulative length of more than 1.15Mbp
• Taken from GENESCAN, Geneld, Genie, etc.

Tuning Data Preparation

• To tune adjustable system parameters in Dragon, we need a separate tuning data set
• TSS taken from
 – 20 full-length gene seqs with known TSS
 – -200 to +50 bp of TSS
 – no overlap with EPD
• Non-TSS taken from
 – 1600 human 3'UTR seqs
 – 500 human exons
 – 500 human introns
 – 250 bp
 – no overlap

About the Inventor: Vlad Bajic

• Vladimir B. Bajic
 – Principal Scientist, P/R, 2001-2006
 – Currently Director & Professor, Computational Bioscience Research Center, KAUST
Recognition of Poly-A Signal Sites

A twist to the “feature generation, feature selection, feature integration” approach

Polyadenylation in Eukaryotes

- Addition of poly(A) tail to RNA
 - Begins as transcription finishes
 - 3'-most segment of newly-made RNA is cleaved off
 - Poly(A) tail is then synthesized at 3' end
- Poly(A) tail is impt for nuclear export, translation & stability of mRNA
- Tail is shortened over time. When short enough, the mRNA is degraded

Poly-A Signals in Human (Gautheret et al., 2000)

Poly-A Signals in Arabidopsis

In contrast to human, PAS in Arab is highly degenerate. E.g., only 10% of Arab PAS is AAUAAA!

Approach on Arab PAS Sites (I)
Approach on Arab PAS Sites (II)

- **Data collection**
 - #1 from Hao Han, 811
 - +ve seq (-200/+200)
 - #2 from Hao Han, 9742
 - -ve seq (-200/+200)
 - #3 from Qingshun Li,
 - 0209 (+ve) seq (-200/+100)
 - 1381 (-ve) intron (-300/+100)
 - 1501 (-ve) coding (-300/+100)
 - 1581 (-ve) 5’utr (-300/+100)

- **Feature generation**
 - 3-grams, compositional features (4U/1N, G/U*, etc)
 - Freq of features above in 3 diff windows: (-110/+5), (-35/+15), (-50/+30)

- **Feature selection**
 - χ^2

- **Feature integration & Cascade**
 - SVM

Validation Results

<table>
<thead>
<tr>
<th>SN</th>
<th>AUC</th>
<th>SVM 1</th>
<th>SVM 2</th>
<th>PAS AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Threshold</td>
<td>Threshold</td>
<td>Threshold</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2R 6 D</td>
<td>2R 6 D</td>
<td>2R 6 D</td>
</tr>
<tr>
<td>CDS</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>FST</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Intr</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SN 2</th>
<th>AUC</th>
<th>SVM 1</th>
<th>SVM 2</th>
<th>PAS AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Threshold</td>
<td>Threshold</td>
<td>Threshold</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2R 6 D</td>
<td>2R 6 D</td>
<td>2R 6 D</td>
</tr>
<tr>
<td>CDS</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>FST</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Intr</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
</tbody>
</table>

About the Inventor: Koh Chuan Hock

- Koh Chuan Hock
 - BComp (CB), NUS, 2008
 - Currently PhD candidate at SOC

What have we learned?

- Gene feature recognition applications
 - TIS, TSS, PAS

- General methodology
 - “Feature generation, feature selection, feature integration”

- Important tactics
 - Multiple models to optimize overall performance
 - Feature transformation (DNA \rightarrow amino acid)
 - Classifier cascades
Acknowledgements

- The slides for PAS site prediction are adapted from slides given to me by Koh Chuan Hock

References (TIS Recognition)

- J. Li et al., “Techniques for Recognition of Translation Initiation Sites”, The Practical Bioinformatician, Chapter 4, pages 71—90, 2004

References (TSS Recognition)

References (PAS Recognition)

References (Feature Selection)