CS2220: Intro to Computational Biology
Course Briefing

Limsoon Wong
Recommended “Pre-requisites”

- CS1020 Data Structures and Algorithms I
- CS2010 Data Structures and Algorithms II
- LSM1101 Biochemistry of Biomolecules
- LSM1102 Molecular Genetics
Objectives

• Develop flexible and logical problem solving skill
• Understand bioinformatics problems
• Appreciate techniques and approaches to bioinformatics

• To achieve goals above, we expose students to case studies spanning gene feature recognition, gene expression and proteomic analysis, gene finding, sequence homology interpretation, phylogeny analysis, etc.
Contents of Course Overview

• Time Table
• Course Syllabus
• Course Homepage
• Teaching Style
• Project, Assignments, Exams
• Readings
• Assessment

• Quick Overview of Themes and Applications of Bioinformatics
Time Table

• Lecture
 – Thursday 9am – 11am, SR@LT19

• Tutorial
 – Thursday 11am – 12nn, SR@LT19

• Email
 – wongls@comp.nus.edu.sg

• Consultations
 – Any time; just make appt to make sure I am in
 – Pls email my PA, tanps@comp.nus.edu.sg
Course Syllabus

• **Intro to Bioinformatics**
 – molecular biology basics
 – tools and instruments for molecular biology
 – themes and applications of bioinformatics

• **Essence of Knowledge Discovery**
 – Classification performance measures
 – Feature selection techniques
 – Supervised & unsupervised machine learning techniques

• **Gene Feature Recognition from Genomic DNA**
 – Feature generation, selection, & integration
 – Translation initiation site (TIS) recognition
 – Transcription start site (TSS) recognition

• **Gene Expression Analysis**
 – Microarray basics
 – Gene expression profile normalization
 – Classification of gene expression profiles
 – Clustering of gene expression profiles
 – Molecular network reconstruction

• **Essence of Seq Comparison**
 – Dynamic programming basics
 – Sequence comparison and alignment basics
 – Needleman-Wunsh global alignment algorithm
 – Smith-Waterman local alignment algorithm

• **Seq Homology Interpretation**
 – protein function prediction by sequence alignment
 – protein function prediction by phylogenetic profiling
 – active site and domain prediction
 – key mutation sites prediction

• **Gene Finding**
 – Overview of gene finding
 – GRAIL
 – Handling of frame shifts and in-dels

• **Phylogenetic Trees**
 – Phylogeny reconstruction method basics
 – origin of Polynesians & Europeans
 – Large-scale sequencing basics

• **Some hot current topics like PPI, miRNA, etc.**
Course Homepage

• IVLE
 – http://ivle.nus.edu.sg/module/student/?CourseID=007fbfc7-7cd7-41c1-b862-39cc407f386f

• Lecture Slides & etc
Teaching Style

• Bioinformatics is a broad area

• Need to learn a lot of material by yourself
 – Reading books
 – Reading papers
 – Practice on the web

• Don’t expect to be told everything
Assignments, Project, & Exam

• Assignments (35% of marks)
 – 3 assignments
 – Some simple programming required

• Project (15% of marks)
 – Based on a case study in the class
 – 8-10 pages of report / ppt slides expected

• Exam (50% of marks)
 – 1 final open-book exam
Be Honest

• **Exam**
 – Absence w/o good cause results in ZERO mark
 – Cheating results in ZERO mark

• **Discussion on assignments is allowed**

• **Blatant plagiarism is not allowed**
 – Offender gets ZERO mark for assignment or exam
 – Penalty applies to those who copied AND those who allowed their assignments to be copied
An Expt on the Exam

• We will return the exam scripts to students. So adopt different procedure from the usual university exam

• For the exam
 – Treated as an “extra CA” for the course
 – Held in reading week @ the normal lecture slot in normal lecture room

• For returning the script
 – Lecturer records mark on IVLE Gradebook
 – Lecturer returns marked script to students in exam week 2
 – Student checks mark in IVLE after receiving script for correctness
 – Student may make appointment with lecturer to discuss the script till end of exam week 2. After that, no appeal will be entertained
 • Lecturer photostats scripts. If a student appeals, his script will be compared against its copy. If modified, the student will be considered to have cheated
Background Readings

• Limsoon Wong, *The Practical Bioinformatician*, WSPC, 2004

What comes after CS2220

• **CS2220 Introduction to Computational Biology**
 - Understand bioinformatics problems; interpretational skills

• **CS3225 Combinatorial Methods in Bioinformatics**

• **CS4220 Knowledge Discovery Methods in Bioinformatics**
 - Clustering; classification; association rules; SVM; HMM; Mining of seq, trees, & graphs

• **CS5238 Advanced Combinatorial Methods in Bioinformatics**
 - Seq alignment, whole-genome alignment, suffix tree, seq indexing, motif finding, RNA seq struct prediction, phylogeny reconstruction

• **CS6221 Modeling & Analysis Techniques in Systems Biology**
 - Dynamics of biochemical and signaling networks; modeling, simulating, & analyzing them

• Etc …
Any questions?

I hope you will enjoy this class 😊
Themes and Applications of Bioinformatics
What is Bioinformatics?
Themes of Bioinformatics

Themes of This Course

Bioinformatics involves

Data Mgmt +
Knowledge Discovery +
Sequence Analysis +
Physical Modeling + ...

Knowledge Discovery =
Statistics + Algorithms + Databases
The Promises of Bioinformatics

To the patient:
Better drug, better treatment

To the pharma:
Save time, save cost, make more $

To the scientist:
Better science
Fulfilling the Promise via Drugs

- **Bioinformatics is applicable to drug development**
- **Drug discovery:** Design small molecules that bind target proteins
 - Which proteins?
 - What should binding accomplish?
- **Biomarkers**
Pervasiveness of Bioinformatics

• Bioinformatics is mandatory for large-scale biology
 – e.g., High-throughput, massively-parallel measurements, or “lab on a chip” miniaturization

• Computational data analysis is mandatory for indirect experimental methods
 – e.g., reconstruction based on phase contrast or wave diffraction

• What about the rest of biology (and medicine)?
• Limitless opportunities!
Some Bioinformatics Problems

- Biological Data Searching
- Biological Data Integration
- Gene/Promoter finding
- Cis-regulatory DNA
- Gene/Protein Network
- Protein/RNA Structure Prediction
- Evolutionary Tree reconstruction
- Infer Protein Function
- Disease Diagnosis
- Disease Prognosis
- Disease Treatment Optimization, ...
Biological Data Searching

- **Biological Data is increasing rapidly**
- **Biologists need to locate required info**
- **Difficulties:**
 - Too much
 - Too heterogeneous
 - Too distributed
 - Too many errors
 - Need approximate searches because of errors, mutations, etc.

Image credit: NCBI
Cis-Regulatory DNAs

- Cis-regulatory DNAs control whether genes should express or not
- Cis-regulatory DNAs may locate in promoter region, intron, or exon
- Finding & understanding cis-regulatory DNAs is one of the key problem in coming years
Gene Networks

- Cell is a complex system
- Expression of one gene depends on expression of another gene
- Such interactions can be form gene network
- Understanding such networks helps identify association betw genes & diseases
Protein/RNA Structure Prediction

• **Structure of Protein / RNA is essential to its functionality**

• **Impt to predict structure of a protein / RNA given its seq**

• **Problem is considered a “grand challenge” problem in bioinformatics**

Image credit: Kolatkar
Evolutionary Tree Reconstruction

- Protein /RNA / DNA mutates

- Evolutionary tree studies evolutionary relationship among set of protein / RNA / DNAs

- Origin of species
Breast Cancer Outcome Prediction

• Van't Veer et al., *Nature* 415:530-536, 2002

• Training set contains 78 patient samples
 – 34 patients develop distance metastases in 5 yrs
 – 44 patients remain healthy from the disease after initial diagnosis for >5 yrs

• Testing set contains 12 relapse & 7 non-relapse samples

Image credit: Veer
Commonly Used Data Sources
Type of Biological Databases

• **Micro Level**
 – Contain info on the composition of DNA, RNA, Protein Sequences

• **Metadata**
 – Ontology
 – Literature

• **Macro Level**
 – Contain info on interactions
 • Gene Expression
 • Metabolites
 • Protein-Protein Interaction
 • Biological Network

Exercise: Name a protein seq db and a DNA seq db
Transcriptome Database

- Complete collection of all possible mRNAs (including splice variants) of an organism
- Regions of an organism’s genome that get transcribed into messenger RNA
- Transcriptome can be extended to include all transcribed elements, including non-coding RNAs used for structural and regulatory purposes

Exercise: Name a transcriptome database
Gene Expression Databases

- Detect what genes are being expressed or found in a cell of a tissue sample
- Single-gene analysis
 - Northern Blot
 - In Situ Hybridization
 - RT-PCR
- Many genes: High throughput arrays
 - cDNA Microarray
 - Affymetrix GeneChip® Microarray

Exercise: Name a gene expression database
Metabolites Database

- A metabolite is an organic compound that is a starting material in, an intermediate in, or an end product of metabolism

- Metabolites dataset are also generated from mass spectrometry which measure the mass the these simple molecules, thus allowing us to estimate what are the metabolites in a tissue

- Starting metabolites
 - Small, of simple structure, absorbed by the organism as food
 - E.g., vitamins and amino acids

- Intermediary metabolites
 - The most common metabolites
 - May be synthesized from other metabolites, or broken down into simpler compounds, often with the release of chemical energy
 - E.g., glucose

- End products of metabolism
 - Final result of the breakdown of other metabolites
 - Excreted from the organism without further change
 - E.g., urea, carbon dioxide
Protein-Protein Interaction Databases

- Proteins are true workhorses
 - Lots of cell’s activities are performed thru PPI, e.g., message passing, gene regulation, etc.

- Function of a protein depends on proteins it interacts with

- Methods for generating PPI db
 - biochemical purifications, Y2H, synthetic lethals, in silico predictions, mRNA-co-expression

- Contain many false positives & false negatives

Exercise: Name a PPI database
Any Question?
Acknowledgements

• Most of the slides used in this lecture are based on original slides created by
 – Ken Sung
 – Anthony Tung

• But you should blame me for any errors
References

- S.K. Ng, “Molecular Biology for the Practical Bioinformatician”, *The Practical Bioinformatician*, Chapter 1, pages 1-30, WSPC, 2004