
CS2220: Introduction to Computational Biology

Lecture 5: Essence of Sequence

Comparison

Limsoon Wong

For written notes on this lecture, please read chapter 10 of The Practical Bioinformatician

2

Copyright 2012 © Limsoon Wong

Plan

• Dynamic Programming

• String Comparison

• Sequence Alignment

– Pairwise Alignment

• Needleman-Wunsch global alignment algorithm

• Smith-Waterman local alignment algorithm

– Multiple Alignment

• Popular tools

– FASTA, BLAST, Pattern Hunter

What is Dynamic Programming

4

Copyright 2012 © Limsoon Wong

The Knapsack Problem

• Each item that can go into the knapsack has a

size and a benefit

• The knapsack has a certain capacity

• What should go into the knapsack to maximize

the total benefit?

5

Copyright 2012 © Limsoon Wong

Formulation of a Solution

• Intuitively, to fill a w pound knapsack, we must

end off by adding some item. If we add item j, we

end up with a knapsack k’ of size w  wj to fill …

• Where

– wj and bj be weight and benefit for item j

– g(w) is max benefit that can be gained from a w-

pound knapsack

Source: http://mat.gsia.cmu.edu/classes/dynamic/node6.html

Why is g(w)

optimal?

6

Copyright 2012 © Limsoon Wong

An Example: Direct Recursive Evaluation

65

30

65 30

80

g(5)

g(4) g(3) g(2)

65 80 30

65

g(2) g(0) g(1)

g(0) g(0)

30

g(1)

30

g(0)

65

g(0)

30

g(1)

30

g(0)

65 80 30

g(3) g(1) g(2)

g(0)

30

g(1)

30

g(0)

30

g(0)

65 80 30

g(2) g(0) g(1)

30

g(0)

65

g(0)

30

g(1)

30

g(0)

160 160 160

• g(1), g(2), … are computed many times

7

Copyright 2012 © Limsoon Wong

―Memoize‖ to avoid recomputation

80

80

30

30

65 30

80

g(5)

g(4) g(3)

65 30

65
g(2) g(0) g(1)

g(0) g(0)

65

160 160

int s[]; s[0] := 0;

g’(w) = if s[w] is defined

 then return s[w];

 else {

 s[w] := maxj{bj + g’(w – wj)};

 return s[w]; }

8

Copyright 2012 © Limsoon Wong

Remove Recursion: Dynamic Programming

int s[]; s[0] := 0;

g’(w) = if s[w] is defined

 then return s[w];

 else {

 s[w] := maxj{bj + g’(w – wj)};

 return s[w]; }

int s[]; s[0] := 0; s[1] := 30;

s[2] := 65; s[3] = 95;

for i := 4 .. w do

 s[i] := maxj{bj + s[i – wj]};

 return s[w];

g(0) = 0

g(1) = 30, item 3

g(2) = max{65 + g(0) =65, 30 + g(1) = 60} = 65, item 1

g(3) = max{65 + g(1) = 95, 80 + g(0) = 80, 30 + g(2) = 95}

= 95, item 1/3

g(4) = max{65 + g(2) = 130, 80 + g(1) = 110, 30 + g(3) =

125} = 130, item 1

g(5) = max{65 + g(3) = 160, 80 + g(2) = 145, 30 + g(4) =

160} = 160, item 1/3

80

80

30

30

65 30

80

g(5)

g(4) g(3)

65 30

65
g(2) g(0) g(1)

g(0) g(0)

65

160 160

Sequence Alignment

10

Copyright 2012 © Limsoon Wong

Motivations for Sequence Comparison

• DNA is blue print for living organisms

 Evolution is related to changes in DNA

 By comparing DNA seqs we can infer

evolutionary relationships betw seqs w/o

knowledge of the evolutionary events themselves

• Foundation for inferring function, active site, and

key mutations

11

Copyright 2012 © Limsoon Wong

Earliest Research in Seq Comparison

• Doolittle et al. (Science, July 1983) searched for

platelet-derived growth factor (PDGF) in his own

DB. He found that PDGF is similar to v-sis

oncogene

 PDGF-2 1 SLGSLTIAEPAMIAECKTREEVFCICRRL?DR?? 34

p28sis 61 LARGKRSLGSLSVAEPAMIAECKTRTEVFEISRRLIDRTN 100

Source: Ken Sung

12

Copyright 2012 © Limsoon Wong

Sequence Alignment

• Key aspect of seq

comparison is seq

alignment

• A seq alignment

maximizes the

number of

positions that are in

agreement in two

sequences

Sequence U

Sequence V

mismatch

match

indel

13

Copyright 2012 © Limsoon Wong

Sequence Alignment: Poor Example

• Poor seq alignment shows few matched positions

 The two proteins are not likely to be homologous

No obvious match between

Amicyanin and Ascorbate Oxidase

14

Copyright 2012 © Limsoon Wong

Sequence Alignment: Good Example

• Good alignment usually has clusters of extensive

matched positions

 The two proteins are likely to be homologous

good match between

Amicyanin and unknown M. loti protein

15

Copyright 2012 © Limsoon Wong

h

Alignment:

Simple-Minded Probability & Score

• Define score S(A) by simple log likelihood as

– S(A) = log(prob(A)) - [m log(s) + h log(s)], with

log(p/s) = 1

• Then S(A) = #matches -  #mismatches -  #indels

Exercise: Derive  and 

16

Copyright 2012 © Limsoon Wong

Global Pairwise Alignment:

Problem Definition

• The problem of finding a global pairwise

alignment is to find an alignment A so that S(A) is

max among exponential number of possible

alternatives

• Given sequences U and V of lengths n and m,

then number of possible alignments is given by

– f(n, m) = f(n-1,m) + f(n-1,m-1) + f(n,m-1)

– f(n,n) ~ (1 + 2)2n+1 n-1/2

 Exercise: Explain the

recurrence above

17

Copyright 2012 © Limsoon Wong

Global Pairwise Alignment:

Dynamic Programming Solution

• Define an indel-similarity matrix s(.,.); e.g.,

– s(x,x) = 2

– s(x,y) = -, if x  y

• Then

This is the basic idea of the

Needleman-Wunsch algorithm

Exercise: What is the

effect of a large  ?

18

Copyright 2012 © Limsoon Wong

Needleman-Wunsch Algorithm (I)

• Consider two strings S[1..n] and T[1..m]

• Let V(i, j) be score of optimal alignment betw

S[1..i] and T[1..j]

• Basis:

– V(0, 0) = 0

– V(0, j) = V(0, j 1)  

• Insert j times

– V(i, 0) = V(i  1, 0)  

• Delete i times

Source: Ken Sung

19

Copyright 2012 © Limsoon Wong

Needleman-Wunsch Algorithm (II)

• Recurrence: For i>0, j>0

• In the alignment, the last pair must be either

match/mismatch, delete, insert





















)1,(

),1(

])[],[()1,1(

max),(

jiV

jiV

jTiSsjiV

jiV

Match/mismatch

Delete

Insert

Source: Ken Sung

 xxx…xx xxx…xx xxx…x_

 | | |

 xxx…yy yyy…y_ yyy…yy

Match/mismatch Delete Insert

20

Copyright 2012 © Limsoon Wong

Example (I)

_ A G C A T G C

_ 0 1  2  3  4  5  6  7

A  1

C  2

A  3

A  4

T  5

C  6

C  7

Source: Ken Sung

21

Copyright 2012 © Limsoon Wong

Example (II)

_ A G C A T G C

_ 0 1  2  3  4  5  6  7

A  1 2

C  2

A  3

A  4

T  5

C  6

C  7

Source: Ken Sung

2

11

11

20

max

1

1

),(

max

0,1

1,0

0,0

1,1 































S

S

AAsS

S

22

Copyright 2012 © Limsoon Wong

Example (III)

_ A G C A T G C

_ 0 1  2  3  4  5  6  7

A  1 2 1

C  2

A  3

A  4

T  5

C  6

C  7

Source: Ken Sung

1

12

12

11

max

1

1

),(

max

1,1

2,0

1,0

2,1 































S

S

GAsS

S

23

Copyright 2012 © Limsoon Wong

Example (IV)

_ A G C A T G C

_ 0  1  2  3  4  5  6  7

A  1 2 1 0  1  2  3  4

C  2 1 1 ?

A  3

A  4

T  5

C  6

C  7

3 2

Exercise: Can you tell from these entries what

Are the values of s(A,G), s(A,C), s(A,A), etc.?

Source: Ken Sung

24

Copyright 2012 © Limsoon Wong

Example (V)

_ A G C A T G C

_ 0 1  2  3  4  5  6  7

A  1 2 1 0  1  2  3 -4

C  2 1 1 3 2 1 0 -1

A  3 0 0 2 5 4 3 2

A  4  1  1 1 4 4 3 2

T  5  2  2 0 3 6 5 4

C  6  3  3 0 2 5 5 7

C  7  4  4  1 1 4 4 7

Source: Ken Sung

What is the

alignment

corresponding

to this?

25

Copyright 2012 © Limsoon Wong

Pseudo Codes

Create the table V[0..n,0..m] and P[1..n,1..m];

V[0,0] = 0;

For j=1 to m, set V[0,j] := v[0,j  1]   ;

For i=1 to n, set V[i,0] := V[i  1,0]   ;

For j=1 to m {

 For i = 1 to n {

 set V[i,j] := V[i,j  1]   ;

 set P[i,j] := (0,  1);

 if V[i,j] < V[i  1,j]   then

 set V[i,j] := V[i  1,j]   ;

 set P[i,j] := ( 1, 0);

 if (V[i,j] < V[i  1, j  1] + s(S[i],T[j])) then

 set V[i,j] := V[i  1, j  1] + s(S[i],T[j]);

 set P[i,j] := ( 1,  1);

 }

}

Backtracking P[n,m] to P[0,0] to find optimal alignment;

Source: Ken Sung

26

Copyright 2012 © Limsoon Wong

Analysis

• We need to fill in all entries in the nm matrix

• Each entry can be computed in O(1) time

Time complexity = O(nm)

Space complexity = O(nm)

Source: Ken Sung

Exercise: Write down the memoized version of

Needleman-Wunsch. What is its time/space

complexity?

27

Copyright 2012 © Limsoon Wong

Problem on Speed

• Aho, Hirschberg, Ullman

1976

– If we can only compare

whether two symbols are

equal or not, the string

alignment problem can

be solved in (nm) time

• Hirschberg 1978

– If symbols are ordered

and can be compared,

the string alignment

problem can be solved in

(n log n) time

• Masek and Paterson 1980

– Based on Four-Russian’s

paradigm, the string

alignment problem can

be solved in O(nm/log2

n) time

• Let d be the total number

of inserts and deletes.

Thus 0  d  n+m. If d is

smaller than n+m, can we

get a better algorithm?

Yes!

Source: Ken Sung

28

Copyright 2012 © Limsoon Wong

O(dn)-Time Algorithm

• The alignment should be inside the 2d+1 band

No need to fill-in the lower and upper triangle

Time complexity: O(dn)

2d+1

Source: Ken Sung

29

Copyright 2012 © Limsoon Wong

Example

• d=3

A_CAATCC

AGCA_TGC

_ A G C A T G C

_ 0 -1 -2 -3

A -1 2 1 0 -1

C -2 1 1 3 2 1

A -3 0 0 2 5 4 3

A -1 -1 1 4 4 3 2

T -2 0 3 6 5 4

C 0 2 5 5 7

C 1 4 4 7

30

Copyright 2012 © Limsoon Wong

Recursive Equation for O(dn)-Time Algo

















0)1,1,(

0)1,,1(

])[],[(),1,1(

max),,(

difdjiv

difdjiv

jSiSsdjiv

djiv





Exercise: Write down the base

cases, the memoized version, and

the non-recursive version.

31

Copyright 2012 © Limsoon Wong

Global Pairwise Alignment:

More Realistic Handling of Indels

• In Nature, indels of several adjacent letters are

not the sum of single indels, but the result of one

event

• So reformulate as follows:

32

Copyright 2012 © Limsoon Wong

Gap Penalty

• g(q): is the penalty of a gap of length q

• Note g() is subadditive, i.e, g(p+q)  g(p) + g(q)

• If g(k) =  + k, the gap penalty is called affine

– A penalty () for initiating the gap

– A penalty () for the length of the gap

Source: Ken Sung

33

Copyright 2012 © Limsoon Wong

N-W Algorithm w/ General Gap Penalty (I)

• Global alignment of S[1..n] and T[1..m]:

– Denote V(i, j) be the score for global alignment

between S[1..i] and T[1..j]

– Base cases:

• V(0, 0) = 0

• V(0, j) = g(j)

• V(i, 0) = g(i)

Source: Ken Sung

34

Copyright 2012 © Limsoon Wong

N-W Algorithm w/ General Gap Penalty (II)

• Recurrence for i>0 and j>0,

























)}(),({max

)}(),({max

])[],[()1,1(

max),(

10

10

kigjkV

kjgkiV

jTiSjiV

jiV

ik

jk

 Match/mismatch

Insert T[k+1..j]

Delete S[k+1..i]

Source: Ken Sung

35

Copyright 2012 © Limsoon Wong

Analysis

• We need to fill in all entries in the nm table

• Each entry can be computed in O(max{n, m}) time

Time complexity = O(nm max{n, m})

Space complexity = O(nm)

Source: Ken Sung

36

Copyright 2012 © Limsoon Wong

Variations of Pairwise Alignment

• Fitting a “short’’ seq to a

“long’’ seq

• Indels at beginning and

end are not penalized

• Find “local” alignment

• Find i, j, k, l, so that

– S(A) is maximized,

– A is alignment of ui…uj and

vk…vl

U

V

U

V

37

Copyright 2012 © Limsoon Wong

Local Alignment

• Given two long DNAs, both of them contain the

same gene or closely related gene

– Can we identify the gene?

• Local alignment problem: Given two strings

S[1..n] and T[1..m], among all substrings of S and

T, find substrings A of S and B of T whose global

alignment has the highest score

Source: Ken Sung

38

Copyright 2012 © Limsoon Wong

Brute-Force Solution

• Algorithm:

– For every substring A of S, for every substring B of

T, compute the global alignment of A and B

– Return the pair (A, B) with the highest score

• Time:

– There are n2 choices of A and m2 choices of B

– Global alignment computable in O(nm) time

– In total, time complexity = O(n3m3)

• Can we do better?

Source: Ken Sung

39

Copyright 2012 © Limsoon Wong

Some Background

• X is a suffix of S[1..n] if X=S[k..n] for some k1

• X is a prefix of S[1..n] if X=S[1..k] for some kn

• E.g.

– Consider S[1..7] = ACCGATT

– ACC is a prefix of S, GATT is a suffix of S

– Empty string is both prefix and suffix of S

Source: Ken Sung

Which other string is both a prefix and suffix of S?

40

Copyright 2012 © Limsoon Wong

Dynamic Programming for

Local Alignment Problem

• Define V(i, j) be max score of global alignment of

A and B over

– all suffixes A of S[1..i] and

– all suffixes B of T[1..j]

• Then, score of local alignment is

– maxi,j V(i ,j)

Source: Ken Sung

41

Copyright 2012 © Limsoon Wong

Smith-Waterman Algorithm

• Basis:

 V(i, 0) = V(0, j) = 0

• Recursion for i>0 and j>0:
























)1,(

),1(

])[],[()1,1(

0

max),(

jiV

jiV

jTiSsjiV
jiV

Match/mismatch

Delete

Insert

Ignore initial segment

Source: Ken Sung

42

Copyright 2012 © Limsoon Wong

Example (I)
• Score for match = 2

• Score for insert, delete,

mismatch = 1

_ C T C A T G C

_ 0 0 0 0 0 0 0 0

A 0

C 0

A 0

A 0

T 0

C 0

G 0

Source: Ken Sung

43

Copyright 2012 © Limsoon Wong

Example (II)

_ C T C A T G C

_ 0 0 0 0 0 0 0 0

A 0 0 0 0 2 1 0 0

C 0 2 1 2 1 1 0 2

A 0 0 1 1 4 3 2 1

A 0 0 0 0 3 3 2 1

T 0 0 ?

C

G

1 2 2

• Score for match = 2

• Score for insert, delete,
mismatch = 1

Source: Ken Sung

44

Copyright 2012 © Limsoon Wong

Example (III)

C_AT_G

CAATCG

_ C T C A T G C

_ 0 0 0 0 0 0 0 0

A 0 0 0 0 2 1 0 0

C 0 2 1 2 1 1 0 2

A 0 0 1 1 4 3 2 1

A 0 0 0 0 3 3 2 1

T 0 0 2 1 2 5 4 3

C 0 2 1 4 3 4 4 6

G 0 1 1 3 3 3 6 5

Source: Ken Sung

What is the

other optimal

local alignment?

An optimal

local alignment

is

45

Copyright 2012 © Limsoon Wong

Analysis

• Need to fill in all entries in the nm matrix

• Each entries can be computed in O(1) time

• Finally, finding the entry with the max value

Time complexity = ??

Space complexity = O(nm)

Exercise: What is the time complexity?

Source: Ken Sung

46

Copyright 2012 © Limsoon Wong

Recent Photos of Smith & Waterman

 Limsoon & Temple Smith Ken & Michael Waterman

Multiple Sequence Alignment

48

Copyright 2012 © Limsoon Wong

What is a domain

• A domain is a component of a protein that is self-

stabilizing and folds independently of the rest of

the protein chain

– Not unique to protein products of one gene; can

appear in a variety of proteins

– Play key role in the biological function of proteins

– Can be "swapped" by genetic engineering betw

one protein and another to make chimeras

• May be composed of one, more than one, or not

any structural motifs (often corresponding to

active sites)

49

Copyright 2012 © Limsoon Wong

Discovering Domain and Active Sites

• How do we find the domain and associated active

sites in the protein above?

>gi|475902|emb|CAA83657.1| protein-tyrosine-phosphatase alpha

MDLWFFVLLLGSGLISVGATNVTTEPPTTVPTSTRIPTKAPTAAPDGGTTPRVSSLNVSSPMTTSAPASE

PPTTTATSISPNATTASLNASTPGTSVPTSAPVAISLPPSATPSALLTALPSTEAEMTERNVSATVTTQE

TSSASHNGNSDRRDETPIIAVMVALSSLLVIVFIIIVLYMLRFKKYKQAGSHSNSFRLPNGRTDDAEPQS

MPLLARSPSTNRKYPPLPVDKLEEEINRRIGDDNKLFREEFNALPACPIQATCEAASKEENKEKNRYVNI

LPYDHSRVHLTPVEGVPDSHYINTSFINSYQEKNKFIAAQGPKEETVNDFWRMIWEQNTATIVMVTNLKE

RKECKCAQYWPDQGCWTYGNIRVSVEDVTVLVDYTVRKFCIQQVGDVTNKKPQRLVTQFHFTSWPDFGVP

FTPIGMLKFLKKVKTCNPQYAGAIVVHCSAGVGRTGTFIVIDAMLDMMHAERKVDVYGFVSRIRAQRCQM

VQTDMQYVFIYQALLEHYLYGDTELEVTSLEIHLQKIYNKVPGTSSNGLEEEFKKLTSIKIQNDKMRTGN

LPANMKKNRVLQIIPYEFNRVIIPVKRGEENTDYVNASFIDGYRRRTPTCQPRPVQHTIEDFWRMIWEWK

SCSIVMLTELEERGQEKCAQYWPSDGSVSYGDINVELKKEEECESYTVRDLLVTNTRENKSRQIRQFHFH

GWPEVGIPSDGKGMINIIAAVQKQQQQSGNHPMHCHCSAGAGRTGTFCALSTVLERVKAEGILDVFQTVK

SLRLQRPHMVQTLEQYEFCYKVVQEYIDAFSDYANFK

50

Copyright 2012 © Limsoon Wong

Domain/Active Sites as Emerging Patterns

• How to discover active site and/or domain?

• If you are lucky, domain has already been

modelled

– BLAST,

– HMMPFAM, …

• If you are unlucky, domain not yet modelled

– Find homologous seqs

– Do multiple alignment of homologous seqs

– Determine conserved positions

 Emerging patterns relative to background

 Candidate active sites and/or domains

51

Copyright 2012 © Limsoon Wong

In the course of evolution…

52

Copyright 2012 © Limsoon Wong

Multiple Alignment: An Example

• Multiple seq alignment maximizes number of

positions in agreement across several seqs

• seqs belonging to same “family” usually have

more conserved positions in a multiple seq

alignment

Conserved sites

53

Copyright 2012 © Limsoon Wong

Multiple Alignment:

Naïve Approach

• Let S(A) be the score of a multiple alignment A.

The optimal multiple alignment A of sequences

U1, …, Ur can be extracted from the following

dynamic programming computation of Sm1,…,mr:

• This requires O(2r) steps

Exercise for the Brave:

Propose a practical approximation

Popular Tools for Sequence Comparison:

FASTA, BLAST, Pattern Hunter

55

Copyright 2012 © Limsoon Wong

Scalability of Software

• Increasing # of sequenced

genomes: yeast, human,

rice, mouse, fly, …

• S/w must be “linearly”

scalable to large datasets

56

Copyright 2012 © Limsoon Wong

Need Heuristics for

Sequence Comparison
• Time complexity for

optimal alignment is O(n2),

where n is seq length

 Given current size of seq

databases, use of optimal

algorithms is not practical

for database search

• Heuristic techniques:

– BLAST

– FASTA

– Pattern Hunter

– MUMmer, ...

• Speed up:

– 20 min (optimal

alignment)

– 2 min (FASTA)

– 20 sec (BLAST)

Exercise: Describe MUMer

57

Copyright 2012 © Limsoon Wong

Basic Idea: Indexing & Filtering

• Good alignment includes short identical, or

similar fragments

 Break entire string into substrings, index the

substrings

 Search for matching short substrings and use as

seed for further analysis

 Extend to entire string find the most significant

local alignment segment

58

Copyright 2012 © Limsoon Wong

BLAST in 3 Steps
Altschul et al, JMB 215:403-410, 1990

• Similarity matching of

words (3 aa’s, 11 bases)

– No need identical words

• If no words are similar,

then no alignment

– Won’t find matches for

very short sequences

• MSP: Highest scoring pair

of segments of identical

length. A segment pair is

locally maximal if it cannot

be improved by extending

or shortening the

segments

• Find alignments w/ optimal

max segment pair (MSP)

score

• Gaps not allowed

• Homologous seqs will

contain a MSP w/ a high

score; others will be

filtered out

59

Copyright 2012 © Limsoon Wong

BLAST in 3 Steps
Altschul et al, JMB 215:403-410, 1990

Step 1

• For the query, find the list of high scoring words

of length w

Image credit: Barton

60

Copyright 2012 © Limsoon Wong

BLAST in 3 Steps
Altschul et al, JMB 215:403-410, 1990

Step 2

• Compare word list to db & find exact matches

Image credit: Barton

61

Copyright 2012 © Limsoon Wong

BLAST in 3 Steps
Altschul et al, JMB 215:403-410, 1990

Step 3

• For each word match, extend alignment in both

directions to find alignment that score greater

than a threshold s

Image credit: Barton

62

Copyright 2012 © Limsoon Wong

Spaced Seeds

• 111010010100110111 is an example of a spaced seed model
with

– 11 required matches (weight=11)

– 7 ―don’t care‖ positions

 GAGTACTCAACACCAACATTAGTGGCAATGGAAAAT…

 || ||||||||| ||||| || ||||| ||||||

 GAATACTCAACAGCAACACTAATGGCAGCAGAAAAT…

 111010010100110111

• 11111111111 is the BLAST seed model for comparing DNA

seqs

63

Copyright 2012 © Limsoon Wong

Observations on Spaced Seeds

• Seed models w/ different shapes can detect

different homologies

– the 3rd base in a codon ―wobbles‖ so a seed like

110110110… should be more sensitive when

matching coding regions

 Some models detect more homologies

 More sensitive homology search

– PatternHunter I

 Use >1 seed models to hit more homologies

– Approaching 100% sensitive homology search

– PatternHunter II Exercise: Why does

the 3rd base wobbles?

64

Copyright 2012 © Limsoon Wong

CAA?A??A?C??TA?TGG?

|||?|??|?|??||?|||?

CAA?A??A?C??TA?TGG?

111010010100110111

 111010010100110111

PatternHunter I
Ma et al., Bioinformatics 18:440-445, 2002

• BLAST’s seed usually

uses more than one hits to

detect one homology

 Wasteful

• Spaced seeds uses fewer

hits to detect one

homology

 Efficient

TTGACCTCACC?

|||||||||||?

TTGACCTCACC?

11111111111

 11111111111

1/4 chances to have 2nd hit

next to the 1st hit 1/46 chances to have 2nd hit

next to the 1st hit

65

Copyright 2012 © Limsoon Wong

PatternHunter I
Ma et al., Bioinformatics 18:440-445, 2002

Proposition. The expected number of hits of a

weight-W length-M model within a length-L region of

similarity p is (L – M + 1) * pW

Proof.

For any fixed position, the prob of a hit is pW.

There are L – M + 1 candidate positions.

The proposition follows.

66

Copyright 2012 © Limsoon Wong

Implication

• For L = 1017

– BLAST seed expects

(1017 – 11 + 1) * p11 =

1007 * p11 hits

– But ~1/4 of these overlap

each other. So likely to

have only ~750 * p11

distinct hits

– Our example spaced seed

expects (1017 – 18 + 1) *

p11 = 1000 * p11 hits

– But only 1/46 of these

overlap each other. So

likely to have ~1000 * p11

distinct hits

Spaced

seeds

likely to

 be more

 sensitive

& more

efficient

67

Copyright 2012 © Limsoon Wong

Sensitivity of PatternHunter I

Image credit: Li

68

Copyright 2012 © Limsoon Wong

Speed of PatternHunter I

• Mouse Genome

Consortium used

PatternHunter to

compare mouse

genome & human

genome

• PatternHunter did the

job in a 20 CPU-days ---

it would have taken

BLAST 20 CPU-years!

Nature, 420:520-522, 2002

69

Copyright 2012 © Limsoon Wong

How to Increase Sensitivity?

• Ways to increase sensitivity:

– ―Optimal‖ seed

– Reduce weight by 1

– Increase number of spaced seeds by 1

• Intuitively, for DNA seq,

– Reducing weight by 1 will increase number of

matches 4 folds

– Doubling number of seeds will increase number of

matches 2 folds

• Is this really so?

70

Copyright 2012 © Limsoon Wong

How to Increase Sensitivity?

• Ways to increase

sensitivity:

– ―Optimal‖ seed

– Reduce weight by 1

– Increase number of

spaced seeds by 1

• For L = 1017 & p = 50%

– 1 weight-11 length-18

model expects 1000/211

hits

– 2 weight-12 length-18

models expect 2 *

1000/212 = 1000/211 hits

 When comparing

regions w/ >50%

similarity, using 2 weight-

12 spaced seeds

together is more

sensitive than using 1

weight-11 spaced seed!

Exercise: Proof this claim

71

Copyright 2012 © Limsoon Wong

PatternHunter II
Li et al, GIW, 164-175, 2003

• Idea

– Select a group of spaced

seed models

– For each hit of each

model, conduct extension

to find a homology

• Selecting optimal multiple

seeds is NP-hard

• Algorithm to select

multiple spaced seeds

– Let A be an empty set

– Let s be the seed such

that A ⋃ {s} has the

highest hit probability

– A = A ⋃ {s}

– Repeat until |A| = K

• Computing hit probability

of multiple seeds is NP-

hard

But see also Ilie & Ilie, “Multiple spaced seeds for homology

search”, Bioinformatics, 23(22):2969-2977, 2007

72

Copyright 2012 © Limsoon Wong

One weight-12

Two weight-12

One weight-11

Sensitivity of PatternHunter II

• Solid curves: Multiple (1, 2,

4, 8,16) weight-12 spaced

seeds

• Dashed curves: Optimal

spaced seeds with weight

= 11,10, 9, 8

 “Double the seed

number” gains better

sensitivity than “decrease

the weight by 1”

se
n

si
ti

v
it

y

Image credit: Ma

73

Copyright 2012 © Limsoon Wong

Expts on Real Data

• 30k mouse ESTs (25Mb) vs 4k human ESTs (3Mb)

– downloaded from NCBI genbank

– ―low complexity‖ regions filtered out

• SSearch (Smith-Waterman method) finds “all”

pairs of ESTs with significant local alignments

• Check how many percent of these pairs can be

“found” by BLAST and different configurations of

PatternHunter II

74

Copyright 2012 © Limsoon Wong

In fact, at 80%

similarity, 100%

sensitivity can

be achieved

using 40

weight-9 seeds

Results

Image credit: Ma

75

Copyright 2012 © Limsoon Wong

Farewell to the Supercomputer Age

of Sequence Comparison!

Image credit: Bioinformatics Solutions Inc

76

Copyright 2012 © Limsoon Wong

About the Inventor: Ming Li

• Ming Li

– Canada Research Chair

Professor of

Bioinformatics,

University Professor,

Univ of Waterloo

– Fellow, Royal Society of

Canada. Fellow, ACM.

Fellow, IEEE

Concluding Remarks

78

Copyright 2012 © Limsoon Wong

What have we learned?

• General methodology

– Dynamic programming

• Dynamic programming applications

– Pairwise Alignment

• Needleman-Wunsch global alignment algorithm

• Smith-Waterman local alignment algorithm

– Multiple Alignment

• Important tactics

– Indexing & filtering (BLAST)

– Spaced seeds (Pattern Hunter)

Any Question?

80

Copyright 2012 © Limsoon Wong

Acknowledgements

• Some slides on popular sequence alignment

tools are based on those given to me by Bin Ma

and Dong Xu

• Some slides on Needleman-Wunsch and Smith-

Waterman are based on those given to me by Ken

Sung

81

Copyright 2012 © Limsoon Wong

References
• S.F.Altshcul et al. ―Basic local alignment search tool‖, JMB, 215:403--

410, 1990

• S.F.Altschul et al. ―Gapped BLAST and PSI-BLAST: A new generation

of protein database search programs‖, NAR, 25(17):3389--3402, 1997

• S.B.Needleman, C.D.Wunsch. ―A general method applicable to the

search for similarities in the amino acid sequence of two proteins‖, JMB,

48:444—453, 1970

• T.F.Smith, M.S.Waterman. ―Identification of common molecular

subsequences‖, JMB, 147:195—197, 1981

• B. Ma et al. ―PatternHunter: Faster and more sensitive homology

search‖, Bioinformatics, 18:440—445, 2002

• M. Li et al. ―PatternHunter II: Highly sensitive and fast homology

search‖, GIW, 164—175, 2003

• D. Brown et al. ―Homology Search Methods‖, The Practical

Bioinformatician, Chapter 10, pp 217—244, WSPC, 2004

