For written notes on this lecture, please read Chapters 4 and 7 of *The Practical Bioinformatician*, and Koh & Wong, “Recognition of Polyadenylation Sites from Arabidopsis Genomic Sequences”, *Proc GIW 2007*, pages 73--82
Plan

1. Transcription
2. Splicing
3. Translation

Promoter → 5'UTR → Exon 1 → TSS → Intron 1 → Exon 2 → Intron 2 → Exon 3 → 3'UTR → CDS → PolyA tail → Mature mRNA → Protein
Some Relevant Biology
Central Dogma

Replication → Transcription → RNA → Translation → Protein

...AATGGTACCGATGACCTG...

...AAUGGUACCUGAUAGCCUGGAGC...

...TRLRPALLALLALWP...
Players in Protein Synthesis

1. Transcription

DNA → RNA polymerase → mRNA → rRNA → tRNA → Anticodon → amino acids → polypeptide chain

2. Translation

mRNA → codon → Ribosome → Protein synthesis
Transcription

- **Synthesize mRNA from one strand of DNA**
 - An enzyme RNA polymerase temporarily separates double-stranded DNA
 - It begins transcription at transcription start site
 - A → A, C→C, G→G, & T→U
 - Once RNA polymerase reaches transcription stop site, transcription stops

- **Additional “steps” for Eukaryotes**
 - Transcription produces pre-mRNA that contains both introns & exons
 - 5’ cap & poly-A tail are added to pre-mRNA
 - RNA splicing removes introns & mRNA is made
 - mRNA are transported out of nucleus
Translation

- Synthesize protein from mRNA
- Each amino acid is encoded by consecutive seq of 3 nucleotides, called a codon
- The decoding table from codon to amino acid is called genetic code

- $4^3 = 64$ diff codons
 \implies Codons are not 1-to-1 corr to 20 amino acids
- All organisms use the same decoding table (except some mitochondrial genes)
- Amino acids can be classified into 4 groups. A single-base change in a codon is usu insufficient to cause a codon to code for an amino acid in diff group
Genetic Code

- **Start codon**
 - ATG (code for M)

- **Stop codon**
 - TAA
 - TAG
 - TGA
Example of computational translation - notice the indication of (alternative) start-codons:

VIRTUAL RIBOSOME

Translation table: Standard SGCO

>Seq1
Reading frame: 1

```
  M V L S A A D K G N V K A A W G K V G G H A A E Y G A E A L
5' ATGGTGCTGTCTGCGCGACAGGGCAATGTCAAGGCCCGCTGCGGCAAGGTTGGCCGCCACGCGCTGCAGATATGGCGCAGAGGCCTG 90

  E R M F L S F F P T T K T Y F P H F D L S H G S A Q V K G H G
5' GAGAGGATGTTCCTGAGCTTCCCCACCCACCAAGACTACTTCCCCACCTCGACCTGACCCAGGCGCTCGCGCAGTCAAGGGCCACGCGG 180

  A K V A A A L T K A V E H L D L D P G A L S E L S D L H A H
5' GCCAAGGCGCCCGCGGCGCTGACCAAGCGGTGAACACCTGACCGACCTGCCGCTGCTGTAATGAGTISACCTGACCGGTACACGTCAC 270

  K L R V D F V N F K L L S H S L L V T L A S H L P S D F T P
5' AAGCTGCGCTGACCCGCGTCAACTCGAAGCTCTCGAGCCACCTCGCTGCGACCTCGCTCGACCTCCACCTCCACGGTACCTTCCACGCCC 360

  A V H A S L D K F L A N V S T V L T S K Y R *
5' GCCGTCCACGCTCCCTGACGACCTCTGGCAGGCAACGACTGAGCAGCTGACCTCCGACATCCGACGATACGTAA 429
```

Annotation key:

``` >>> : START codon (strict)
)))) : START codon (alternative)
*** : STOP ```
Recognition of Translation Initiation Sites

An introduction to the World’s simplest TIS recognition system
Translation Initiation Site
A Sample cDNA

299 HSU27655.1 CAT U27655 Homo sapiens
CGTGTGTGCGACGCGCTGCAGCTGCCCAAGGCCATGGCTGAACACTGACTCCCAAGCTGTG
CCAGGGCTTCAAAGACTTTCTCAGCTTCGAGCATGGCTTTTTGGCTGTCCAGGCCAGCTGTA
GGAGGCAGATGAGAAGAGGGAGATGGCCTTGGAGGAAGGGAAGGGGCTGTTGCCCAGGA
CCTCCTCCTGCCAGGAGCTTCCCTCCAGGACAAGACCTTCCACCCAACAAGGACCTCCCT
..........................iEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

• What makes the second ATG the TIS?
Approach

• Training data gathering

• Signal generation
  – k-grams, distance, domain know-how, ...

• Signal selection
  – Entropy, $\chi^2$, CFS, t-test, domain know-how...

• Signal integration
  – SVM, ANN, PCL, CART, C4.5, kNN, ...
Training & Testing Data

- Vertebrate dataset of Pedersen & Nielsen [ISMB’97]
- 3312 sequences
- 13503 ATG sites
- 3312 (24.5%) are TIS
- 10191 (75.5%) are non-TIS
- Use for 3-fold x-validation expts
Signal Generation

- **K-grams (ie., k consecutive letters)**
  - $K = 1, 2, 3, 4, 5, \ldots$
  - Window size vs. fixed position
  - Up-stream, downstream vs. any where in window
  - In-frame vs. any frame
Signal Generation: An Example

Window = ±100 bases

In-frame, downstream
- GCT = 1, TTT = 1, ATG = 1...

Any-frame, downstream
- GCT = 3, TTT = 2, ATG = 2...

In-frame, upstream
- GCT = 2, TTT = 0, ATG = 0, ...

Exercise: Find the in-frame downstream ATG

Exercise: What are the possible k-grams (k=3) in this sequence?
Feature Generation - Summary

Raw Data

An ATG segment – positive sample

A feature vector --- upstream/downstream inframe 3 grams
Too Many Features

• For each value of $k$, there are $4^k \times 3 \times 2^k$ $k$-grams

• If we use $k = 1, 2, 3, 4, 5$, we have $24 + 96 + 384 + 1536 + 6144 = 8184$ features!

• This is too many for most machine learning algorithms
Signal Selection (Basic Idea)

- Choose a signal with low intra-class distance
- Choose a signal with high inter-class distance
Signal Selection (e.g., t-statistics)

The t-stats of a signal is defined as

\[ t = \frac{|\mu_1 - \mu_2|}{\sqrt{\left(\sigma_1^2/n_1\right) + \left(\sigma_2^2/n_2\right)}} \]

where \(\sigma_i^2\) is the variance of that signal in class \(i\), \(\mu_i\) is the mean of that signal in class \(i\), and \(n_i\) is the size of class \(i\).
Signal Selection (e.g., MIT-correlation)

The MIT-correlation value of a signal is defined as

$$MIT = \frac{|\mu_1 - \mu_2|}{\sigma_1 + \sigma_2}$$

where $\sigma_i$ is the standard deviation of that signal in class $i$ and $\mu_i$ is the mean of that signal in class $i$. 
Signal Selection (e.g., $\chi^2$)

The $\chi^2$ value of a signal is defined as:

$$\chi^2 = \sum_{i=1}^{m} \sum_{j=1}^{k} \frac{(A_{ij} - E_{ij})^2}{E_{ij}},$$

where $m$ is the number of intervals, $k$ the number of classes, $A_{ij}$ the number of samples in the $i$th interval, $j$th class, $R_i$ the number of samples in the $i$th interval, $C_j$ the number of samples in the $j$th class, $N$ the total number of samples, and $E_{ij}$ the expected frequency of $A_{ij}$ ($E_{ij} = R_i * C_j / N$).
Example

• Suppose you have a sample of 50 men and 50 women and the following weight distribution is observed:

<table>
<thead>
<tr>
<th></th>
<th>obs</th>
<th>exp</th>
<th>(obs – exp)^2/exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>HM</td>
<td>40</td>
<td>60*50/100=30</td>
<td>3.3</td>
</tr>
<tr>
<td>HW</td>
<td>20</td>
<td>60*50/100=30</td>
<td>3.3</td>
</tr>
<tr>
<td>LM</td>
<td>10</td>
<td>40*50/100=20</td>
<td>5.0</td>
</tr>
<tr>
<td>LW</td>
<td>30</td>
<td>40*50/100=20</td>
<td>5.0</td>
</tr>
</tbody>
</table>

\( \chi^2 = 16.6 \)
\( P = 0.00004, \)
\( df = 1 \)

So weight and sex are not indep

• Is weight a good attribute for distinguishing men from women?
Signal Selection (e.g., CFS)

• Instead of scoring individual signals, how about scoring a group of signals as a whole?

• CFS
  – Correlation-based Feature Selection
  – A good group contains signals that are highly correlated with the class, and yet uncorrelated with each other

Exercise: What is the main challenge in implementing CFS?
Distributions of Two Example 3-Grams

- Which is the better one?

\[ \chi^2 = 1672.97447 \]

\[ \chi^2 = 0 \]
Sample k-grams Selected by CFS for Recognizing TIS

Kozak consensus

- Position –3
- in-frame upstream ATG
- in-frame downstream
  - TAA, TAG, TGA,
  - CTG, GAC, GAG, and GCC

Leaky scanning

Stop codon

Codon bias?
Signal Integration

• kNN
  – Given a test sample, find the k training samples that are most similar to it. Let the majority class win

• SVM
  – Given a group of training samples from two classes, determine a separating plane that maximises the margin of error

• Naïve Bayes, ANN, C4.5, ...
## Results (3-fold x-validation)

<table>
<thead>
<tr>
<th></th>
<th>predicted as positive</th>
<th>predicted as negative</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>positive</strong></td>
<td>TP</td>
<td>FN</td>
</tr>
<tr>
<td><strong>negative</strong></td>
<td>FP</td>
<td>TN</td>
</tr>
</tbody>
</table>

**Exercise:**
What is TP/(TP+FP)?

<table>
<thead>
<tr>
<th></th>
<th>TP/(TP + FN)</th>
<th>TN/(TN + FP)</th>
<th>TP/(TP + FP)</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naïve Bayes</td>
<td>84.3%</td>
<td>86.1%</td>
<td>66.3%</td>
<td>85.7%</td>
</tr>
<tr>
<td>SVM</td>
<td>73.9%</td>
<td>93.2%</td>
<td>77.9%</td>
<td>88.5%</td>
</tr>
<tr>
<td>Neural Network</td>
<td>77.6%</td>
<td>93.2%</td>
<td>78.8%</td>
<td>89.4%</td>
</tr>
<tr>
<td>Decision Tree</td>
<td>74.0%</td>
<td>94.4%</td>
<td>81.1%</td>
<td>89.4%</td>
</tr>
</tbody>
</table>
### Improvement by Voting

- **Apply any 3 of Naïve Bayes, SVM, Neural Network, & Decision Tree. Decide by majority**

<table>
<thead>
<tr>
<th></th>
<th>TP/(TP + FN)</th>
<th>TN/(TN + FP)</th>
<th>TP/(TP + FP)</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB+SVM+NN</td>
<td>79.2%</td>
<td>92.1%</td>
<td>76.5%</td>
<td>88.9%</td>
</tr>
<tr>
<td>NB+SVM+Tree</td>
<td>78.8%</td>
<td>92.0%</td>
<td>76.2%</td>
<td>88.8%</td>
</tr>
<tr>
<td>NB+NN+Tree</td>
<td>77.6%</td>
<td>94.5%</td>
<td>82.1%</td>
<td>90.4%</td>
</tr>
<tr>
<td>SVM+NN+Tree</td>
<td>75.9%</td>
<td>94.3%</td>
<td>81.2%</td>
<td>89.8%</td>
</tr>
<tr>
<td>Best of 4</td>
<td>84.3%</td>
<td>94.4%</td>
<td>81.1%</td>
<td>89.4%</td>
</tr>
<tr>
<td>Worst of 4</td>
<td>73.9%</td>
<td>86.1%</td>
<td>66.3%</td>
<td>85.7%</td>
</tr>
</tbody>
</table>
Improvement by Scanning

- Apply Naïve Bayes or SVM left-to-right until first ATG predicted as positive. That’s the TIS
- Naïve Bayes & SVM models were trained using TIS vs. Up-stream ATG

<table>
<thead>
<tr>
<th></th>
<th>TP/(TP + FN)</th>
<th>TN/(TN + FP)</th>
<th>TP/(TP + FP)</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>84.3%</td>
<td>86.1%</td>
<td>66.3%</td>
<td>85.7%</td>
</tr>
<tr>
<td>SVM</td>
<td>73.9%</td>
<td>93.2%</td>
<td>77.9%</td>
<td>88.5%</td>
</tr>
<tr>
<td>NB+Scanning</td>
<td>87.3%</td>
<td>96.1%</td>
<td>87.9%</td>
<td>93.9%</td>
</tr>
<tr>
<td>SVM+Scanning</td>
<td>88.5%</td>
<td>96.3%</td>
<td>88.6%</td>
<td>94.4%</td>
</tr>
</tbody>
</table>
Performance Comparisons

<table>
<thead>
<tr>
<th>Method</th>
<th>TP/(TP + FN)</th>
<th>TN/(TN + FP)</th>
<th>TP/(TP + FP)</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>84.3%</td>
<td>86.1%</td>
<td>66.3%</td>
<td>85.7%</td>
</tr>
<tr>
<td>Decision Tree</td>
<td>74.0%</td>
<td>94.4%</td>
<td>81.1%</td>
<td>89.4%</td>
</tr>
<tr>
<td>NB+NN+Tree</td>
<td>77.6%</td>
<td>94.5%</td>
<td>82.1%</td>
<td>90.4%</td>
</tr>
<tr>
<td>SVM+Scanning</td>
<td>88.5%</td>
<td>96.3%</td>
<td>88.6%</td>
<td>94.4%*</td>
</tr>
<tr>
<td>Pedersen&amp;Nielsen</td>
<td>78%</td>
<td>87%</td>
<td>-</td>
<td>85%</td>
</tr>
<tr>
<td>Zien</td>
<td>69.9%</td>
<td>94.1%</td>
<td>-</td>
<td>88.1%</td>
</tr>
<tr>
<td>Hatzigeorgiou</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>94%*</td>
</tr>
</tbody>
</table>

* result not directly comparable
Technique Comparisons

• **Pedersen&Nielsen [ISMB’97]**
  – Neural network
  – No explicit features

• **Zien [Bioinformatics’00]**
  – SVM+kernel engineering
  – No explicit features

• **Hatzigeorgiou [Bioinformatics’02]**
  – Multiple neural networks
  – Scanning rule
  – No explicit features

• **Our approach**
  – Explicit feature generation
  – Explicit feature selection
  – Use any machine learning method w/o any form of complicated tuning
  – Scanning rule is optional
Exercise: List the first 10 amino acid in our example sequence

mRNA → protein

How about using k-grams from the translation?

<table>
<thead>
<tr>
<th>Codon</th>
<th>U</th>
<th>C</th>
<th>A</th>
<th>G</th>
<th>Last</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>Phe</td>
<td>Ser</td>
<td>Tyr</td>
<td>Cys</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>Phe</td>
<td>Ser</td>
<td>Tyr</td>
<td>Cys</td>
<td>C</td>
</tr>
<tr>
<td>Leu</td>
<td>Ser</td>
<td>Stop (Ochre)</td>
<td>Stop (Ocher)</td>
<td>Stop (Umbre)</td>
<td>A</td>
</tr>
<tr>
<td>Leu</td>
<td>Ser</td>
<td>Stop (Amber)</td>
<td>Trp</td>
<td>Arg</td>
<td>G</td>
</tr>
<tr>
<td>C</td>
<td>Leu</td>
<td>Pro</td>
<td>His</td>
<td>Arg</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>Leu</td>
<td>Pro</td>
<td>His</td>
<td>Arg</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>Leu</td>
<td>Pro</td>
<td>Gln</td>
<td>Arg</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Leu</td>
<td>Pro</td>
<td>Gln</td>
<td>Arg</td>
<td>G</td>
</tr>
<tr>
<td>A</td>
<td>Ile</td>
<td>Thr</td>
<td>Asn</td>
<td>Ser</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>Ile</td>
<td>Thr</td>
<td>Asn</td>
<td>Ser</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>Ile</td>
<td>Thr</td>
<td>Lys</td>
<td>Arg</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Met</td>
<td>Thr</td>
<td>Lys</td>
<td>Arg</td>
<td>G</td>
</tr>
<tr>
<td>G</td>
<td>Val</td>
<td>Ala</td>
<td>Asp</td>
<td>Gly</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>Val</td>
<td>Ala</td>
<td>Asp</td>
<td>Gly</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>Val</td>
<td>Ala</td>
<td>Glu</td>
<td>Gly</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Val</td>
<td>Ala</td>
<td>Glu</td>
<td>Gly</td>
<td>G</td>
</tr>
</tbody>
</table>
Amino-Acid Features

sequence window generation

cDNA sequence

......GGACGGATGACTGCC......CTCGATAATGGCACCT......TTGCTAATGACAATA......

False TIS (upstream)  
True TIS  
False TIS (downstream)

a (false) TIS window

a (true) TIS window

coding

amino acid sequence

amino acid sequence
# Amino-Acid Features

![Diagram showing sequence window generation and amino acid sequence conversion.](image)

## New feature space (total of 927 features + class label)

<table>
<thead>
<tr>
<th>42 1-gram amino acid patterns</th>
<th>882 2-gram amino acid patterns</th>
<th>3 bio-knowledge patterns</th>
<th>class label</th>
</tr>
</thead>
</table>

## Frequency as values

<table>
<thead>
<tr>
<th>1, 3, 5, 0, 4, …</th>
<th>6, 2, 7, 0, 5, …</th>
<th>N, N, N,</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>6, 5, 7, 9, 0, …</td>
<td>2, 0, 3, 10, 0, …</td>
<td>Y, Y, Y,</td>
<td>True</td>
</tr>
</tbody>
</table>
Amino Acid K-grams Discovered (by entropy)

- Position -3
- In-frame upstream ATG
- In-frame downstream
  - TAA, TAG, TGA,
  - CTG, GAC, GAG, and GCC

Kozak consensus
Leaky scanning
Stop codon
Codon bias

<table>
<thead>
<tr>
<th>Fold</th>
<th>UP-ATG</th>
<th>DOWN-STOP</th>
<th>UP3-AorG</th>
<th>DOWN-A</th>
<th>DOWN-V</th>
<th>UP-A</th>
<th>DOWN-L</th>
<th>DOWN-D</th>
<th>DOWN-E</th>
<th>UP-G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>10</td>
</tr>
</tbody>
</table>

Copyright 2015 © Wong Limsoon
Independent Validation Sets

• A. Hatzigeorgiou:
  – 480 fully sequenced human cDNAs
  – 188 left after eliminating sequences similar to training set (Pedersen & Nielsen’s)
  – 3.42% of ATGs are TIS

• Our own:
  – well characterized human gene sequences from chromosome X (565 TIS) and chromosome 21 (180 TIS)
Validation Results (on Hatzigeorgiou’s)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Precision</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVMs(linear)</td>
<td>96.28%</td>
<td>89.15%</td>
<td>25.31%</td>
<td>89.42%</td>
</tr>
<tr>
<td>SVMs(quad)</td>
<td>94.14%</td>
<td>90.13%</td>
<td>26.70%</td>
<td>90.28%</td>
</tr>
<tr>
<td>Ensemble Trees</td>
<td>92.02%</td>
<td>92.71%</td>
<td>32.52%</td>
<td>92.68%</td>
</tr>
</tbody>
</table>

- Using top 100 features selected by entropy and trained on Pedersen & Nielsen’s dataset
Validation Results (on Chr X and Chr 21)

Our method

- Using top 100 features selected by entropy and trained on Pedersen & Nielsen’s
About the Inventor: Huiqing Liu

- **Huiqing Liu**
  - PhD, NUS, 2004
  - Currently Senior Scientist at Centocor
  - Asian Innovation Gold Award 2003
  - New Jersey Cancer Research Award for Scientific Excellence 2008
  - Gallo Prize 2008
Recognition of Transcription Start Sites

An introduction to the World’s best TSS recognition system:
A heavy tuning approach
Transcription Start Site

5' flank  exon  intron  exon  intron  exon  3' flank

transcription

coding region

DNA: A, C, G, T

mRNA: A, C, G, U
Structure of Dragon Promoter Finder

-200 to +50 window size

Model selected based on desired sensitivity
Each model has two submodels based on GC content.

Exercise: Why are the submodels based on GC content?

\[(C+G) = \frac{\#C + \#G}{\text{Window Size}}\]
Data Analysis Within Submodel

K-gram (k = 5) positional weight matrix
Promoter, Exon, Intron Sensors

- These sensors are positional weight matrices of k-grams, $k = 5$ (aka pentamers)
- They are calculated as below using promoter, exon, intron data respectively

$$\sigma = \frac{\sum_{i=1}^{L-4} p_j^i \otimes f_{j,i}}{\sum_{i=1}^{L-4} \max_j f_{j,i}}$$

$$p_j^i \otimes f_{j,i} = \begin{cases} f_{j,i}, & \text{if } p_i = p_j^i \\ 0, & \text{if } p_i \neq p_j^i \end{cases}$$
Just to make sure you know what I mean …

• **Give me 3 DNA seq of length 10:**
  – Seq\(_1\) = ACCGAGTTCT
  – Seq\(_2\) = AGTGTACCTG
  – Seq\(_3\) = AGTTCGTATG

• **Then**

<table>
<thead>
<tr>
<th>1-mer</th>
<th>pos1</th>
<th>pos2</th>
<th>pos3</th>
<th>pos4</th>
<th>pos5</th>
<th>pos6</th>
<th>pos7</th>
<th>pos8</th>
<th>pos9</th>
<th>pos10</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3/3</td>
<td>0/3</td>
<td>0/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0/3</td>
<td>1/3</td>
<td>1/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>0/3</td>
<td>2/3</td>
<td>0/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>0/3</td>
<td>0/3</td>
<td>2/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exercise: Fill in the rest of the table
Just to make sure you know what I mean …

- **Give me 3 DNA seq of length 10:**
  - Seq₁ = ACCGAGTTCT
  - Seq₂ = AGTGTACCTG
  - Seq₃ = AGTTCGTATG

- **Then**

<table>
<thead>
<tr>
<th>2-mer</th>
<th>pos1</th>
<th>pos2</th>
<th>pos3</th>
<th>pos4</th>
<th>pos5</th>
<th>pos6</th>
<th>pos7</th>
<th>pos8</th>
<th>pos9</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>0/3</td>
<td>0/3</td>
<td>0/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>1/3</td>
<td>0/3</td>
<td>0/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>0/3</td>
<td>0/3</td>
<td>1/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exercise: How many rows should this 2-mer table have? How many rows should the pentamer table have?

Exercise: Fill in the rest of the table
Data Preprocessing & ANN

Tuning parameters

\[ s_E = sat\left(\sigma_p - \sigma_e, a_e, b_e\right), \]
\[ s_I = sat\left(\sigma_p - \sigma_i, a_i, b_i\right), \]
\[ s_{EI} = sat\left(\sigma_e - \sigma_i, a_{ei}, b_{ei}\right), \]

where the function \textit{sat} is defined by

\[ sat(x, a, b) = \begin{cases} 
  a, & \text{if } x > a \\
  x, & \text{if } b \leq x \leq a. \\
  b, & \text{if } b > x 
\end{cases} \]

Simple feedforward ANN trained by the Bayesian regularisation method

\[ \text{tanh}(\text{net}) = \frac{e^x - e^{-x}}{e^x + e^{-x}} \]

\[ \text{net} = \sum s_i \cdot w_i \]
Accuracy Comparisons

Accuracy of Dragon Promoter Finder Ver. 1.2 & 1.3

- DPF v1.2
- DPF v1.3
- NNPP2.1 (0.99)
- NNPP2.1 (0.8)
- PromoterInspector
- Promoter2.0

Sensitivity in % = 100 x TP/(TP+FN)

Positive predictive value ppv in % = 100 x TP/(TP+FP)

with C+G submodels

without C+G submodels
Training Data Criteria & Preparation

• Contain both positive and negative sequences

• Sufficient diversity, resembling different transcription start mechanisms

• Sufficient diversity, resembling different non-promoters

• Sanitized as much as possible

• TSS taken from
  – 793 vertebrate promoters from EPD
  – -200 to +50 bp of TSS

• non-TSS taken from
  – GenBank,
  – 800 exons
  – 4000 introns,
  – 250 bp,
  – non-overlapping,
  – <50% identities
Tuning Data Preparation

• To tune adjustable system parameters in Dragon, we need a separate tuning data set

• TSS taken from
  – 20 full-length gene seqs with known TSS
  – -200 to +50 bp of TSS
  – no overlap with EPD

• Non-TSS taken from
  – 1600 human 3’UTR seqs
  – 500 human exons
  – 500 human introns
  – 250 bp
  – no overlap
Testing Data Criteria & Preparation

• Seqs should be from the training or evaluation of other systems (no bias!)

• Seqs should be disjoint from training and tuning data sets

• Seqs should have TSS

• Seqs should be cleaned to remove redundancy, <50% identities

• 159 TSS from 147 human and human virus seqs

• Cumulative length of more than 1.15Mbp

• Taken from GENESCAN, GenelId, Genie, etc.
About the Inventor: Vlad Bajic

- **Vladimir B. Bajic**
- Principal Scientist, I²R, 2001-2006
- Currently Director & Professor, Computational Bioscience Research Center, KAUST
Recognition of Poly-A Signal Sites

A twist to the “feature generation, feature selection, feature integration” approach
Eukaryotic Pre-mRNA Processing

pre-mRNA

exon exon

5’UTR

Capping / splicing

intron

3’UTR

Cleavage

Polyadenylation

mature mRNA

G

G

AAAAAAA......

Image credit: www.polya.org
Polyadenylation in Eukaryotes

• Addition of poly(A) tail to RNA
  – Begins as transcription finishes
  – 3’-most segment of newly-made RNA is cleaved off
  – Poly(A) tail is then synthesized at 3' end

• Poly(A) tail is imp for nuclear export, translation & stability of mRNA

• Tail is shortened over time. When short enough, the mRNA is degraded

# Poly-A Signals in Human (Gautheret et al., 2000)

## Table 2. Most Significant Hexamers in 3' Fragments: Clustered Hexamers

<table>
<thead>
<tr>
<th>Hexamer</th>
<th>Observed (expected)(^a)</th>
<th>% sites</th>
<th>(\rho)(^b)</th>
<th>Position average ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAUAAA</td>
<td>3286 (317)</td>
<td>58.2</td>
<td>0</td>
<td>−16 ± 4.7</td>
</tr>
<tr>
<td>AUUAAA</td>
<td>843 (112)</td>
<td>14.9</td>
<td>0</td>
<td>−17 ± 5.3</td>
</tr>
<tr>
<td>AGUAAA</td>
<td>156 (32)</td>
<td>2.7</td>
<td>(6 \times 10^{-57})</td>
<td>−16 ± 5.9</td>
</tr>
<tr>
<td>UAUAAA</td>
<td>180 (53)</td>
<td>3.2</td>
<td>(4 \times 10^{-45})</td>
<td>−18 ± 7.8</td>
</tr>
<tr>
<td>CAUAAA</td>
<td>76 (23)</td>
<td>1.3</td>
<td>(1 \times 10^{-18})</td>
<td>−17 ± 5.9</td>
</tr>
<tr>
<td>GAUAAA</td>
<td>72 (21)</td>
<td>1.3</td>
<td>(2 \times 10^{-18})</td>
<td>−18 ± 6.9</td>
</tr>
<tr>
<td>AAUAUA</td>
<td>96 (33)</td>
<td>1.7</td>
<td>(2 \times 10^{-19})</td>
<td>−18 ± 6.9</td>
</tr>
<tr>
<td>AAUACA</td>
<td>70 (16)</td>
<td>1.2</td>
<td>(5 \times 10^{-23})</td>
<td>−18 ± 8.7</td>
</tr>
<tr>
<td>AAUAGA</td>
<td>43 (14)</td>
<td>0.7</td>
<td>(1 \times 10^{-9})</td>
<td>−18 ± 6.3</td>
</tr>
<tr>
<td>AAAAAG</td>
<td>49 (11)</td>
<td>0.8</td>
<td>(5 \times 10^{-17})</td>
<td>−18 ± 8.9</td>
</tr>
<tr>
<td>ACUAAA</td>
<td>36 (11)</td>
<td>0.6</td>
<td>(1 \times 10^{-06})</td>
<td>−17 ± 8.1</td>
</tr>
<tr>
<td>AAGAAAA</td>
<td>62 (10)</td>
<td>1.1</td>
<td>(9 \times 10^{-28})</td>
<td>−19 ± 11</td>
</tr>
<tr>
<td>AAUGAA</td>
<td>49 (10)</td>
<td>0.8</td>
<td>(4 \times 10^{-18})</td>
<td>−20 ± 10</td>
</tr>
<tr>
<td>UUUAAA</td>
<td>69 (20)</td>
<td>1.2</td>
<td>(3 \times 10^{-18})</td>
<td>−17 ± 12</td>
</tr>
<tr>
<td>AAAACA</td>
<td>29 (5)</td>
<td>0.5</td>
<td>(8 \times 10^{-12})</td>
<td>−20 ± 10</td>
</tr>
</tbody>
</table>
| GGGGCU      | 22 (3)                    | 0.3     | \(9 \times 10^{-12}\) | −24 ± 13              
In contrast to human, PAS in Arab is highly degenerate. E.g., only 10% of Arab PAS is AAUAAAA!
Approach on Arab PAS Sites (I)

Training Data → Feature Generation → Feature selection → Feature Integration → Test Data → Classification Model → Prediction scores at every 10bp interval

<s1, s2, s3, s4, s5, s6, s7, s8, s9> → Cascade Classifier (SMO2) → (+ve) if score > threshold
Approach on Arab PAS Sites (II)

- **Data collection**
  - #1 from Hao Han, 811 +ve seq (-200/+200)
  - #2 from Hao Han, 9742 -ve seq (-200/+200)
  - #3 from Qingshun Li,
    - 6209 (+ve) seq (-300/+100)
    - 1581 (-ve) intron (-300/+100)
    - 1501 (-ve) coding (-300/+100)
    - 864 (-ve) 5’utr (-300/+100)

- **Feature generation**
  - 3-grams, compositional features (4U/1N. G/U*7, etc)
  - Freq of features above in 3 diff windows: (-110/+5), (-35/+15), (-50/+30)

- **Feature selection**
  - $\chi^2$

- **Feature integration & Cascade**
  - SVM
Score Profile Relative to Candidate Sites
### Validation Results

<table>
<thead>
<tr>
<th>Control Sequences</th>
<th>SMO 1</th>
<th>SMO 2</th>
<th>PASS 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SN &amp; SP</td>
<td>Threshold</td>
<td>SN &amp; SP</td>
</tr>
<tr>
<td>CDS</td>
<td>90% 0.26</td>
<td>94% 0.24</td>
<td>95% 3.7</td>
</tr>
<tr>
<td>5’UTR</td>
<td>79% 0.42</td>
<td>85% 0.49</td>
<td>78% 5.5</td>
</tr>
<tr>
<td>Intron</td>
<td>64% 0.59</td>
<td>71% 0.67</td>
<td>63% 6.3</td>
</tr>
</tbody>
</table>

**Table 2.** Equal-error-rate points of SMO1, SMO2, and PASS 1.0 for SN_10.

<table>
<thead>
<tr>
<th>Control Sequences</th>
<th>SMO 1</th>
<th>SMO 2</th>
<th>PASS 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SN &amp; SP</td>
<td>Threshold</td>
<td>SN &amp; SP</td>
</tr>
<tr>
<td>CDS</td>
<td>94% 0.36</td>
<td>96% 0.31</td>
<td>96% 4</td>
</tr>
<tr>
<td>5’UTR</td>
<td>86% 0.53</td>
<td>89% 0.6</td>
<td>81% 5.7</td>
</tr>
<tr>
<td>Intron</td>
<td>73% 0.68</td>
<td>77% 0.77</td>
<td>67% 6.6</td>
</tr>
</tbody>
</table>

**Table 2.** Equal-error-rate points of SMO1, SMO2, and PASS 1.0 for SN_30.

<table>
<thead>
<tr>
<th>Control Sequences</th>
<th>SMO 1</th>
<th>SMO 2</th>
<th>PASS 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SN &amp; SP</td>
<td>Threshold</td>
<td>SN &amp; SP</td>
</tr>
<tr>
<td>CDS</td>
<td>97% 0.44</td>
<td>97% 0.37</td>
<td>97% 4.3</td>
</tr>
<tr>
<td>5’UTR</td>
<td>90% 0.62</td>
<td>92% 0.67</td>
<td>84% 6.2</td>
</tr>
<tr>
<td>Intron</td>
<td>79% 0.75</td>
<td>83% 0.81</td>
<td>72% 6.8</td>
</tr>
</tbody>
</table>
About the Inventor: Koh Chuan Hock

• **Koh Chuan Hock**
  – BComp (CB), NUS, 2008
  – PhD, NUS, 2012
  – Currently Data Scientist at Indeed Inc, Japan
Concluding Remarks…
What have we learned?

• Gene feature recognition applications
  – TIS, TSS, PAS

• General methodology
  – “Feature generation, feature selection, feature integration”

• Important tactics
  – Multiple models to optimize overall performance
  – Feature transformation (DNA $\rightarrow$ amino acid)
  – Classifier cascades
Any Question?
Acknowledgements

• The slides for PAS site prediction are adapted from slides given to me by Koh Chuan Hock
References (TIS Recognition)


• A. Zien et al., “Engineering support vector machine kernels that recognize translation initiation sites”, *Bioinformatics* 16:799--807, 2000

• A. G. Hatzigeorgiou, “Translation initiation start prediction in human cDNAs with high accuracy”, *Bioinformatics* 18:343--350, 2002

• J. Li et al., “Techniques for Recognition of Translation Initiation Sites”, *The Practical Bioinformatician*, Chapter 4, pages 71—90, 2004
References (TSS Recognition)


References (PAS Recognition)


References (Feature Selection)

