For written notes on this lecture, please read Chapters 4 and 7 of *The Practical Bioinformatician*, and Koh & Wong, “Recognition of Polyadenylation Sites from Arabidopsis Genomic Sequences”, *Proc GIW 2007*, pages 73--82

CS2220: Introduction to Computational Biology
Unit 3: Gene Feature Recognition

Wong Limsoon
8 September 2016
15 September 2016
Plan
Some Relevant Biology
Central Dogma

Replication → Transcription → Translation

DNA → RNA → Protein

...AATGGTACCAGATGACCTG...

...AAUGGUACCGAUGACCUGGAGC...

...TRLRPLLALLALWP...
Players in protein synthesis
Transcription

- **Synthesize mRNA from one strand of DNA**
 - An enzyme RNA polymerase temporarily separates double-stranded DNA
 - It begins transcription at transcription start site
 - $A \rightarrow A$, $C \rightarrow C$, $G \rightarrow G$, & $T \rightarrow U$
 - Once RNA polymerase reaches transcription stop site, transcription stops

- **Additional “steps” for Eukaryotes**
 - Transcription produces pre-mRNA that contains both introns & exons
 - 5’ cap & poly-A tail are added to pre-mRNA
 - RNA splicing removes introns & mRNA is made
 - mRNA are transported out of nucleus
Translation

• Synthesize protein from mRNA

• Each amino acid is encoded by consecutive seq of 3 nucleotides, called a codon

• The decoding table from codon to amino acid is called genetic code

• $4^3 = 64$ diff codons
 \Rightarrow Codons are not 1-to-1 corr to 20 amino acids

• All organisms use the same decoding table (except some mitochondrial genes)

• Amino acids can be classified into 4 groups. A single-base change in a codon is usu insufficient to cause a codon to code for an amino acid in diff group
Genetic code

- **Start codon**
 - ATG (code for M)

- **Stop codon**
 - TAA
 - TAG
 - TGA

<table>
<thead>
<tr>
<th>First Position</th>
<th>Second Position of Codon</th>
<th>T</th>
<th>C</th>
<th>A</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TTA Leu [L]</td>
<td>TCA Ser [S]</td>
<td>TAA Thr [end]</td>
<td>TGA Thr [end]</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>CTC Leu [L]</td>
<td>CCC Pro [P]</td>
<td>CAC His [H]</td>
<td>CGC Arg [R]</td>
<td>A</td>
</tr>
<tr>
<td>A</td>
<td>ATT Ile [I]</td>
<td>ACT Thr [T]</td>
<td>AAT Asn [N]</td>
<td>AGT Ser [S]</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>ATC Ile [I]</td>
<td>ACC Thr [T]</td>
<td>AAC Asn [N]</td>
<td>AGC Ser [S]</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>ATA Ile [I]</td>
<td>ACA Thr [T]</td>
<td>AAA Lys [K]</td>
<td>AGA Arg [R]</td>
<td>A</td>
</tr>
</tbody>
</table>
Example of computational translation - notice the indication of (alternative) start-codons:

VIRTUAL RIBOSOME

Translation table: Standard SGCO

>Seq1
Reading frame: 1

```
M V L S A A D K G N V K A A W G K V G G H A A E Y G A E A L
5' ATGGTGCTGCTGCGCGAACAGGGAATGCTCAGGGCGCTGGGCAAGGTTCGCGCCACGCTGAGATATGCCAGAGGCCCTG 90
>>> .)))))))))))))))))))))))))))))))))))))))))))

E R M F L S F P T K T Y F P H F D L S H G S A Q V K G H G
5' GAGAGGATGTTCCTGAGCTTCCCACCACCACCAAGACCTACTTCCTCCACCTGACCTGAGCCACGGTCCCGCGACGCTCAGTCAAGGGCCACGGC 180
>>> .))))))))))))))))))))))))))))))))))))))))))

A K V A A A L T K A V E H L D D L P G A L S E L S D L H A H
5' GCGAAGGTGCCGCGCGCTGACCAAGGCCTGGAGACCTGACCCCGTGCCTGGTCTGAACTGAGTGAACCTGACCGCTCAC 270
>>> .)))))))))))))))))))))))))))))))))))))))))))

K L R V D F V N F K L L S H S L L V T L A S H L P S D F T P
5' AACCTGCGCTGCGCGCACCACGCTCACTTCAGCTGACCTGACCTGCGCTCCACCTCCACCTCCACGTGATTTCACCC 360
>>> .)))))))))))))))))))))))))))))))))))))))))))

A V H A S L D K F L A N V S T V L T S K Y R *
5' GCCGTCCACGCTCCCTGAGACAGGTTTCTGGCCACAGTGACCGTGCTACCTCAATAACCGTTAA 429
>>> .)))))))))))))))))))))))))))))))))))))))))))
```

Annotation key:

>>> : START codon (strict)

))) : START codon (alternative)

*** : STOP
Recognition of Translation Initiation Sites

An introduction to the World’s simplest TIS recognition system
Translation initiation site
A sample cDNA

299 HSU27655.1 CAT U27655 Homo sapiens
CGTGTTGTCCAGCCCATCTGCCAGGCTGCCCAGCCATGATGCTGAACACTGACTCCAGCTGTG
CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGCATGAGTCTTTTGGCTGTCAAGGCAGCTGTA
GGAGGCAGATGAGAAGAGGGAGATGACCGTTGGAGGAAGGGAGGCTGCTTGGTGCAGAG
CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCCTCACCACAAAGGACTCCCT
..iEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
EE
EE

• What makes the second ATG the TIS?
Approach

• Training data gathering

• Signal generation
 – k-grams, distance, domain know-how, ...

• Signal selection
 – Entropy, χ^2, CFS, t-test, domain know-how...

• Signal integration
 – SVM, ANN, PCL, CART, C4.5, kNN, ...
Training & testing data

- Vertebrate dataset of Pedersen & Nielsen [ISMB’97]
- 3312 sequences
- 13503 ATG sites
- 3312 (24.5%) are TIS
- 10191 (75.5%) are non-TIS
- Use for 3-fold x-validation expts
Signal generation

- **K-grams (ie., k consecutive letters)**
 - $K = 1, 2, 3, 4, 5, \ldots$
 - Window size vs. fixed position
 - Up-stream, downstream vs. any where in window
 - In-frame vs. any frame
Signal generation: Example

299 HSU27655.1 CAT U27655 Homo sapiens

CGTGTGTGCAGCAGCTGCAGCTGCCCCCAAGCCATGGCTGAACACTGACTCCCAAGCTGTG
CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGCATTCTTTTGCTGTCAAGGCAGCTGTGA
GGAGGCAGATGAGAAAGAGAGATGGCCTTGGAAGGAAGGGAAGGGGCCTGTGCCGAGGA
CCTCTCCTGGCCAGGAGCTTCCTCCTCCAGGACAAGACCTTCCACCCAAACAGGACTCCCT

- **Window** = ±100 bases
- **In-frame, downstream**
 - GCT = 1, TTT = 1, ATG = 1...
- **Any-frame, downstream**
 - GCT = 3, TTT = 2, ATG = 2...
- **In-frame, upstream**
 - GCT = 2, TTT = 0, ATG = 0, ...

Exercise: Find the in-frame downstream ATG

Exercise: What are the possible k-grams (k=3) in this sequence?
Feature generation - Summary

Raw Data

206 BBCALCB.1 CAT X71666 Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata; CCGTCAGAGCCCGCACCTTTCCTCTGTGGAGCCGAGCCCGGAAAGGAAATGAGGCAAGTTATCCTT
TTGAAATGTGCTCACAACCTTTGATGCAAGATGAATTAAGGGCTAGGAAAGAGATTAAAGGATCTCGATTTGGAACAAATTCT
TGTTTCTTTGAGTGTGGAAGAGATCTGTCTCTACCTGAGTTACAA

An ATG segment – positive sample

A feature vector --- upstream/downstream inframe 3 grams
Too many features

• For each value of k, there are $4^k \times 3 \times 2^k$ k-grams

• If we use $k = 1, 2, 3, 4, 5$, we have $24 + 96 + 384 + 1536 + 6144 = 8184$ features!

• This is too many for most machine learning algorithms
Signal selection: Basic idea

- Choose a signal with low intra-class distance
- Choose a signal with high inter-class distance
Signal selection: E.g., t-statistics

The t-stats of a signal is defined as

\[t = \frac{|\mu_1 - \mu_2|}{\sqrt{(\sigma_1^2/n_1) + (\sigma_2^2/n_2)}} \]

where \(\sigma_i^2 \) is the variance of that signal in class \(i \), \(\mu_i \) is the mean of that signal in class \(i \), and \(n_i \) is the size of class \(i \).
Signal selection: E.g., MIT-correlation

The MIT-correlation value of a signal is defined as

\[MIT = \frac{|\mu_1 - \mu_2|}{\sigma_1 + \sigma_2} \]

where \(\sigma_i \) is the standard deviation of that signal in class \(i \) and \(\mu_i \) is the mean of that signal in class \(i \).
Signal selection: E.g., χ^2

The χ^2 value of a signal is defined as:

$$\chi^2 = \sum_{i=1}^{m} \sum_{j=1}^{k} \frac{(A_{ij} - E_{ij})^2}{E_{ij}},$$

where m is the number of intervals, k the number of classes, A_{ij} the number of samples in the ith interval, jth class, R_i the number of samples in the ith interval, C_j the number of samples in the jth class, N the total number of samples, and E_{ij} the expected frequency of A_{ij} ($E_{ij} = R_i \times C_j / N$).
Example

• Suppose you have a sample of 50 men and 50 women and the following weight distribution is observed:

<table>
<thead>
<tr>
<th></th>
<th>obs</th>
<th>exp</th>
<th>((\text{obs} - \text{exp})^2/\text{exp})</th>
</tr>
</thead>
<tbody>
<tr>
<td>HM</td>
<td>40</td>
<td>(60 \times 50/100 = 30)</td>
<td>3.3</td>
</tr>
<tr>
<td>HW</td>
<td>20</td>
<td>(60 \times 50/100 = 30)</td>
<td>3.3</td>
</tr>
<tr>
<td>LM</td>
<td>10</td>
<td>(40 \times 50/100 = 20)</td>
<td>5.0</td>
</tr>
<tr>
<td>LW</td>
<td>30</td>
<td>(40 \times 50/100 = 20)</td>
<td>5.0</td>
</tr>
</tbody>
</table>

\(\chi^2 = 16.6\)

P = 0.00004,

df = 1

So weight and sex are not indep

• Is weight a good attribute for distinguishing men from women?
Signal selection: E.g., CFS

• Instead of scoring individual signals, how about scoring a group of signals as a whole?

• CFS
 – Correlation-based Feature Selection
 – A good group contains signals that are highly correlated with the class, and yet uncorrelated with each other

Exercise: What is the main challenge in implementing CFS?
Distributions of two 3-grams

\[\chi^2 = 1672.97447 \]

\[\chi^2 = 0 \]

- Which is the better one?
Sample k-grams selected by CFS for recognizing TIS

- Kozak consensus
 - Position –3
 - in-frame upstream ATG
 - in-frame downstream
 - TAA, TAG, TGA,
 - CTG, GAC, GAG, and GCC
- Leaky scanning
- Stop codon
- Codon bias?
Signal integration

• **kNN**
 – Given a test sample, find the k training samples that are most similar to it. Let the majority class win

• **SVM**
 – Given a group of training samples from two classes, determine a separating plane that maximises the margin of error

• **Naïve Bayes, ANN, C4.5, ...**
Results: 3-fold x-validation

<table>
<thead>
<tr>
<th></th>
<th>predicted as positive</th>
<th>predicted as negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive</td>
<td>TP</td>
<td>FN</td>
</tr>
<tr>
<td>negative</td>
<td>FP</td>
<td>TN</td>
</tr>
</tbody>
</table>

Exercise:
What is TP/(TP+FP)?

<table>
<thead>
<tr>
<th>Model</th>
<th>TP/(TP + FN)</th>
<th>TN/(TN + FP)</th>
<th>TP/(TP + FP)</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naïve Bayes</td>
<td>84.3%</td>
<td>86.1%</td>
<td>66.3%</td>
<td>85.7%</td>
</tr>
<tr>
<td>SVM</td>
<td>73.9%</td>
<td>93.2%</td>
<td>77.9%</td>
<td>88.5%</td>
</tr>
<tr>
<td>Neural Network</td>
<td>77.6%</td>
<td>93.2%</td>
<td>78.8%</td>
<td>89.4%</td>
</tr>
<tr>
<td>Decision Tree</td>
<td>74.0%</td>
<td>94.4%</td>
<td>81.1%</td>
<td>89.4%</td>
</tr>
</tbody>
</table>
Improvement by voting

- Apply any 3 of Naïve Bayes, SVM, Neural Network, & Decision Tree Tree. Decide by majority

<table>
<thead>
<tr>
<th>Model</th>
<th>TP/(TP + FN)</th>
<th>TN/(TN + FP)</th>
<th>TP/(TP + FP)</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB+SVM+NN</td>
<td>79.2%</td>
<td>92.1%</td>
<td>76.5%</td>
<td>88.9%</td>
</tr>
<tr>
<td>NB+SVM+Tree</td>
<td>78.8%</td>
<td>92.0%</td>
<td>76.2%</td>
<td>88.8%</td>
</tr>
<tr>
<td>NB+NN+Tree</td>
<td>77.6%</td>
<td>94.5%</td>
<td>82.1%</td>
<td>90.4%</td>
</tr>
<tr>
<td>SVM+NN+Tree</td>
<td>75.9%</td>
<td>94.3%</td>
<td>81.2%</td>
<td>89.8%</td>
</tr>
<tr>
<td>Best of 4</td>
<td>84.3%</td>
<td>94.4%</td>
<td>81.1%</td>
<td>89.4%</td>
</tr>
<tr>
<td>Worst of 4</td>
<td>73.9%</td>
<td>86.1%</td>
<td>66.3%</td>
<td>85.7%</td>
</tr>
</tbody>
</table>
Improvement by scanning

- Apply Naïve Bayes or SVM left-to-right until first ATG predicted as positive. That’s the TIS
- Naïve Bayes & SVM models were trained using TIS vs. Up-stream ATG

<table>
<thead>
<tr>
<th></th>
<th>TP/(TP + FN)</th>
<th>TN/(TN + FP)</th>
<th>TP/(TP + FP)</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>84.3%</td>
<td>86.1%</td>
<td>66.3%</td>
<td>85.7%</td>
</tr>
<tr>
<td>SVM</td>
<td>73.9%</td>
<td>93.2%</td>
<td>77.9%</td>
<td>88.5%</td>
</tr>
<tr>
<td>NB+Scanning</td>
<td>87.3%</td>
<td>96.1%</td>
<td>87.9%</td>
<td>93.9%</td>
</tr>
<tr>
<td>SVM+Scanning</td>
<td>88.5%</td>
<td>96.3%</td>
<td>88.6%</td>
<td>94.4%</td>
</tr>
</tbody>
</table>
Performance comparison

<table>
<thead>
<tr>
<th>Method</th>
<th>TP/(TP + FN)</th>
<th>TN/(TN + FP)</th>
<th>TP/(TP + FP)</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>84.3%</td>
<td>86.1%</td>
<td>66.3%</td>
<td>85.7%</td>
</tr>
<tr>
<td>Decision Tree</td>
<td>74.0%</td>
<td>94.4%</td>
<td>81.1%</td>
<td>89.4%</td>
</tr>
<tr>
<td>NB+NN+Tree</td>
<td>77.6%</td>
<td>94.5%</td>
<td>82.1%</td>
<td>90.4%</td>
</tr>
<tr>
<td>SVM+Scanning</td>
<td>88.5%</td>
<td>96.3%</td>
<td>88.6%</td>
<td>94.4%*</td>
</tr>
<tr>
<td>Pedersen&Nielsen</td>
<td>78%</td>
<td>87%</td>
<td>-</td>
<td>85%</td>
</tr>
<tr>
<td>Zien</td>
<td>69.9%</td>
<td>94.1%</td>
<td>-</td>
<td>88.1%</td>
</tr>
<tr>
<td>Hatzigeorgiou</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>94%*</td>
</tr>
</tbody>
</table>

* * result not directly comparable
Technique comparison

• Pedersen&Nielsen [ISMB’97]
 – Neural network
 – No explicit features

• Zien [Bioinformatics’00]
 – SVM+kernel engineering
 – No explicit features

• Hatzigeorgiou
 [Bioinformatics’02]
 – Multiple neural networks
 – Scanning rule
 – No explicit features

• Our approach
 – Explicit feature generation
 – Explicit feature selection
 – Use any machine learning method w/o any form of complicated tuning
 – Scanning rule is optional
How about using k-grams from the translation?

Exercise: List the first 10 amino acid in our example sequence
Amino-acid features

cDNA sequence

```
.....GGACGGATGACTGCC.....CTCGATATGGCACCT.....TGCTAATGACAATA....
```
Amino-acid features

New feature space (total of 927 features + class label)

<table>
<thead>
<tr>
<th>42 1-gram amino acid patterns</th>
<th>882 2-gram amino acid patterns</th>
<th>3 bio-knowledge patterns</th>
<th>class label</th>
</tr>
</thead>
</table>

Frequency as values

- 1, 3, 5, 0, 4, ...
- 6, 2, 7, 0, 5, ...
- N, N, N, ...
- False
- 6, 5, 7, 9, 0, ...
- 2, 0, 3, 10, 0, ...
- Y, Y, Y, ...
- True
Amino acid K-grams discovered by entropy

- Position -3
- in-frame upstream ATG
- in-frame downstream
 - TAA, TAG, TGA,
 - CTG, GAC, GAG, and GCC

Table

<table>
<thead>
<tr>
<th>Fold</th>
<th>UP-ATG</th>
<th>DOWN-STOP</th>
<th>UP3-AorG</th>
<th>DOWN-A</th>
<th>DOWN-V</th>
<th>UP-A</th>
<th>DOWN-L</th>
<th>DOWN-D</th>
<th>DOWN-E</th>
<th>UP-G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>10</td>
</tr>
</tbody>
</table>
Independent validation sets

• A. Hatzigeorgiou:
 – 480 fully sequenced human cDNAs
 – 188 left after eliminating sequences similar to training set (Pedersen & Nielsen’s)
 – 3.42% of ATGs are TIS

• Our own:
 – well characterized human gene sequences from chromosome X (565 TIS) and chromosome 21 (180 TIS)
Validation results, on Hatzigeorgiou's

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Precision</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVMs(linear)</td>
<td>96.28%</td>
<td>89.15%</td>
<td>25.31%</td>
<td>89.42%</td>
</tr>
<tr>
<td>SVMs(quad)</td>
<td>94.14%</td>
<td>90.13%</td>
<td>26.70%</td>
<td>90.28%</td>
</tr>
<tr>
<td>Ensemble Trees</td>
<td>92.02%</td>
<td>92.71%</td>
<td>32.52%</td>
<td>92.68%</td>
</tr>
<tr>
<td>Average</td>
<td>95.01%</td>
<td>90.54%</td>
<td>26.63%</td>
<td>90.28%</td>
</tr>
</tbody>
</table>

– Using top 100 features selected by entropy and trained on Pedersen & Nielsen’s dataset
Validation results, on Chr X & 21

- Using top 100 features selected by entropy and trained on Pedersen & Nielsen’s
About the inventor: Huiqing Liu

- **Huiqing Liu**
 - PhD, NUS, 2004
 - Currently PI at Incyte
 - Asian Innovation Gold Award 2003
 - New Jersey Cancer Research Award for Scientific Excellence 2008
 - Gallo Prize 2008
Recognition of Transcription Start Sites

An introduction to the World’s best TSS recognition system:
A heavy tuning approach
Transcription start site

5’flank \[
\text{exon} \quad \text{intron} \quad \text{exon} \quad \text{intron} \quad \text{exon} \quad 3’flank
\]

transcription

coding region

DNA: A, C, G, T

mRNA: A, C, G, U
Structure of Dragon Promoter Finder

Model selected based on desired sensitivity

-200 to +50 window size
Each model has two submodels based on GC content

Exercise: Why are the submodels based on GC content?

\[(C+G) = \frac{\#C + \#G}{\text{Window Size}}\]
Data analysis within submodel

K-gram (k = 5) positional weight matrix
Promoter, exon, intron sensors

• These sensors are positional weight matrices of k-grams, \(k = 5 \) (aka pentamers)

• They are calculated as below using promoter, exon, intron data respectively

\[
\sigma = \frac{\left(\sum_{i=1}^{L-4} p_j^i \times f_{j,i} \right)}{\left(\sum_{i=1}^{L-4} \max_j f_{j,i} \right)}, \\
p_j^i \times f_{j,i} = \begin{cases}
 f_{j,i}, & \text{if } p_i = p_j^i \\
 0, & \text{if } p_i \neq p_j^i
\end{cases}
\]

- Window size
- Pentamer at \(i^{th} \) position in input
- Frequency of \(j^{th} \) pentamer at \(i^{th} \) position in training window
- \(j^{th} \) pentamer at \(i^{th} \) position in training window
Just to make sure you know what I mean …

• **Give me 3 DNA seq of length 10:**
 – Seq$_1$ = ACCGAGTTCT
 – Seq$_2$ = AGTGTACCTG
 – Seq$_3$ = AGTTCGTATG

• **Then**

<table>
<thead>
<tr>
<th>1-mer</th>
<th>pos1</th>
<th>pos2</th>
<th>pos3</th>
<th>pos4</th>
<th>pos5</th>
<th>pos6</th>
<th>pos7</th>
<th>pos8</th>
<th>pos9</th>
<th>pos10</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3/3</td>
<td>0/3</td>
<td>0/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0/3</td>
<td>1/3</td>
<td>1/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>0/3</td>
<td>2/3</td>
<td>0/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>0/3</td>
<td>0/3</td>
<td>2/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exercise: Fill in the rest of the table
Just to make sure you know what I mean …

- Give me 3 DNA seq of length 10:
 - Seq₁ = ACCGAGTTCT
 - Seq₂ = AGTGTACCTG
 - Seq₃ = AGTTCGTATG

- Then

<table>
<thead>
<tr>
<th>2-mer</th>
<th>pos1</th>
<th>pos2</th>
<th>pos3</th>
<th>pos4</th>
<th>pos5</th>
<th>pos6</th>
<th>pos7</th>
<th>pos8</th>
<th>pos9</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>0/3</td>
<td>0/3</td>
<td>0/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>1/3</td>
<td>0/3</td>
<td>0/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>…</td>
</tr>
<tr>
<td>TT</td>
<td>0/3</td>
<td>0/3</td>
<td>1/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exercise: How many rows should this 2-mer table have? How many rows should the pentamer table have?

Exercise: Fill in the rest of the table
Data preprocessing & ANN

Tuning parameters

\[s_E = \text{sat}(\sigma_p - \sigma_e, a_e, b_e), \]
\[s_I = \text{sat}(\sigma_p - \sigma_i, a_i, b_i), \]
\[s_{EI} = \text{sat}(\sigma_e - \sigma_i, a_{ei}, b_{ei}), \]

where the function \text{sat} is defined by

\[\text{sat}(x, a, b) = \begin{cases}
 a, & \text{if } x > a \\
 x, & \text{if } b \leq x \leq a. \\
 b, & \text{if } b > x
\end{cases} \]

Simple feedforward ANN trained by the Bayesian regularisation method

\[\text{tanh}(\text{net}) = \frac{e^x - e^{-x}}{e^x + e^{-x}} \]

\[\text{net} = \sum s_i * w_i \]
Accuracy comparison

Accuracy of Dragon Promoter Finder Ver. 1.2 & 1.3

Sensitivity in % = 100 x TP/(TP+FN)

Positive predictive value ppv in % = 100 x TP/(TP+FP)

with C+G submodels

without C+G submodels
Training data criteria & preparation

- Contain both positive and negative sequences
- Sufficient diversity, resembling different transcription start mechanisms
- Sufficient diversity, resembling different non-promoters
- Sanitized as much as possible
- TSS taken from
 - 793 vertebrate promoters from EPD
 - -200 to +50 bp of TSS
- non-TSS taken from
 - GenBank,
 - 800 exons
 - 4000 introns,
 - 250 bp,
 - non-overlapping,
 - <50% identities
Tuning data preparation

- To tune adjustable system parameters in Dragon, we need a separate tuning data set
- TSS taken from
 - 20 full-length gene seqs with known TSS
 - -200 to +50 bp of TSS
 - no overlap with EPD
- Non-TSS taken from
 - 1600 human 3’UTR seqs
 - 500 human exons
 - 500 human introns
 - 250 bp
 - no overlap
Testing data criteria & preparation

- Seqs should be from the training or evaluation of other systems (no bias!)
- Seqs should be disjoint from training and tuning data sets
- Seqs should have TSS
- Seqs should be cleaned to remove redundancy, <50% identities
- 159 TSS from 147 human and human virus seqs
- Cumulative length of more than 1.15Mbp
- Taken from GENESCAN, Geneld, Genie, etc.
About the inventor: Vlad Bajic

- Vladimir B. Bajic
 - Principal Scientist, I²R, 2001-2006
 - Currently Director & Professor, Computational Bioscience Research Center, KAUST
Recognition of Poly-A Signal Sites

A twist to the “feature generation, feature selection, feature integration” approach
Eukaryotic pre-mRNA processing

Image credit: www.polya.org
Polyadenylation in eukaryotes

• Addition of poly(A) tail to RNA
 – Begins as transcription finishes
 – 3’-most segment of newly-made RNA is cleaved off
 – Poly(A) tail is then synthesized at 3' end

• Poly(A) tail is imp for nuclear export, translation & stability of mRNA

• Tail is shortened over time. When short enough, the mRNA is degraded

Poly-A signals in human (Gautheret et al., 2000)

Table 2. Most Significant Hexamers in 3’ Fragments: Clustered Hexamers

<table>
<thead>
<tr>
<th>Hexamer</th>
<th>Observed (expected)</th>
<th>% sites</th>
<th>(p^b)</th>
<th>Position average ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAUAAA</td>
<td>3286 (317)</td>
<td>58.2</td>
<td>0</td>
<td>-16 ± 4.7</td>
</tr>
<tr>
<td>AUUAAA</td>
<td>843 (112)</td>
<td>14.9</td>
<td>0</td>
<td>-17 ± 5.3</td>
</tr>
<tr>
<td>AGUAAA</td>
<td>156 (32)</td>
<td>2.7</td>
<td>(6 \times 10^{-57})</td>
<td>-16 ± 5.9</td>
</tr>
<tr>
<td>UAUAAA</td>
<td>180 (53)</td>
<td>3.2</td>
<td>(4 \times 10^{-45})</td>
<td>-18 ± 7.8</td>
</tr>
<tr>
<td>CAUAAA</td>
<td>76 (23)</td>
<td>1.3</td>
<td>(1 \times 10^{-16})</td>
<td>-17 ± 5.9</td>
</tr>
<tr>
<td>GAUAAA</td>
<td>72 (21)</td>
<td>1.3</td>
<td>(2 \times 10^{-16})</td>
<td>-18 ± 6.9</td>
</tr>
<tr>
<td>AAUUAUA</td>
<td>96 (33)</td>
<td>1.7</td>
<td>(2 \times 10^{-19})</td>
<td>-18 ± 6.9</td>
</tr>
<tr>
<td>AAUACAA</td>
<td>70 (16)</td>
<td>1.2</td>
<td>(5 \times 10^{-23})</td>
<td>-18 ± 8.7</td>
</tr>
<tr>
<td>AAUAGA</td>
<td>43 (14)</td>
<td>0.7</td>
<td>(1 \times 10^{-9})</td>
<td>-18 ± 6.3</td>
</tr>
<tr>
<td>AAAAAG</td>
<td>49 (11)</td>
<td>0.8</td>
<td>(5 \times 10^{-17})</td>
<td>-18 ± 8.9</td>
</tr>
<tr>
<td>ACUAAAC</td>
<td>36 (11)</td>
<td>0.6</td>
<td>(1 \times 10^{-08})</td>
<td>-17 ± 8.1</td>
</tr>
<tr>
<td>AAGAAAA</td>
<td>62 (10)</td>
<td>1.1</td>
<td>(9 \times 10^{-28})</td>
<td>-19 ± 11</td>
</tr>
<tr>
<td>AAUGAA</td>
<td>49 (10)</td>
<td>0.8</td>
<td>(4 \times 10^{-18})</td>
<td>-20 ± 10</td>
</tr>
<tr>
<td>UUUAAA</td>
<td>69 (20)</td>
<td>1.2</td>
<td>(3 \times 10^{-18})</td>
<td>-17 ± 12</td>
</tr>
<tr>
<td>AAAACA</td>
<td>29 (5)</td>
<td>0.5</td>
<td>(8 \times 10^{-12})</td>
<td>-20 ± 10</td>
</tr>
<tr>
<td>GGGGCU</td>
<td>22 (3)</td>
<td>0.3</td>
<td>(9 \times 10^{-12})</td>
<td>-24 ± 13</td>
</tr>
</tbody>
</table>

Location: 500 45 35 25 15 5

Copyright 2016 © Wong Limsoon
Poly-A signals in Arabidopsis

In contrast to human, PAS in Arab is highly degenerate. E.g., only 10% of Arab PAS is AAUAAA!
Approach on Arab PAS sites (I)

Training Data

Feature Generation

Feature selection

Feature Integration

Test Data

Classification Model

Prediction scores at every 10bp interval

<s1, s2, s3, s4, s5, s6, s7, s8, s9>

Cascade Classifier (SMO2)

(+ve) if score > threshold
Approach on Arab PAS sites (II)

• Data collection
 – #1 from Hao Han, 811 +ve seq (-200/+200)
 – #2 from Hao Han, 9742 –ve seq (-200/+200)
 – #3 from Qingshun Li,
 • 6209 (+ve) seq (-300/+100)
 • 1581 (-ve) intron (-300/+100)
 • 1501 (-ve) coding (-300/+100)
 • 864 (-ve) 5’utr (-300/+100)

• Feature generation
 – 3-grams, compositional features (4U/1N. G/U*7, etc)
 – Freq of features above in 3 diff windows: (-110/+5), (-35/+15), (-50/+30)

• Feature selection
 – χ^2

• Feature integration & Cascade
 – SVM
Score profile relative to candidate sites

![Graph showing score profile relative to candidate sites. The graph displays the average score (Ave Score) across different locations. The blue line represents the positive score (+ve) and the purple line represents the negative score (-ve). The graph shows a general rise in score from -50 to 0, then a plateau until around 10, after which it starts to decline towards 50.]
Validation results

<table>
<thead>
<tr>
<th>SN_0</th>
<th>SMO 1</th>
<th>SMO 2</th>
<th>PASS 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control Sequences</td>
<td>SN & SP</td>
<td>Threshold</td>
</tr>
<tr>
<td>CDS</td>
<td>90%</td>
<td>0.26</td>
<td>94%</td>
</tr>
<tr>
<td>5’UTR</td>
<td>79%</td>
<td>0.42</td>
<td>85%</td>
</tr>
<tr>
<td>Intron</td>
<td>64%</td>
<td>0.59</td>
<td>71%</td>
</tr>
</tbody>
</table>

Table 2. Equal-error-rate points of SMO1, SMO2, and PASS 1.0 for SN_10.

<table>
<thead>
<tr>
<th>SN_10</th>
<th>SMO 1</th>
<th>SMO 2</th>
<th>PASS 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control Sequences</td>
<td>SN & SP</td>
<td>Threshold</td>
</tr>
<tr>
<td>CDS</td>
<td>94%</td>
<td>0.36</td>
<td>96%</td>
</tr>
<tr>
<td>5’UTR</td>
<td>86%</td>
<td>0.53</td>
<td>89%</td>
</tr>
<tr>
<td>Intron</td>
<td>73%</td>
<td>0.68</td>
<td>77%</td>
</tr>
</tbody>
</table>

Table 2. Equal-error-rate points of SMO1, SMO2, and PASS 1.0 for SN_30.
About the inventor: Koh Chuan Hock

- Koh Chuan Hock
 - BComp (CB), NUS, 2008
 - PhD, NUS, 2012
 - Currently Data Scientist at Indeed Inc, Japan
Concluding Remarks…
What have we learned?

• **Gene feature recognition applications**
 – TIS, TSS, PAS

• **General methodology**
 – “Feature generation, feature selection, feature integration”

• **Important tactics**
 – Multiple models to optimize overall performance
 – Feature transformation (DNA → amino acid)
 – Classifier cascades
Any Question?
Acknowledgements

• The slides for PAS site prediction are adapted from slides given to me by Koh Chuan Hock
References (TIS recognition)

• A. Zien et al., “Engineering support vector machine kernels that recognize translation initiation sites”, *Bioinformatics* 16:799--807, 2000

• A. G. Hatzigeorgiou, “Translation initiation start prediction in human cDNAs with high accuracy”, *Bioinformatics* 18:343--350, 2002

• J. Li et al., “Techniques for Recognition of Translation Initiation Sites”, *The Practical Bioinformatician*, Chapter 4, pages 71—90, 2004
References (TSS recognition)

References (PAS recognition)

References (Feature selection)

