CS2220: Intro to Computational Biology
Course Briefing

Wong Limsoon
Recommended “pre-requisites”

- Data Structures and Algorithms
- Biochemistry of Biomolecules
- Molecular Genetics

You may also find the following to be a useful hands-on complement to CS2220:

- LSM2241 Introductory Bioinformatics
Objectives

• Develop flexible and logical problem-solving skill
• Understand bioinformatics problems
• Appreciate techniques and approaches to bioinformatics

• To achieve goals above, we expose students to case studies spanning gene feature recognition, gene expression and proteomic analysis, sequence homology interpretation, phylogeny analysis, etc.
Contents of course overview

- Time table
- Course syllabus
- Course homepage
- Teaching style
- Project, assignments, exams
- Readings
- Assessment
Time table

- Lecture
 - Wednesday 3pm – 6pm, SR@LT19

- Tutorial
 - Integrated into each lecture

- Email
 - wongls@comp.nus.edu.sg

- Consultations
 - Any time; just make appt to make sure I am in
Course syllabus

• Intro to Bioinformatics
 – molecular biology basics
 – tools and instruments for molecular biology
 – themes and applications of bioinformatics

• Essence of Knowledge Discovery
 – Classification performance measures
 – Feature selection techniques
 – Supervised & unsupervised machine learning techniques

• Gene Feature Recognition from Genomic DNA
 – Feature generation, selection, & integration
 – Translation initiation site (TIS) recognition
 – Transcription start site (TSS) recognition

• Gene Expression Analysis
 – Microarray basics
 – Gene expression profile normalization
 – Classification of gene expression profiles
 – Clustering of gene expression profiles
 – Molecular network reconstruction

• Essence of Seq Comparison
 – Dynamic programming basics
 – Sequence comparison and alignment basics
 – Needleman-Wunsh global alignment algorithm
 – Smith-Waterman local alignment algorithm

• Seq Homology Interpretation
 – protein function prediction by sequence alignment
 – protein function prediction by phylogenetic profiling
 – active site and domain prediction
 – key mutation sites prediction

• Phylogenetic Trees
 – Phylogeny reconstruction method basics
 – origin of Polynesians & Europeans
 – Large-scale sequencing basics

• One or two other topics (drug-resistant mutation prediction, ortholog prediction, disease-causing mutations, etc.)
Course homepage

• **IVLE**

• **Lecture Slides & etc.**
Teaching style

• **Bioinformatics is a broad area**

• **Need to learn a lot of material by yourself**
 – Reading books
 – Reading papers
 – Practice on the web

• **Don’t expect to be told everything**
Assignments, project, & exam

• Assignments (35% of marks)
 – 3 assignments
 – Some simple programming required

• Project (15% of marks)
 – Based on material associated with e-learning
 – 8-10 pages of report / ppt slides expected

• Exam (50% of marks)
 – 1 final open-book exam
Be honest

• **Exam**
 - Absence w/o good cause results in ZERO mark
 - Cheating results in ZERO mark

• **Discussion on assignments is allowed**

• **Blatant plagiarism is not allowed**
 - Offender gets ZERO mark for assignment or exam
 - Penalty applies to those who copied AND those who allowed their assignments to be copied
Background readings

- Limsoon Wong, *The Practical Bioinformatician*, WSPC, 2004

What comes after CS2220

• **CS2220 Introduction to Computational Biology**
 – Understand bioinformatics problems; interpretational skills

• **CS3225 Combinatorial Methods in Bioinformatics**

• **CS4220 Knowledge Discovery Methods in Bioinformatics**
 – Clustering; classification; association rules; SVM; HMM; Mining of seq, trees, & graphs

• **CS5238 Advanced Combinatorial Methods in Bioinformatics**
 – Seq alignment, whole-genome alignment, suffix tree, seq indexing, motif finding, RNA sec struct prediction, phylogeny reconstruction

• Etc …
Any questions?

I hope you will enjoy this class 😊
Themes and Applications of Bioinformatics
What is bioinformatics?
Themes of bioinformatics
Themes of this course

Bioinformatics involves
Data Mgmt +
Knowledge Discovery +
Sequence Analysis +
Physical Modeling + ...

Knowledge Discovery =
Statistics + Algorithms + Databases
Promises of bioinformatics

To the patient:
Better drug, better treatment

To the pharma:
Save time, save cost, make more $

To the scientist:
Better science
Fulfilling the Promise via Drugs

- Bioinformatics is applicable to drug development
- Drug discovery: Design small molecules that bind target proteins
 - Which proteins?
 - What should binding accomplish?
- Biomarkers

Figure from Rick Ng, *Drugs: From Discovery to Approval*
Pervasiveness of bioinformatics

• Bioinformatics is mandatory for large-scale biology
 – e.g., High-throughput, massively-parallel measurements, or “lab on a chip” miniaturization

• Computational data analysis is mandatory for indirect experimental methods
 – e.g., protein identification from mass-spectra

• What about the rest of biology (and medicine) ?
• Limitless opportunities!
Some bioinformatics problems

- Biological data searching
- Biological data integration
- Gene/promoter finding
- Cis-regulatory DNA
- Gene/protein network
- Protein/RNA structure prediction
- Evolutionary tree reconstruction
- Protein function prediction
- Disease diagnosis
- Disease prognosis
- Disease treatment optimization, ...
Biological data searching

- Biological data is increasing rapidly
- Biologists need to locate required info
- Difficulties:
 - Too much
 - Too heterogeneous
 - Too distributed
 - Too many errors
 - Need approximate searches because of errors, mutations, etc.

Image credit: NCBI
Cis-regulatory DNAs

- Cis-regulatory DNAs control whether genes should express or not
- Cis-regulatory DNAs may locate in promoter region, intron, or exon
- Finding & understanding cis-regulatory DNAs is one of the key problems in coming years
Gene networks

- Cell is a complex system
- Expression of one gene depends on expression of another gene
- Such interactions can be form gene network
- Understanding such networks helps identify association betw genes & diseases
Protein/RNA structure prediction

- Structure of protein / RNA is essential to its functionality
- Impt to predict structure of a protein / RNA given its seq
- Problem is considered a “grand challenge” problem in bioinformatics

Image credit: Kolatkar
Evolutionary tree reconstruction

- Protein /RNA / DNA mutates
- Evolutionary tree studies evolutionary relationship among set of protein / RNA / DNAs
- Origin of species

[Image of evolutionary tree with dates and species shown]
Breast cancer outcome prediction

- Van't Veer et al., *Nature* 415:530-536, 2002

- Training set contains 78 patient samples
 - 34 patients develop distance metastases in 5 yrs
 - 44 patients remain healthy from the disease after initial diagnosis for >5 yrs

- Testing set contains 12 relapse & 7 non-relapse samples

Image credit: Veer
Commonly Used Data Sources
Type of biological databases

- **Micro Level**
 - Contain info on the composition of DNA, RNA, Protein Sequences

- **Metadata**
 - Ontology
 - Literature

- **Macro Level**
 - Contain info on interactions
 - Gene Expression
 - Metabolites
 - Protein-Protein Interaction
 - Biological Network

Exercise: Name a protein seq db and a DNA seq db
Transcriptome database

- Complete collection of all possible mRNAs (including splice variants) of an organism
- Regions of an organism’s genome that get transcribed into messenger RNA
- Transcriptome can be extended to include all transcribed elements, including non-coding RNAs used for structural and regulatory purposes

Exercise: Name a transcriptome database
Gene expression databases

• Detect what genes are being expressed or found in a cell of a tissue sample

• Single-gene analysis
 – Northern Blot
 – In Situ Hybridization
 – RT-PCR

• Many genes: High throughput arrays
 – cDNA Microarray
 – Affymetrix GeneChip® Microarray

Exercise: Name a gene expression database
Metabolites database

- A metabolite is an organic compound that is a starting material in, an intermediate in, or an end product of metabolism.

- Metabolites dataset are also generated from mass spectrometry which measure the mass the these simple molecules, thus allowing us to estimate what are the metabolites in a tissue.

- Starting metabolites
 - Small, of simple structure, absorbed by the organism as food
 - E.g., vitamins and amino acids

- Intermediary metabolites
 - The most common metabolites
 - May be synthesized from other metabolites, or broken down into simpler compounds, often with the release of chemical energy
 - E.g., glucose

- End products of metabolism
 - Final result of the breakdown of other metabolites
 - Excreted from the organism without further change
 - E.g., urea, carbon dioxide
Protein-protein interaction databases

- **Proteins are true workhorses**
 - Lots of cell’s activities are performed thru PPI, e.g., message passing, gene regulation, etc.

- **Function of a protein depends on proteins it interacts with**

- **Methods for generating PPI db**
 - biochemical purifications, Y2H, synthetic lethals, in silico predictions, mRNA-co-expression

- **Contain many false positives & false negatives**

Exercise: Name a PPI database
Any Question?
Acknowledgements

• Most of the slides used in this lecture are based on original slides created by
 – Ken Sung
 – Anthony Tung

• But you should blame me for any errors
References

• S.K. Ng, “Molecular Biology for the Practical Bioinformatician”, *The Practical Bioinformatician*, Chapter 1, pages 1-30, WSPC, 2004

• Lots of useful videos,