For written notes on this lecture, please read chapter 14 of *The Practical Bioinformatician*.

CS2220: Introduction to Computational Biology
Unit 3: Gene Expression Analysis

Wong Limsoon
Plan

• Microarray background
• Gene expression profile classification
• Gene expression profile clustering
• Normalization
• Extreme sample selection
• Gene regulatory network inference
Background on microarrays
What is a microarray?

- Contain large numbers of DNA molecules spotted on glass slides, nylon membranes, or silicon wafers
- Detect what genes are being expressed or found in a cell of a tissue sample
- Measure expression of thousands of genes simultaneously
Affymetrix GeneChip®
Making Affymetrix GeneChip®

quartz is washed to ensure uniform hydroxylation across its surface and to attach linker molecules

Exposed linkers become deprotected and are available for nucleotide coupling

Exercise: What is the other commonly used type of microarray? How is that one different from Affymetrix’s?
Gene expression measurement by Affymetrix GeneChip®

Click to watch an interesting movie explaining the working of microarray
Sample Affymetrix GeneChip® data file (U95A)

<table>
<thead>
<tr>
<th>Positive</th>
<th>Negative</th>
<th>Pairs In Avg</th>
<th>Avg Diff</th>
<th>Abs Call</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFFX-Mur1</td>
<td>5</td>
<td>2</td>
<td>19</td>
<td>297.5 A</td>
<td>M16762 Mouse interleukin 2 (IL-2) gene, exon 4</td>
</tr>
<tr>
<td>AFFX-Mur1</td>
<td>3</td>
<td>2</td>
<td>19</td>
<td>554.2 A</td>
<td>M37897 Mouse interleukin 10 mRNA, complete cds</td>
</tr>
<tr>
<td>AFFX-Mur1</td>
<td>4</td>
<td>2</td>
<td>19</td>
<td>308.6 A</td>
<td>M25892 Mus musculus interleukin 4 (IL-4) mRNA, complete cds</td>
</tr>
<tr>
<td>AFFX-Mur1</td>
<td>1</td>
<td>3</td>
<td>19</td>
<td>141 A</td>
<td>M83649 Mus musculus Fas antigen mRNA, complete cds</td>
</tr>
<tr>
<td>AFFX-BioE</td>
<td>13</td>
<td>1</td>
<td>19</td>
<td>9340.6 P</td>
<td>J04423 E coli bioB gene biotin synthetase (-5, -M, -3 r</td>
</tr>
<tr>
<td>AFFX-BioE</td>
<td>15</td>
<td>0</td>
<td>19</td>
<td>12862.4 P</td>
<td>J04423 E coli bioB gene biotin synthetase (-5, -M, -3 r</td>
</tr>
<tr>
<td>AFFX-BioE</td>
<td>12</td>
<td>0</td>
<td>19</td>
<td>8716.5 P</td>
<td>J04423 E coli bioB gene biotin synthetase (-5, -M, -3 r</td>
</tr>
<tr>
<td>AFFX-BioC</td>
<td>17</td>
<td>0</td>
<td>19</td>
<td>25942.5 P</td>
<td>J04423 E coli bioC protein (-5 and -3 represent transcr</td>
</tr>
<tr>
<td>AFFX-BioC</td>
<td>16</td>
<td>0</td>
<td>20</td>
<td>28838.5 P</td>
<td>J04423 E coli bioC protein (-5 and -3 represent transcr</td>
</tr>
<tr>
<td>AFFX-BioC</td>
<td>17</td>
<td>0</td>
<td>19</td>
<td>25765.2 P</td>
<td>J04423 E coli bioD gene dethiobiobin synthetase (-5 ar</td>
</tr>
<tr>
<td>AFFX-BioC</td>
<td>19</td>
<td>0</td>
<td>20</td>
<td>140113.2 P</td>
<td>J04423 E coli bioD gene dethiobiobin synthetase (-5 ar</td>
</tr>
<tr>
<td>AFFX-CreX</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>280036.6 P</td>
<td>XD3453 Bacteriophage P1 cre recombinase protein (-5</td>
</tr>
<tr>
<td>AFFX-CreX</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>401741.8 P</td>
<td>XD3453 Bacteriophage P1 cre recombinase protein (-5</td>
</tr>
<tr>
<td>AFFX-BioE</td>
<td>7</td>
<td>5</td>
<td>18</td>
<td>-483 A</td>
<td>J04423 E coli bioB gene biotin synthetase (-5, -M, -3 r</td>
</tr>
<tr>
<td>AFFX-BioE</td>
<td>5</td>
<td>4</td>
<td>18</td>
<td>313.7 A</td>
<td>J04423 E coli bioB gene biotin synthetase (-5, -M, -3 r</td>
</tr>
<tr>
<td>AFFX-BioE</td>
<td>7</td>
<td>6</td>
<td>20</td>
<td>-1016.2 A</td>
<td>J04423 E coli bioB gene biotin synthetase (-5, -M, -3 r</td>
</tr>
</tbody>
</table>
Some advice on processing Affymetrix GeneChip® data

• Ignore AFFX genes
 – These genes are control genes

• Ignore genes with “Abs Call” equal to “A” or “M”
 – Measurement quality is suspect

• Upperbound 40000, lowerbound 100
 – Saturation of laser scanner

• Deal with missing values

Exercise: Suggest 2 ways to deal with missing value
Type of gene expression datasets

- **Gene-Conditions** or **Gene-Sample** *(numeric or discretized)*

<table>
<thead>
<tr>
<th>Class</th>
<th>Gene1</th>
<th>Gene2</th>
<th>Gene3</th>
<th>Gene4</th>
<th>Gene5</th>
<th>Gene6</th>
<th>Gene7</th>
<th>.....</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample1</td>
<td>Cancer</td>
<td>0.12</td>
<td>-1.3</td>
<td>1.7</td>
<td>1.0</td>
<td>-3.2</td>
<td>0.78</td>
<td>-0.12</td>
</tr>
<tr>
<td>Sample2</td>
<td>Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>SampleN</td>
<td>~Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Gene-Time**

- **Gene-Sample-Time**
Type of gene expression datasets

- **Gene-Conditions or Gene-Sample** (numeric or discretized)

<table>
<thead>
<tr>
<th>Class</th>
<th>Gene1</th>
<th>Gene2</th>
<th>Gene3</th>
<th>Gene4</th>
<th>Gene5</th>
<th>Gene6</th>
<th>Gene7</th>
<th>.....</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample1</td>
<td>Cancer</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sample2</td>
<td>Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>~Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Gene-Time**

- **Gene-Sample-Time**
Application: Disease subtype diagnosis

genes

samples

benign benign benign benign benign
malign malign malign malign malign

???
Application: Treatment prognosis

genes

samples

R
R
R
R
NR
NR
NR
NR

???
Type of gene expression datasets

- **Gene-Conditions** or Gene-Sample (**numeric** or discretized)

 1000 - 100,000 columns

<table>
<thead>
<tr>
<th>Gene1</th>
<th>Gene2</th>
<th>Gene3</th>
<th>Gene4</th>
<th>Gene5</th>
<th>Gene6</th>
<th>Gene7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cond1</td>
<td>0.12</td>
<td>-1.3</td>
<td>1.7</td>
<td>1.0</td>
<td>-3.2</td>
<td>0.78</td>
</tr>
<tr>
<td>Cond2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>CondN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

100-500 rows

- **Gene-Time**

- **Gene-Sample-Time**

expression level vs. time

Copyright 2018 © Wong Limsoon
Application: Drug-action detection

- Which group of genes does the drug affect? Why?

Exercise #1
Gene expression profile classification

Childhood acute lymphoblastic leukemia subtype diagnosis
Childhood ALL

- Major subtypes: T-ALL, E2A-PBX, TEL-AML, BCR-ABL, MLL genome rearrangements, Hyperdiploid>50
- Diff subtypes respond differently to same Tx
- Over-intensive Tx
 - Development of secondary cancers
 - Reduction of IQ
- Under-intensive Tx
 - Relapse

- Conventional diagnosis
 - Immunophenotyping
 - Cytogenetics
 - Molecular diagnostics
- Unavailable in most ASEAN countries

The subtypes look similar
Mission

• Conventional risk assignment procedure requires difficult expensive tests and collective judgement of multiple specialists

• Generally available only in major advanced hospitals

⇒ Can we have a single-test easy-to-use platform instead?
Single-test platform of microarray & machine learning
Overall strategy

- For each subtype, select genes to develop classification model for diagnosing that subtype

- For each subtype, select genes to develop prediction model for prognosis of that subtype

- Risk-stratified treatment intensity
Subtype diagnosis by PCL

- Gene expression data collection
- Gene selection by χ^2
- Classifier training by emerging pattern
- Classifier tuning (optional for some machine learning methods)
- Apply classifier for diagnosis of future cases by PCL
Childhood ALL subtype diagnosis workflow

A tree-structured diagnostic workflow was recommended by our doctor collaborator.
Training and testing sets

<table>
<thead>
<tr>
<th>Paired datasets</th>
<th>Ingredients</th>
<th>Training</th>
<th>Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ALL vs OTHERS1</td>
<td>{E2A-PBX1, TEL-AML1, BCR-ABL, Hyperdip>50, MLL, OTHERS}</td>
<td>28 vs 187</td>
<td>15 vs 97</td>
</tr>
<tr>
<td>E2A-PBX1 vs OTHERS2</td>
<td>{TEL-AML1, BCR-ABL Hyperdip>50, MLL, OTHERS}</td>
<td>18 vs 169</td>
<td>9 vs 88</td>
</tr>
<tr>
<td>TEL-AML1 vs OTHERS3</td>
<td>{BCR-ABL Hyperdip>50, MLL, OTHERS}</td>
<td>52 vs 117</td>
<td>27 vs 61</td>
</tr>
<tr>
<td>BCR-ABL vs OTHERS4</td>
<td>{Hyperdip>50, MLL, OTHERS}</td>
<td>9 vs 108</td>
<td>6 vs 55</td>
</tr>
<tr>
<td>MLL vs OTHERS5</td>
<td>{Hyperdip>50, OTHERS}</td>
<td>14 vs 94</td>
<td>6 vs 49</td>
</tr>
<tr>
<td>Hyperdip>50 vs OTHERS</td>
<td>{Hyperdip47-50, Pseudodip, Hypodip, Normo}</td>
<td>42 vs 52</td>
<td>22 vs 27</td>
</tr>
</tbody>
</table>
Signal selection basic idea

- Choose a signal with low intra-class distance
- Choose a signal with high inter-class distance
Signal selection by χ^2

The χ^2 value of a signal is defined as:

$$\chi^2 = \sum_{i=1}^{m} \sum_{j=1}^{k} \frac{(A_{ij} - E_{ij})^2}{E_{ij}},$$

where m is the number of intervals, k the number of classes, A_{ij} the number of samples in the ith interval, jth class, R_i the number of samples in the ith interval, C_j the number of samples in the jth class, N the total number of samples, and E_{ij} the expected frequency of A_{ij} ($E_{ij} = R_i \times C_j / N$).
Emerging patterns

• An emerging pattern is a set of conditions
 – usually involving several features
 – that most members of a class satisfy
 – but none or few of the other class satisfy

• A jumping emerging pattern is an emerging pattern that
 – some members of a class satisfy
 – but no members of the other class satisfy

• We use only jumping emerging patterns
Examples

<table>
<thead>
<tr>
<th>Patterns</th>
<th>Frequency (P)</th>
<th>Frequency(N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{9, 36}</td>
<td>38 instances</td>
<td>0</td>
</tr>
<tr>
<td>{9, 23}</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>{4, 9}</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>{9, 14}</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>{6, 9}</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>{7, 21}</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>{7, 11}</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>{7, 43}</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>{7, 39}</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>{24, 29}</td>
<td>0</td>
<td>34</td>
</tr>
</tbody>
</table>

Reference number 9: the expression of gene 37720_at > 215
Reference number 36: the expression of gene 38028_at ≤ 12

Easy interpretation
PCL: Prediction by Collective Likelihood

- Let EP_1^P, \ldots, EP_i^P be the most general EPs of D^P in descending order of support.

- Suppose the test sample T contains these most general EPs of D^P (in descending order of support):

$$EP_{i_1}^P, EP_{i_2}^P, \ldots, EP_{i_x}^P$$

- Use k top-ranked most general EPs of D^P and D^N. Define the score of T in the D^P class as

$$score(T, D^P) = \sum_{m=1}^{k} \frac{\text{frequency}(EP_{i_m}^P)}{\text{frequency}(EP_{m}^P)}$$

- Ditto for $score(T, D^N)$.

- If $score(T, D^P) > score(T, D^N)$, then T is class P. Otherwise it is class N.
PCL learning

Top-Ranked EPs in Positive class

- EP_1^P (90%)
- EP_2^P (86%)
- EP_n^P (68%)

Top-Ranked EPs in Negative class

- EP_1^N (100%)
- EP_2^N (95%)
- EP_n^N (80%)

The idea of summarizing multiple top-ranked EPs is intended to avoid some rare tie cases.
PCL testing

Most freq EP of pos class in the test sample

Score^P = \frac{EP_1^{P'}}{EP_1^P} + \ldots + \frac{EP_k^{P'}}{EP_k^P}

Most freq EP of pos class

Similarly,
Score^N = \frac{EP_1^{N'}}{EP_1^N} + \ldots + \frac{EP_k^{N'}}{EP_k^N}

If Score^P > Score^N, then positive class,
Otherwise negative class
Accuracy of PCL (vs. other classifiers)

<table>
<thead>
<tr>
<th>Testing Data</th>
<th>Error rate of different models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C4.5</td>
</tr>
<tr>
<td>T-ALL vs OTHERS1</td>
<td>0:1</td>
</tr>
<tr>
<td>E2A-PBX1 vs OTHERS2</td>
<td>0:0</td>
</tr>
<tr>
<td>TEL-AML1 vs OTHERS3</td>
<td>1:1</td>
</tr>
<tr>
<td>BCR-ABL vs OTHERS4</td>
<td>2:0</td>
</tr>
<tr>
<td>MLL vs OTHERS5</td>
<td>0:1</td>
</tr>
<tr>
<td>Hyperdiploid>50 vs OTHERS</td>
<td>2:6</td>
</tr>
<tr>
<td>Total Errors</td>
<td>14</td>
</tr>
</tbody>
</table>

The classifiers are all applied to the 20 genes selected by χ^2 at each level of the tree.
Understandability of PCL

• E.g., for T-ALL vs. OTHERS, one ideally discriminatory gene 38319_at was found, inducing these 2 EPs

\[\{gene_{-}(38319_at) @ (-\infty, 15975.6)\} \text{ and } \{gene_{-}(38319_at) @ [15975.6, +\infty)\}. \]

• These give us the diagnostic rule

If the expression of 38319_at is less than 15975.6, then this ALL sample must be a T-ALL. Otherwise it must be a subtype in OTHERS1.
Multidimensional scaling plot for subtype diagnosis

Obtained by performing PCA on the 20 genes chosen for each level
Childhood ALL cure rates

- Conventional risk assignment procedure requires difficult expensive tests and collective judgement of multiple specialists

⇒ Not available in less advanced ASEAN countries
Childhood ALL treatment cost

- Treatment for childhood ALL over 2 yrs
 - Intermediate intensity: US$60k
 - Low intensity: US$36k
 - High intensity: US$72k

- Treatment for relapse: US$150k

- Cost for side-effects: Unquantified
Current situation
(2000 new cases / yr in ASEAN)

- Over intensive for 50% of patients, thus more side effects
- Under intensive for 10% of patients, thus more relapse
- US$120m (US$60k * 2000) for intermediate intensity tx
- US$30m (US$150k * 2000 * 10%) for relapse tx
- Total US$150m/yr plus un-quantified costs for dealing with side effects
Using our platform

- Low intensity applied to 50% of patients
- Intermediate intensity to 40% of patients
- High intensity to 10% of patients

⇒ Reduced side effects
⇒ Reduced relapse
⇒ 75-80% cure rates

- US$36m (US$36k * 2000 * 50%) for low intensity
- US$48m (US$60k * 2000 * 40%) for intermediate intensity
- US$14.4m (US$72k * 2000 * 10%) for high intensity

⇒ Total US$98.4m/yr
⇒ Save US$51.6m/yr
A nice ending…

- Asian Innovation Gold Award 2003
Gene expression profile clustering

Novel disease subtype discovery
Is there a new subtype?

• Hierarchical clustering of gene expression profiles reveals a novel subtype of childhood ALL

Exercise: Name and describe one bi-clustering method
Hierarchical clustering

- Assign each item to its own cluster
 - If there are \(N \) items initially, we get \(N \) clusters, each containing just one item

- Find the “most similar” pair of clusters, merge them into a single cluster, so we now have one less cluster

- Repeat previous step until all items are clustered into a single cluster of size \(N \)
Gene expression profile clustering

Diagnosis via guilt-by-association
Some patient samples

- Does Mr. A have cancer?
Let’s rearrange the rows…

<table>
<thead>
<tr>
<th>Genes</th>
<th>samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>benign</td>
<td>benign</td>
</tr>
<tr>
<td>benign</td>
<td>benign</td>
</tr>
<tr>
<td>benign</td>
<td>benign</td>
</tr>
<tr>
<td>benign</td>
<td>malign</td>
</tr>
<tr>
<td>malign</td>
<td>malign</td>
</tr>
<tr>
<td>malign</td>
<td>malign</td>
</tr>
<tr>
<td>malign</td>
<td>malign</td>
</tr>
<tr>
<td>malign</td>
<td>malign</td>
</tr>
</tbody>
</table>

Mr. A: ⚫⚫?

- Does Mr. A have cancer?
and the columns too...

- Does Mr. A have cancer?
Introduction to simple clustering methods
What is cluster analysis?

- Finding groups of objects such that objects in a group are similar to one another and different from objects in other groups

Intra-cluster distances are minimized

Inter-cluster distances are maximized
Notion of a cluster can be ambiguous

How many clusters?

- Six Clusters
- Two Clusters
- Four Clusters
We can also have
K-means clustering

• Partitional clustering approach
• Each cluster is associated with a centroid
• Each point is assigned to the cluster with the closest centroid
• # of clusters, K, must be specified

1: Select K points as the initial centroids.
2: repeat
3: Form K clusters by assigning all points to the closest centroid.
4: Recompute the centroid of each cluster.
5: until The centroids don’t change

Assignment
Update
K-means clustering illustration
K-means clustering illustration

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Iteration 6
Importance of choosing initial centroids
Hierarchical clustering

- **Two main types of hierarchical clustering**
 - **Agglomerative:**
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - **Divisive:**
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)

- **Traditional hierarchical algorithms use a similarity or distance matrix**
 - Merge or split one cluster at a time
Agglomerative hierarchical clustering

- More popular hierarchical clustering technique

- Basic algorithm
 - Compute the proximity matrix
 - Let each data point be a cluster
 - Repeat
 - Merge the two closest clusters
 - Update the proximity matrix
 - Until only a single cluster remains

- Key is computation of proximity of two clusters
 - Different approaches to defining the distance / similarity between clusters
Visualization of agglomerative hierarchical clustering
Single linkage defines distance between two clusters as min distance between them.

Complete linkage defines distance between two clusters as max distance between them.

Exercise: Give definition of “average linkage”
Simulation: Starting situation

- Start with clusters of individual points and a proximity matrix

<table>
<thead>
<tr>
<th></th>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
<th>p5</th>
<th>. . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proximity Matrix
Intermediate situation

- After some merging steps, we have some clusters

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proximity Matrix
Intermediate situation

- We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.

![Proximity Matrix]

![Cluster Diagram]
After merging

- The question is “How do we update the proximity matrix?”

```
<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>U</th>
<th>C5</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td></td>
<td></td>
<td>?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Proximity Matrix
How to define inter-cluster similarity

- Min
- Max
- Group average
- Distance between centroids

![Diagram showing clusters and a proximity matrix](image)

<table>
<thead>
<tr>
<th></th>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
<th>p5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proximity Matrix
How to define inter-cluster similarity

- Min
- Max
- Group average
- Distance between centroids

Proximity Matrix

<table>
<thead>
<tr>
<th></th>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
<th>p5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Proximity Matrix
How to define inter-cluster similarity

- Min
- Max
- Group average
- Distance between centroids

<table>
<thead>
<tr>
<th></th>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
<th>p5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Proximity Matrix
How to define inter-cluster similarity

- Min
- Max
- Group average
- Distance between centroids

Proximity Matrix

<table>
<thead>
<tr>
<th></th>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
<th>p5</th>
<th>. . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proximity Matrix
How to define inter-cluster similarity

- Min
- Max
- Group average
- Distance between centroids

Proximity Matrix

<table>
<thead>
<tr>
<th></th>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
<th>p5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Proximity Matrix
Cluster similarity: Min / single linkage

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph

<table>
<thead>
<tr>
<th></th>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
<th>p5</th>
<th>p6</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>0.00</td>
<td>0.24</td>
<td>0.22</td>
<td>0.37</td>
<td>0.34</td>
<td>0.23</td>
</tr>
<tr>
<td>p2</td>
<td>0.24</td>
<td>0.00</td>
<td>0.15</td>
<td>0.20</td>
<td>0.14</td>
<td>0.25</td>
</tr>
<tr>
<td>p3</td>
<td>0.22</td>
<td>0.15</td>
<td>0.00</td>
<td>0.15</td>
<td>0.28</td>
<td>0.11</td>
</tr>
<tr>
<td>p4</td>
<td>0.37</td>
<td>0.20</td>
<td>0.15</td>
<td>0.00</td>
<td>0.29</td>
<td>0.22</td>
</tr>
<tr>
<td>p5</td>
<td>0.34</td>
<td>0.14</td>
<td>0.28</td>
<td>0.29</td>
<td>0.00</td>
<td>0.39</td>
</tr>
<tr>
<td>p6</td>
<td>0.23</td>
<td>0.25</td>
<td>0.11</td>
<td>0.22</td>
<td>0.39</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 8.4. Euclidean distance matrix for 6 points.
Hierarchical clustering: Min

Single-linkage clustering

Single-linkage dendrogram
Food for thought

• What are the key strengths of single-linkage clustering?

• What are the key weaknesses of single-linkage clustering?
Cluster similarity: Max / complete linkage

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
 - Determined by all pairs of points in the two clusters

<table>
<thead>
<tr>
<th></th>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
<th>p5</th>
<th>p6</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>0.00</td>
<td>0.24</td>
<td>0.22</td>
<td>0.37</td>
<td>0.34</td>
<td>0.23</td>
</tr>
<tr>
<td>p2</td>
<td>0.24</td>
<td>0.00</td>
<td>0.15</td>
<td>0.20</td>
<td>0.14</td>
<td>0.25</td>
</tr>
<tr>
<td>p3</td>
<td>0.22</td>
<td>0.15</td>
<td>0.00</td>
<td>0.15</td>
<td>0.28</td>
<td>0.11</td>
</tr>
<tr>
<td>p4</td>
<td>0.37</td>
<td>0.20</td>
<td>0.15</td>
<td>0.00</td>
<td>0.29</td>
<td>0.22</td>
</tr>
<tr>
<td>p5</td>
<td>0.34</td>
<td>0.14</td>
<td>0.28</td>
<td>0.29</td>
<td>0.00</td>
<td>0.39</td>
</tr>
<tr>
<td>p6</td>
<td>0.23</td>
<td>0.25</td>
<td>0.11</td>
<td>0.22</td>
<td>0.39</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 8.4. Euclidean distance matrix for 6 points.
Hierarchical clustering: Max

We still want to merge two most similar clusters each time. But we define the distance between clusters based on MAX.
Food for thought

• What are the key strengths of complete-linkage clustering?

• What are the key weaknesses of complete-linkage clustering?
Cluster similarity: Group average

- Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

\[
\text{proximity}(\text{Cluster}_i, \text{Cluster}_j) = \frac{\sum_{p_i \in \text{Cluster}_i, p_j \in \text{Cluster}_j} \text{proximity}(p_i, p_j)}{|\text{Cluster}_i| \times |\text{Cluster}_j|}
\]

<table>
<thead>
<tr>
<th></th>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
<th>p5</th>
<th>p6</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>0.00</td>
<td>0.24</td>
<td>0.22</td>
<td>0.37</td>
<td>0.34</td>
<td>0.23</td>
</tr>
<tr>
<td>p2</td>
<td>0.24</td>
<td>0.00</td>
<td>0.15</td>
<td>0.20</td>
<td>0.14</td>
<td>0.25</td>
</tr>
<tr>
<td>p3</td>
<td>0.22</td>
<td>0.15</td>
<td>0.00</td>
<td>0.15</td>
<td>0.28</td>
<td>0.11</td>
</tr>
<tr>
<td>p4</td>
<td>0.37</td>
<td>0.20</td>
<td>0.15</td>
<td>0.00</td>
<td>0.29</td>
<td>0.22</td>
</tr>
<tr>
<td>p5</td>
<td>0.34</td>
<td>0.14</td>
<td>0.28</td>
<td>0.29</td>
<td>0.00</td>
<td>0.39</td>
</tr>
<tr>
<td>p6</td>
<td>0.23</td>
<td>0.25</td>
<td>0.11</td>
<td>0.22</td>
<td>0.39</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 8.4. Euclidean distance matrix for 6 points.
Hierarchical clustering: Group average

Group Average Clustering

Group Average Dendrogram
Hierarchical clustering: Group average

- Compromise between single and complete linkage

- **Strengths**
 - Less susceptible to noise and outliers

- **Limitations**
 - Biased towards globular clusters
Hierarchical clustering: Comparison

Min

Max

Group average
Food for thought

• What are the space and time complexity of hierarchical clustering?
Normalization
Sometimes, a gene expression study may involve batches of data collected over a long period of time…

Image credit: Dong Difeng
In such a case, batch effect may be severe… to the extent that you can predict the batch that each sample comes!

\[\Rightarrow \text{Need normalization to correct for batch effect} \]
Normalization approaches

- **Aim of normalization:** Reduce variance w/o increasing bias

- **Scaling method**
 - Intensities are scaled so that each array has same ave value
 - E.g., Affymetrix’s

- **Xform data so that distribution of probe intensities is same on all arrays**
 - E.g., \(Z = (x - \mu) / \sigma \)

- **Quantile normalization**
Quantile normalization

- Given \(n \) arrays of length \(p \), form \(X \) of size \(p \times n \) where each array is a column
- Sort each column of \(X \) to give \(X_{\text{sort}} \)
- Take means across rows of \(X_{\text{sort}} \) and assign this mean to each elem in the row to get \(X'_{\text{sort}} \)
- Get \(X_{\text{normalized}} \) by arranging each column of \(X'_{\text{sort}} \) to have same ordering as \(X \)
- Implemented in some microarray s/w, e.g., EXPANDER
Sometimes, a gene expression study may involve batches of data collected over a long period of time...

In such a case, batch effect may be severe... to the extent that you can predict the batch that each sample comes!

After quantile normalization

Figure 3.6: GEPs after the batch effects removing.
Food for thought

- Given a cancer vs normal dataset

- Should you apply quantile normalization to the dataset as a whole or should you apply quantile normalization to the cancer and the normal part separately? Why?
Food for thought

• Given a cancer vs normal dataset

• Should you apply Z-normalization in a patient-wise or gene-wise manner? Why?
Selection of patient samples and genes for disease prognosis
Gene expression profile + clinical data \Rightarrow outcome prediction

• Univariate & multivariate Cox survival analysis (Beer et al 2002, Rosenwald et al 2002)

• Fuzzy neural network (Ando et al 2002)

• Partial least squares regression (Park et al 2002)

• Weighted voting algorithm (Shipp et al 2002)

• Gene index and “reference gene” (LeBlanc et al 2003)

• ……
Our approach

ERCOF

“extreme” sample selection

All samples

Step 1: select training samples

Training samples: long-term and short-term survivors

Testing samples

Step 2: identify genes

Genes related to survival

Step 3: build SVM scoring function and form risk groups

Test and evaluate

Assign risk score and risk group to each sample

Draw Kaplan-Meier curves
Extreme sample selection

Short-term Survivors v.s. Long-term Survivors

Short-term survivors
who died within a *short* period

\[F(T) < c_1 \text{ and } E(T) = 1 \]

\[\Downarrow \]

Long-term survivors
who were alive after a *long* follow-up time

\[F(T) > c_2 \]

- **T**: sample
- **F(T)**: follow-up time
- **E(T)**: status (1: unfavorable; 0: favorable)
- **c_1** and **c_2**: thresholds of survival time
Remove genes with expression values w/o cut point found (can’t be discretized)

Calculate Wilcoxon rank sum $w(x)$ for gene x. Remove gene x if $w(x) \in [clower, cupper]$

Group features by Pearson Correlation
For each group, retain the top 50% wrt class entropy

ERCOF

Entropy-Based Rank Sum Test & Correlation Filtering
Risk score construction

Linear Kernel SVM regression function

\[G(T) = \sum_{i} a_i y_i K(T, x(i)) + b \]

- \(T \): test sample, \(x(i) \): support vector,
- \(y_i \): class label (1: short-term survivors; -1: long-term survivors)

Transformation function (posterior probability)

\[S(T) = \frac{1}{1 + e^{-G(T)}} \quad (S(T) \in (0,1)) \]

\(S(T) \): *risk score* of sample \(T \)
Diffuse large B-cell lymphoma

- DLBC lymphoma is the most common type of lymphoma in adults

- Can be cured by anthracycline-based chemotherapy in 35 to 40 percent of patients

→ DLBC lymphoma comprises several diseases that differ in responsiveness to chemotherapy

- Intl Prognostic Index (IPI)
 - age, “Eastern Cooperative Oncology Group” Performance status, tumor stage, lactate dehydrogenase level, sites of extranodal disease, ...

- Not very good for stratifying DLBC lymphoma patients for therapeutic trials

→ Use gene-expression profiles to predict outcome of chemotherapy?
Rosenwald et al., *NEJM* 2002

- **240 data samples**
 - 160 in preliminary group
 - 80 in validation group
 - each sample described by 7399 microarray features

- **Rosenwald et al.’s approach**
 - identify gene: Cox proportional-hazards model
 - cluster identified genes into four gene signatures
 - calculate for each sample an outcome-predictor score
 - divide patients into quartiles according to score
Knowledge discovery from gene expression of “extreme” samples

“extreme” sample selection: < 1 yr vs > 8 yrs

knowledge discovery from gene expression

T is long-term if S(T) < 0.3
T is short-term if S(T) > 0.7
Discussions: Sample selection

<table>
<thead>
<tr>
<th>Application</th>
<th>Data set</th>
<th>Status</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Dead</td>
<td>Alive</td>
</tr>
<tr>
<td>DLBCL</td>
<td>Original</td>
<td>88</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Informative</td>
<td>47+1(*)</td>
<td>25</td>
</tr>
</tbody>
</table>

Number of samples in original data and selected informative training set. (*): Number of samples whose corresponding patient was dead at the end of follow-up time, but selected as a long-term survivor.
Discussions: Gene identification

<table>
<thead>
<tr>
<th>Gene selection</th>
<th>DLBCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>4937(*)</td>
</tr>
<tr>
<td>Phase I</td>
<td>132(2.7%)</td>
</tr>
<tr>
<td>Phase II</td>
<td>84(1.7%)</td>
</tr>
</tbody>
</table>

Number of genes left after feature filtering for each phase. (*): number of genes after removing those genes who were absent in more than 10% of the experiments.
Kaplan-Meier plot for 80 test cases

p-value of log-rank test: < 0.0001
Risk score thresholds: 0.7, 0.3
Improvement over IPI

(A) IPI low, p-value = 0.0063

(B) IPI intermediate, p-value = 0.0003
Merit of “extreme” samples

(A) W/o sample selection ($p = 0.38$)

(B) With sample selection ($p = 0.009$)

No clear difference on the overall survival of the 80 samples in the validation group of DLBCL study, if no training sample selection conducted
About the inventor: Huiqing Liu

- Huiqing Liu
 - PhD, NUS, 2004
 - Currently PI at Incyte
 - Asian Innovation Gold Award 2003
 - New Jersey Cancer Research Award for Scientific Excellence 2008
 - Gallo Prize 2008
Beyond disease diagnosis & prognosis
Beyond classification of gene expression profiles

• After identifying the candidate genes by feature selection, do we know which ones are causal genes, which ones are surrogates, and which are noise?
Gene regulatory circuits

• Genes are “connected” in “circuit” or network

• Expression of a gene in a network depends on expression of some other genes in the network

• Can we “reconstruct” the gene network from gene expression and other data?

Source: Miltenyi Biotec
Key questions

For each gene in the network:

• Which genes affect it?

• How they affect it?
 – Positively?
 – Negatively?
 – More complicated ways?
Some techniques

• Bayesian Networks
 – Friedman et al., *JCB* 7:601--620, 2000

• Boolean Networks
 – Akutsu et al., *PSB* 2000, pages 293--304

• Differential equations
 – Chen et al., *PSB* 1999, pages 29--40

• Classification-based method
A classification-based technique
Soinov et al., *Genome Biology* 4:R6.1-9, 2003

- Given a gene expression matrix X
 - each row is a gene
 - each column is a sample
 - each element x_{ij} is expression of gene i in sample j

- Find the average value a_i of each gene i

- Denote s_{ij} as state of gene i in sample j,
 - $s_{ij} = \text{up}$ if $x_{ij} > a_i$
 - $s_{ij} = \text{down}$ if $x_{ij} \leq a_i$
A classification-based technique
Soinov et al., *Genome Biology* 4:R6.1-9, Jan 2003

• To see whether the state of gene g is determined by the state of other genes
 - See whether $\langle s_{ij} \mid i \neq g \rangle$ can predict s_{gj}
 - If can predict with high accuracy, then "yes"
 - Any classifier can be used, such as C4.5, PCL, SVM, etc.

• To see how the state of gene g is determined by the state of other genes
 - Apply C4.5 (or PCL or other “rule-based” classifiers) to predict s_{gj} from $\langle s_{ij} \mid i \neq g \rangle$
 - Extract the decision tree or rules used
Advantages of this method

- Can identify genes affecting a target gene
- Don’t need discretization thresholds?
- Each data sample is treated as an example
- Explicit rules can be extracted from the classifier (assuming C4.5 or PCL)
- Generalizable to time series

- Discuss the point “Don’t need discretization thresholds”. Is it true?
Concluding remarks
Bcr-Abl

• Targeted drug dev
 – Know what molecular effect you want to achieve
 • E.g., inhibit a mutated form of a protein
 – Engineer a compound that directly binds and causes the desired effect

• Gleevec (imatinib)
 – 1st success for real drug
 – Targets Bcr-Abl fusion protein (ie, Philadelphia chromosome, Ph)
 – NCI summary of clinical trial of imatinib for ALL at
 http://www.cancer.gov клиникиалtrialс/results/ALLimatinib1109/print
What have we learned?

• Technologies
 – Microarray
 – PCL, ERCOF

• Microarray applications
 – Disease diagnosis by supervised learning
 – Subtype discovery by unsupervised learning
 – Disease diagnosis via guilt-by-association
 – Gene network reconstruction

• Important tactic
 – Extreme sample selection
Useful packages

- **EXPANDER (EXPression Analyser & DisplayER)**
 - http://acgt.cs.tau.ac.il/expander

- **BRB-Array Tools**

- **NetProt**
 - http://rpubs.com/gohwils/204259
 - https://github.com/gohwils/NetProt/releases/
Any question?
References