CS4220: Knowledge Discovery Methods in Bioinformatics
Course Briefing

Limsoon Wong
Recommended “Pre-requisites”

- Completed modules on
 - Programming
 - Algorithms
 - Basic molecular biology
 - ST2334 Probability & Statistics
 - CS2220 Introduction to Computational Biology
Objectives

• Exposure to knowledge discovery techniques
• Enhance flexible & logical problem solving skill
• Understand bioinformatics problems and their solution in depth
 – A modern network-based perspective

• To achieve goals above, we expose students to case studies spanning gene expression and proteomic analysis, protein functional prediction, epistatic interaction analysis, etc.
Contents of Course Overview

- Time Table
- Course Syllabus
- Course Homepage
- Teaching Style
- Project, Assignments, Exams
- Readings
- Assessment

- Quick Overview of Themes and Applications of Bioinformatics
Time Table

• Lecture
 – Thursday 2pm – 4pm, COM2-108

• Tutorial
 – Thursday 4pm – 5pm, COM2-108

• Email
 – wongls@comp.nus.edu.sg

• Consultations
 – Any time; just make appt to make sure I am in
 – Pls email my PA, tanps@comp.nus.edu.sg
Course Syllabus

- **Essence of Biostatistics**
 - Statistical estimation
 - Hypothesis testing, including
 - Non-parametric methods

- **Essence of Data Mining**
 - Clustering
 - Association rules
 - Classification
 - Class-imbalance learning

- **Gene Expression Profile Analysis**
 - Basic gene expression analysis
 - Batch effect & normalization
 - Improving reproducibility

- **Proteomic Profile Analysis**
 - Basic proteomic profile analysis
 - Improving consistency
 - Improving coverage

- **Protein Interaction Network**
 - Consistency, comprehensiveness of pathway databases
 - Integration of pathway databases
 - Reliability of PPI network
 - Identifying noise and missing edges in PPI networks

- **Protein Complex Prediction**

- **Protein Function Prediction**

- **MicroRNA and MicroRNA Target Identification**

- **Genome-Wide Association Studies**
Course Homepage

• IVLE

• Lecture Slides & etc
Teaching Style

• **Bioinformatics is a broad area**

• **Need to learn a lot of material by yourself**
 – Reading books
 – Reading papers
 – Practice on the web

• **Don’t expect to be told everything**
Assignments, Project, & Exam

• **Assignments (30-40% of marks)**
 – 3 to 4 assignments
 – Some are simple programming assignments

• **Project (20-30% of marks)**
 – Based on a case study in the class
 – 8-10 pages of report / ppt slides expected

• **Exam (40% of marks)**
 – 1 final open-book exam
Be Honest

• **Exam**
 – Absence w/o good cause results in ZERO mark
 – Cheating results in ZERO mark

• **Discussion on assignments & project is allowed**

• **Blatant plagiarism is not allowed**
 – Offender gets ZERO mark for assignment or exam
 – Penalty applies to those who copied AND those who allowed their assignments to be copied
Background Readings

• Every lecture will be accompanied by a small set of “must-read” and “good-to-read” articles
 – The “must-read” articles are considered lecture notes and are examinable

• For basic materials, you can read the following:
 – Limsoon Wong, *The Practical Bioinformatician*, WSPC, 2004
 – These additional materials are not examinable
Related Courses

- **CS2220 Introduction to Computational Biology**
 - Understand bioinformatics problems; interpretational skills

- **CS3225 Combinatorial Methods in Bioinformatics**

- **CS4220 Knowledge Discovery Methods in Bioinformatics**
 - Clustering; classification; association rules; Mining and analysis of seq, trees, & graphs

- **CS5238 Advanced Combinatorial Methods in Bioinformatics**
 - Seq alignment, whole-genome alignment, suffix tree, seq indexing, motif finding, RNA sec struct prediction, phylogeny reconstruction

- **CS6280 Computational Systems Biology**
 - Dynamics of biochemical and signaling networks; modeling, simulating, & analyzing them

- Etc …
Any questions?

I hope you will enjoy this class 😊
Themes and Applications of Bioinformatics
What is Bioinformatics?
Themes of Bioinformatics
Themes of This Course

Bioinformatics involves
Data Mgmt +
Knowledge Discovery +
Sequence Analysis +
Physical Modeling + …

Knowledge Discovery =
Statistics + Algorithms + Databases
The Promises of Bioinformatics

To the patient:
Better drug, better treatment

To the pharma:
Save time, save cost, make more $

To the scientist:
Better science
Fulfilling the Promise via Drugs

- **Bioinformatics** is applicable to drug development
- **Drug discovery**: Design small molecules that bind target proteins
 - Which proteins?
 - What should binding accomplish?
- **Biomarkers**
Pervasiveness of Bioinformatics

• Bioinformatics is mandatory for large-scale biology
 – e.g., High-throughput, massively-parallel measurements, or “lab on a chip” miniaturization

• Computational data analysis is mandatory for indirect experimental methods
 – e.g., reconstruction based on phase contrast or wave diffraction.

• What about the rest of biology (and medicine) ?
• Limitless opportunities!
Some Bioinformatics Problems

- Biological Data Searching
- Biological Data Integration
- Gene/Promoter finding
- Cis-regulatory DNA
- Gene/Protein Network
- Protein/RNA Structure Prediction
- Evolutionary Tree reconstruction
- Infer Protein Function
- Disease Diagnosis
- Disease Prognosis
- Disease Treatment Optimization, ...
Commonly Used Data Sources
Type of Biological Databases

• **Micro Level**
 – Contain info on the composition of DNA, RNA, Protein Sequences

• **Metadata**
 – Ontology
 – Literature

• **Macro Level**
 – Contain info on interactions
 • Gene Expression
 • Metabolites
 • Protein-Protein Interaction
 • Biological Network

Exercise: Name a protein seq db and a DNA seq db
Transcriptome Database

- Complete collection of all possible mRNAs (including splice variants) of an organism
- Regions of an organism’s genome that get transcribed into messenger RNA
- Transcriptome can be extended to include all transcribed elements, including non-coding RNAs used for structural and regulatory purposes

Exercise: Name a transcriptome database
Gene Expression Databases

- Detect what genes are being expressed or found in a cell of a tissue sample
- Single-gene analysis
 - Northern Blot
 - In Situ Hybridization
 - RT-PCR
- Many genes: High throughput arrays
 - cDNA Microarray
 - Affymetrix GeneChip® Microarray

Exercise: Name a gene expression database
Metabolites Database

- A metabolite is an organic compound that is a starting material in, an intermediate in, or an end product of metabolism.

- Metabolites dataset are also generated from mass spectrometry which measure the mass the these simple molecules, thus allowing us to estimate what are the metabolites in a tissue.

- **Starting metabolites**
 - Small, of simple structure, absorbed by the organism as food
 - E.g., vitamins and amino acids

- **Intermediary metabolites**
 - The most common metabolites
 - May be synthesized from other metabolites, or broken down into simpler compounds, often with the release of chemical energy
 - E.g., glucose

- **End products of metabolism**
 - Final result of the breakdown of other metabolites
 - Excreted from the organism without further change
 - E.g., urea, carbon dioxide
Protein-Protein Interaction Databases

- Proteins are true workhorses
 - Lots of cell’s activities are performed thru PPI, e.g., message passing, gene regulation, etc.

- Function of a protein depends on proteins it interacts with

- Methods for generating PPI db
 - biochemical purifications, Y2H, synthetic lethals, in silico predictions, mRNA-co-expression

- Contain many false positives & false negatives

Exercise: Name a PPI database
Introductory References

- S.K. Ng, “Molecular Biology for the Practical Bioinformatician”, *The Practical Bioinformatician*, Chapter 1, pages 1-30, WSPC, 2004