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Abstract. We design a drug pathway identification system, which we
called Drug Pathway Decipherer (Decipherer), to generate hypotheses
of treatment responsive pathway. Decipherer takes in both pre- and
post-treatment gene expression data, and evaluates known biologcial
pathways against the data. We applied Decipherer to two gene expres-
sion datasets of human nasopharyngeal carcinoma (NPC) treated with
CYC202. Results show that the identified RAS-ERK pathway and PI3K-
NFκB-IAP pathway are closely associated with treatment outcome. De-
cipherer is implemented in Java, and it is available together with supple-
mentary material at http://www.comp.nus.edu.sg/~wongls/projects/
drug-pathway.
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1 Introduction

Biological pathways have been incorporated into gene expression analysis to
understand drug treatment response in disease population [17]. Some works fo-
cus on enrichment analysis of gene groups extracted from pathway [25, 2, 18].
Zeeberg et. al. [25] and Doniger et. al. [2] use a hypergeometric test to deter-
mine statistically over-represented pathways in a list of differentially expressed
genes in treatment. Subramanian et. al. [18] propose the gene set enrichment
analysis (GSEA), which uses a weighted Kolmogorov-Smirnov statistics to com-
pare two sets of distributions and uses resampling to estimate false discovery
rates (FDR). Other research groups identify responsive genetic networks under
drug treatment [26, 6, 4]. Zien et. al. [26] exhaustively enumerate all possible
gene combinations on a metabolic pathway, and select the most co-expressed
gene group as the responsive pathway. Ideker et. al. [6] follow their work by
extending metabolic pathway to a protein-protein interaction network, and use
an annealed random method to generate candidate gene subnetworks for sta-
tistical evaluation. Guo et. al. [4] follow Ideker et. al. [6], but their evaluation
is based on the co-expression between interacted genes rather than the signifi-
cance of expression change of genes in the identified subnetworks. A more recent
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work is called PathwayExpress [3], which is a web-based application to evaluate
gene expression data in framework of KEGG pathway database [7]. However,
most existing works fall short on several issues [17]: these works provide little
information on the interplay between selected genes; the collection of pathways
that can be used, evaluated and ranked against the observed expression data
is limited; and the generated hypotheses are still too general to guide further
research and treatment. In this paper, we present a drug pathway identification
system, which we called Drug Pathway Decipherer (Decipherer), to generate hy-
potheses for drug responsive pathways. We applied Decipherer to two NPC gene
expression datasets. CYC202 (Cyclacel Ltd, Dundee, United Kingdom; Seliciclib;
R-roscovitine), a CDK inhibitor, is studied for its anti-tumor effect in human
NPC cells in vitro and in vivo. 3 NPC cell lines and 13 NPC patients were treated
with CYC202, and the expression of selected genes were measured during the
process of the treatment. Both cell lines and patients in the study responded to
the drug treatment differently. Our target is to understand the drug action of
CYC202 in these NPC samples as well as to identify escape pathways for the
drug-resistant NPC individuals.

2 System and Methods

2.1 Overview

Decipherer is a framework for statistical evaluation of known biological path-
ways against gene expression data. It consists of 4 partitions distributed on two
biological levels. Figure 1 shows the diagram of its workflow.

2.2 Data source

Both NPC gene expression datasets contain 380 genes selected for apoptosis,
cell proliferation, and cell cycle regulation. For the in vitro dataset, 3 cell lines,
CNE1, CNE2 and HK1 were measured for their gene expression before treatment
of CYC202, and 2hs, 4hs, 6hs, 12hs and 24hs after treatment, respectively. As a
result, CNE1 responded poorly to the treatment; CNE2 responded in a limited
way; HK1 fully responded. For the in vivo dataset, 12 NPC samples and 1 non-
tumor sample were taken from NPC patients. Gene expression were measured
before and after treatment. 7 patients were reported to have molecular response
to the treatment. (See supplementary material for more details of patients and
cell lines.)

Although the panel of genes studied in the NPC case only covers a limited
number of pathways, we tended to include more signaling pathways to cope
with other study cases. Thus, we collected 108 signaling pathways from KEGG
pathway database (September 14, 2008) [7] and 49 signaling pathways from the
Ingenuity Pathway database (July 12, 2008) [27]. (See supplementary material
for more details of the collected pathway information.)
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Fig. 1. The workflow of Decipherer. (a) Data source: structured signaling pathways
and drug treatment gene expression data are taken as the input. (b) Data preprocess-
ing: signaling pathways are modeled as graphs, and relative expression indicating gene
expression change under drug treatment are computed. (c) Pathway analysis: pairwise
genetic relationships are extracted from the modeled signaling pathways and evaluated
against the relative expression data. (d) Hypothesis generation: Co-expressed genetic
relationships are selected to be connected into complete genetic pathways, and sta-
tistical tools are performed to generate drug pathway hypotheses. Signaling pathway
status are estimated based on the hypothesized genetic pathways.

2.3 Preprocessing data source

To capture gene expression change in response to drug treatment, the original
gene expression data are transformed into relative expression (RE) values. Given
pre- and post-treatment gene expression value e and e′, if e′ > e, then RE is e′/e−
1; otherwise, RE is 1−e/e′. Intuitively, rather than log-ratio transformation, RE
describes expression change in multiples in a linear scale, which allows pairwise
drug effect on gene expression data to be measured by a linear correlation metric.

Signaling pathways are modeled by directed graphs. Formally, A signaling
pathway γ is a directed graph (P, I), with P the vertex set, representing the
collection of proteins in pathway, and I the edge set, representing the collection
of interactions between proteins. An interaction is a triplet i = 〈p1, p2, s〉, with
p1, p2 ∈ P and s ∈ S, where S = {$activation, $inhibition} is the set of terms
used to denote interaction type1.

2.4 Extracting genetic relationships

Since protein activity can not be directly observed with gene expression data,
we need to associate an interaction with one or more genetic relationships. For-
1 Decipherer only considers the simplest interaction types. According to KEGG path-

way database, we reduce other interaction types as: expression→ activation, repres-
sion → inhibition, binding (association) → activation, dissociation → inhibition,
ubiquitination → inhibition.
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mally, a genetic relationship (or simply a relationship) is a triplet q = 〈g1, g2, s〉,
with g1, g2 ∈ G and and s ∈ S, where G is the whole gene collection and
S is defined in Section 2.3. To extract relationships, proteins in an interac-
tion are mapped into their encoding genes, and the interaction type is reserved
in extracted relationships. As one protein can be encoded by more than one
gene, multiple relationships may be extracted from one interaction. For exam-
ple, 〈Ras,Raf,$activation〉 is an interaction. Since Ras can be encoded with either
HRAS or KRAS, and Raf is encoded only with RAF1, the extracted relationships
are 〈HRAS,RAF1,$activation〉 and 〈KRAS,RAF1,$activation〉.

2.5 Scoring a genetic pathway

A genetic pathway is a chain of consecutive relationships, with each of the first
gene of a relationship (except for the first relationship), equals to the second gene
of its previous relationship. For example, relationships 〈HRAS,RAF1,$activation〉,
〈RAF1,MAP2K1,$activation〉, and 〈MAP2K1,MAPK1,$activation〉 construct a
genetic pathway. Particularly, the first gene of the first relationship, HRAS in the
example, is called source gene; the second gene of the last relationship, MAPK1
in the example, is called sink gene. Theoretically, a drug can target any of the
known molecules in a biological system, and drug action can be terminated in
any way, for example with a phenotype, a mutaion, or a negative feedback, which
means we should not impose any requirement on source and sink gene. However,
this makes the number of genetic pathway candidates increases exponentially as
the length of pathway increases. Thus, we require a genetic pathway starts with
a membrane gene and ends with either a transcription factor, a feedback, or a
phynotype regulator (encoding genes).

To score a genetic pathway ϑ, we first introduce the score function of rela-
tionship. Given a relationship q = 〈g1, g2, s〉, if gene expression are measured at
multiple time points (as our in vitro dataset), the correlation of q is:

Corr(q) = Corr(−→rg1 ,
−→rg2), (1)

where Corr(−→rg1 ,
−→rg2) is Pearson’s correlation coefficient between RE vectors of

g1 and g2. If gene expression are only measured at two time points (as our in
vivo dataset), then the correlation is estimated simply by comparing the post-
treatment RE of the two genes:

Corr(q) = sign(rpost
g1

× rpost
g2

)×
mini=1,2 |rpost

gi
|

maxj=1,2 |rpost
gj |

. (2)

Corr(q) is then transformed into a z-score, z(q), against sample background. z(q)
are then summed up over all k relationships in ϑ into an aggregated z-score, z(ϑ),
for the entire genetic pathway [6]:

z(ϑ) =
1√
k

∑
q∈ϑ

(−1)αz(q), (3)
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where α = 0 if q.type = $activation; α = 1 if q.type = $inhibition, which means
that if the type is $inhibition, the genes are expected to be affected by drug
treatment in opposite directions.

Genes in ϑ are permutated for 10000 times to estimate the p-value of z(ϑ),
denoted by score(ϑ). Intuitively, pathway score represents the consistency be-
tween a genetic pathway and expression change of genes in it.

2.6 Generating hypotheses

Genetic pathways satisfying statistical requirement of p-value and FDR [5] are
selected as genetic hypotheses. Genetic hypotheses of same signaling pathway
are then integrated to generate hypotheses of signaling pathway status. For a
genetic pathway ϑ, each gene g in ϑ has an impact to the sink gene, denoted
by impactϑ(g). If g is an inhibitor of the sink gene, then impactϑ(g) = −1;
otherwise, impactϑ(g) = 1. In biological system, some genes play dual functions,
namely to be both activator and inhibitor to same downstream gene. However,
this does not conflict with the definition of impact, since in a single genetic
pathway, the role of each gene is fixed.

Thus, for a signaling pathway γ, let ϑ ∼ γ denote the hypothesized genetic
pathway ϑ in γ, and Gϑ denote the gene set in ϑ. The hypothesis of signaling
pathway status Zγ

i at time point i is a weighted average of RE of genes in the
hypothesized genetic pathways of γ, which is in formula:

Zγ
i =

∑
ϑ∼γ

∑
g∈Gϑ

(
1

|Gϑ| × impactϑ(g)× ri
g

)
| ϑ ∼ γ |

. (4)

3 Results and Discussion

3.1 Signaling pathway database

The current signaling pathway database of Decipherer consists of three parts
of data source: 49 pathways manually constructed from the Ingenuity Pathway
database, 24 pathways manually constructed from KEGG pathway database,
and another 84 pathways automatically constructed by invoking KEGG pathway
database API. There are 748 distinct genes in the database and 181949 genetic
pathways are compiled as candidates for hypothesis.

3.2 Application on the in vitro NPC dataset

We applied Decipherer to the in vitro NPC datasets with p≤0.05 and FDR≤0.25.
Results are shown in Table 1. RAS-ERK cell proliferation pathway and PI3K-
NFκB-IAP anti-apoptosis pathway are observed in all 3 cell lines, which suggests
CYC202 may directly access to control cell growth and cell death. Figure 2 fur-
ther compares the regulation of these two pathways among the three cell lines
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Table 1. Hypothesized drug pathways by Decipherer and by PathwayExpress in three
NPC cell lines.

DECIPHERER PathwayExpress

Source Pathway p-value FDR Source p-value

CNE1

ErbB signaling pathway BTC→ErbB4→...→ERK→Elk 5.00E-4 0.035 Leukocyte transendothelial migration 3.65E-13

Apoptosis NGF→PI3K→...→NFkB→IAP 1.00E-3 0.035 MAPK signaling pathway 1.01E-12

Regulation of actin cytoskeleton GF→RTK→...→PI3K→PI4P5K 4.9E-3 0.11 Toll-like receptor signaling pathway 2.26E-13

MAPK signaling pathway NF1–pRas→...→ERK→RSK2 6.00E-3 0.11 Regulation of actin cytoskeleton 3.40E-12

Focal adhesion GF→RTK→...→Rac→Actin 9.70E-3 0.12 ErbB signaling pathway 1.10E-14

CNE2

MAPK signaling pathway NF1–pRas→...→ERK→Elk1 8.00E-4 0.050 Regulation of actin cytoskeleton 3.40E-12

ErbB signaling pathway EGF→ErbB1→...→JNK→Elk 2.00E-3 0.063 Toll-like receptor signaling pathway 2.26E-13

Focal adhesion GF→RTK→...→Rac→Actin 5.50E-3 0.12 Pathogenic Escherichia coli infection 8.69E-8

Apoptosis TNFA→TNFR1→...→NFkB→IAP 8.60E-3 0.14 Type II diabetes mellitus 7.89E-13

p53 signaling pathway ATM→ATR→...→CASP8→CASP3 1.49E-2 0.19 ErbB signaling pathway 1.10E-14

HK1

GnRH signaling pathway GnRH→GnRHR→...→MKK3/6→p38 9.00E-4 0.046 Small cell lung cancer 1.10E-14

Apoptosis IL-1→IL-1R→...→NFkB→IAP 1.30E-3 0.046 ErbB signaling pathway 1.10E-14

MAPK signaling pathway NGF→TrkA/B→...→ERK→Tau 2.60E-3 0.062 Gap junction 6.8E-14

Fc epsilon RI signaling pathway Lyn→Syk→PKC 6.90E-3 0.098 Melanogenesis 1.94E-13

Regulation of actin cytoskeleton GF→RTK→...→Rac→PAK 6.90E-3 0.098 Toll-like receptor signaling pathway 2.26E-13

Fig. 2. Comparable status of ERK pathway and Apoptosis pathway of the 3 NPC cell
lines along the treatment of CYC202.

Fig. 3. Results of the associated medical assays to measure the cell viability and apop-
tosis level under the treatment of CYC202 for NPC cell lines: (a) The results of trypan
blue test for measuring the cell viability along the drug treatment. (b) The extent of
caspase-dependent apoptosis. zVAD.fmk is a caspase activity inhibitor.
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Table 2. Hypothesized post-treatment signaling pathway status in patients.

Patient Response ERK Apoptosis

Pt5 P(ositive) -2.25 1.34

Pt8 P - 0.82

Pt9 P -0.97 -

Pt14 P - -0.86

Pt16 P -0.20 1.42

Pt17 P -1.02 1.01

Pt19 P - 0.91

Pt18 No Tumor -0.15 0.13

Pt1 N(egative) 0.21 -1.00

Pt7 N -0.10 0.11

Pt10 N 1.02 -1.57

Pt15 N - -1.01

Pt20 N 1.30 -1.68

under drug treatment. From the figure, ERK pathway is significantly suppressed
in the responder, HK1, but less down regulated or almost unchanged in the half-
responder, CNE2, and the resister, CNE1. The apoptosis pathway is on the
opposite. ERK pathway regulates cell survival, proliferation and differentiation.
Suppression of this pathway represses cell viability. Therefore, the observation of
ERK pathway in Figure 2 is consistent with known treatment outcome. Apop-
tosis pathway, on the other hand, regulates cell death. Since this pathway is
induced in HK1, HK1 should be more sensitive to the treatment. To biologically
prove the hypothese of these two pathways, trypan blue test and tunel assay
were used to measure the level of cell proliferation and apoptosis in these three
cell lines. Results support our conclusion (Figure 3).

We compare our results with that of PathwayExpress [3] (shown in Table 1).
PathwayExpress is a web-based application which evaluates gene expression data
in framework of KEGG pathway database. The main issue of PathwayExpress is
that it does not differentiate regulations within a signaling pathway. In Table 1,
we list the top five pathways identified by each method. Results of Pathway-
Express show a very high statistical significance level. However, we suspect the
correctness of the p-value measurement, since 61 out of 83 signaling pathways
are more significant than 10−4 when we applied PathwayExpress to CNE1. (see
supplementary material for whole results)

3.3 Application on the in vivo NPC dataset

We applied Decipherer to the in vivo NPC datasets with p≤0.05 and FDR≤0.25.
Table 2 gives a summary of the hypothesized post-treatment signaling pathway
status (see supplementary material for genetic pathway hypotheses). Pt18 is
a non-tumor sample. Other patients are classified into two groups according to
their treatment response. In Table 2, since Pt18 is a normal sample and pathway
status of Pt18 does not change much after treatment, we consider the pathway
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Fig. 4. Contrast results of the genes identified by the leading edge analysis of GSEA
and the pathways identified by Decipherer: (a) GSEA performed on the in vitro dataset.
The identified genes are highlighted. (b) Decipherer performed on the in vitro dataset.
Since the identifications of CNE1 and HK1 on Apoptosis pathway are the same, the
pathway is highlighted in the figure. (c) GSEA performed on the in vivo dataset. (d)
Decipherer performed on the in vivo dataset. Color density represents the frequency
of a pathway identified in patients.

status of Pt18 to be a benchmark to evaluate drug response of other patients. An
interesting observation is that post-treatment status of ERK pathway and apop-
tosis pathway in two responding groups can be almost perfectly separated by
that of Pt18 (except for Pt14 in apoptosis pathway). This observation suggests
suppression of ERK pathway and induction of apoptosis pathway have corre-
lation with effective CYC202 treatment in vivo, and this argument also agrees
with the conclusion of the in vitro experiment.

The leading edge analysis of GSEA selects a subset of genes that mostly
differentiate two phenotype groups. Decipherer generates hypotheses of genetic
pathway, which can be regarded as selecting a subset of genes from the whole gene
set defined by signaling pathway. Thus, we compare Decipherer with the leading
edge analysis of GSEA. The same RE values were taken as input to GSEA. All
parameters were remained with default values. Gene sets were extracted from
Decipherer pathway database.

As shown in Figure 4, we report the results of comparison on apoptosis
pathway since it is one of our main concerned pathways in this study, yet it is
identified by GSEA in both in vivo and in vitro datasets with statistical signifi-
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cance (p≤0.05 and FDR≤0.25). For cell lines, both GSEA and Decipherer identi-
fied the pattern of PI3K-NFκB-IAP anti-apoptosis pathway (Figure 4a and 4b).
However, GSEA missed AKT, and selected some other irrelevant genes. This
is because the purpose of the leading edge analysis is to select genes expressed
differently between the two response groups, but relationships between selected
genes are ignored. When applied to the in vivo dataset, GSEA did not identify
any strong genetic pathway pattern (Figure 4c), but for Decipherer, multiple
pathways with different significance were identified (Figure 4d). The most sig-
nificant identification is still PI3K-NFκB-IAP pathway, which indicates the main
genetic response of patients in apoptosis pathway is similar to that of cell lines.
Another discovery is the death receptor regulated pro-apoptosis pathway. This
pathway is previously undiscovered in the in vitro experiments, which means
there exists alternative apoptosis regulation pathway for CYC202 in NPC pa-
tients rather than in cell lines. Thus, we show that, compared with the leading
edge analysis of GSEA, Decipherer generates more biologically meaningful re-
sults, which can be used as a guide for further drug research and disease treat-
ment.

3.4 Biological reasoning and discussion

Epstein-Barr Virus (EBV) infection dysregulates NFκB, MAPK, JAK-STAT
and PI3K-AKT pathways [21], and thus plays critical role in NPC pathogene-
sis [12]. Up regulation of NFKB2 and BIRC5 (IAP) induced by EBV increases
resistance of NPC cells to apoptosis, which has been confirmed by RNA inter-
ference [15]. On the other hand, CYC202 inhibits CDK2, 7 and 9 through com-
petitive inhibition of ATP binding [10]. CDK7 and CDK9 phosphorylate the
carboxyl terminal domain of RNA polymerase II, which initiates the gene tran-
scription. NFκB regulated genes and IAP family members are greatly affected
because of their short protein halflife [9]. The suppression of genes in ERK path-
way and anti-apoptosis pathway, for example MAPK1, MAPK3, MCL1, BCL2,
BIRC4 and BIRC5, are frequently observed in CYC202 treatment [11, 22, 1, 14,
16, 8]. In this study, Decipherer identified different regulation of RAS-ERK cell
proliferation pathway and PI3K-NFκB-IAP anti-apoptosis pathway between two
outcome groups both in vitro and in vivo. With the support of literature, we
conclude that these two pathways are the main drug pathways of CYC202 in
human NPC cells. On the other hand, due to the diversity of individual genetic
environment of patients, the hypothesized escape pathways are heterogeneous.
The dysregulation of NFκB pathway and MAPK pathway are both commonly
observed in CYC202 resisters. Based on these observations, we made an individ-
ual treatment proposal for these CYC202 resisters (See supplementary material
for treatment proposal).

4 Conclusion and Future Work

During the past decade, mRNA microarray techniques have been greatly devel-
oped and have found many significant applications in biomedical research. In
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this paper, we present a novel statistical gene expression evaluation framework
to discover drug responsive pathways in treatment gene expression data. We de-
cide to report the method, since we have applied Decipherer to the NPC study
case and have found some meaningful results, which have been considered to be
applied to improve the CYC202 based NPC treatment in clinic. Thus, we think
of Decipherer to be a potential valuable direction to follow. However, we realize
that Decipherer has some caveats. We list following caveats as a conclusion of
this paper:

– Signaling pathway is a protein level description, while gene expression is an
mRNA level measurement. In Decipherer, we use correlation of expression
of adjacent genes to socre a genetic pathway, which seems to lack enough
biological support. Our explanation is that we try to impose a data-driven
induction that if we can find a pathway satisfying the criteria, then we have
evidence to support the pathway to be interesting. Readers may suspect the
correctness of our criteria. We believe that the criteria are still very initial
and need to be improved.

– We compare pathways from KEGG database, the Pathway Ingenuity database,
and WikiPathways database [28]. A surprising observation is that pathways
with same pathway name may have maximal approaching 50% disagree-
ment with each other (personal communication with Soh). This observation
has questioned our framework since Decipherer is only capable of evaluat-
ing known pathways. We believe that some pathway inferences should be
included into the future version.

– Metabolic pathways are another important data source for drug action hy-
pothesizing. Patients may response differently to treatment because of their
different metabolic rates. For example, two of us recently found, in a colon
cancer study, that Fluorouracil, a pyrimidine analog, affected two different
metabolic pathways: an effective pathway and a drug degradation pathway.
The expression of genes on these two pathways were observed to have strong
correlation with treatment outcome [20]. Thus, we believe that metabolic
pathways should be considered as well.

Currently, a new version of Decipherer is in development. We have made
improvements to overcome some of the caveats listed above:

– A new set of rules has been designed for Decipherer to generate hypothe-
ses. Firstly, a hypothesized pathway should not have broken logic in any
responder. For example, if 〈HRAS,RAF1,$activation〉 is a relationship for
evaluation, we need to exclude the case that HRAS is greatly induced while
RAF1 is significantly repressed. Secondly, a hypothesized pathway should be
significantly perturbated by treatment in all responders. Thirdly, the regula-
tion of a hypothsized pathway should be consistent in all responders. Finally,
a resister should at least violate one of the three criteria above.

– The challange of taking metabolic pathway into the current design of Deci-
pherer is that metabolic pathways are commonly circular systems, and thus
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it is difficult to define source and sink genes in a pathway. This issue comes
similar with the problem we have mentioned in Section 2.5 that arbitrarily
taking source and sink genes in signaling pathways makes the number of
hypothesis candidates increase exponentially. To solve the problem, we em-
ploy a dynamic procedure to only keep and extend valid candidates for each
length, rather than generate all candidates at one time.
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