
Exploratory Hypothesis Testing and Analysis PI: Wong Limsoon, National University of Singapore

• Objectives:

 Formulate "hypothesis mining" as contextualized comparative pattern mining. Develop algorithms for hypothesis mining and analysis. Build an easy-to-use system based on these algorithms.

• Novelty:

- Hypothesis as a contextualized comparative pattern
- P-value for controlling false-positive hypothesis
- Comparison between hypotheses to identify actionable hypotheses, redundant hypotheses, Simpson's paradoxes
- Scope & Deliverables:
 - Core algorithms for hypothesis generation and novel analyses described above, as well as OLAP operations for exploring hypotheses.
 - Graphical user interface (GUI) which supports basic functions for summarizing and visualizing data, visualization of discovered hypotheses, and visualization of OLAP operations

• Achievement #1

- Novel formulation of hypothesis patterns as contextualized comparative patterns. E.g., $\langle \{Race=Chinese\}, Drug=A|B, Response=positive \rangle$
- Novel data-driven paradigm of hypothesis generation and testing
- Novel and efficient algorithms for generating significant hypotheses, isolating reasons behind significant hypotheses, and detecting confounding factors that form Simpson;s paradoxes with significant hypotheses

Timing Performance

RUNNING TIME (MEASURED IN SECONDS) AND NUMBER OF SIGNIFICANT HYPOTHESES GENERATED. max_pvalue is set to 0.05 on all datasets. "GenH": time for testing all hypotheses; "AnalyzeH": time for analysis of all significant hypotheses; "AvgAnalyzeT": average time for analyzing a single hypothesis; "#test": total number of tests performed; "#SignH": #significant hypotheses with p-value $\leq max_pvalue$; "#SignH_BC": #significant hypotheses with p-value $\leq max_pvalue$ /#test (Bonferroni correction); "#SignH_FDR0.05": #significant hypotheses when FDR is set at 0.05 (Benjamini and Hochberg's method).

					0 /				
Datasets	min_sup	min_diff	GenH	AnalyzeH	AvgAnalyzeT	#tests	#SignH	#SignH_BC	#SignH_FDR0.05
adult	500	0.05	0.42 sec	6.30 sec	0.0015 sec	5593	4258	3929	4257
adult	100	0.05	2.69 sec	37.39 sec	0.0014 sec	41738	26095	16345	25506
mushroom	500	0.1	0.67 sec	19.00 sec	0.0020 sec	16400	9323	9244	9323
mushroom	200	0.1	5.45 sec	123.47 sec	0.0020 sec	103025	61429	57798	61429
DrugTestI	20	0.5	0.06 sec	0.06 sec	0.0031 sec	3627	20	1	1
DrugTestII	20	0.5	0.08 sec	0.30 sec	0.0031 sec	4441	97	53	97

(A) EXAMPLES OF SIGNIFICANT HYPOTHESES IDENTIFIED FROM DATASET adult. (B) A SIMPSON'S PARADOX BEHIND HYPOTHESIS H

Comparing Grou

Sex=Mal

Extra Attribute

Sex = Female

(a) Examples of significant h

is the proportion of instances with annual income >50K

(b) A Simpson's Paradox behind H_1

Occupation = Adm-clerical 3084 **14.23%**

19174 **31.76%**

8642 11.90%

Occupation = Adm-clerical 1038 24.2%

Occupation = Adm clerical1000Occupation = Craft-repair107Occupation = Adm-clerical2046

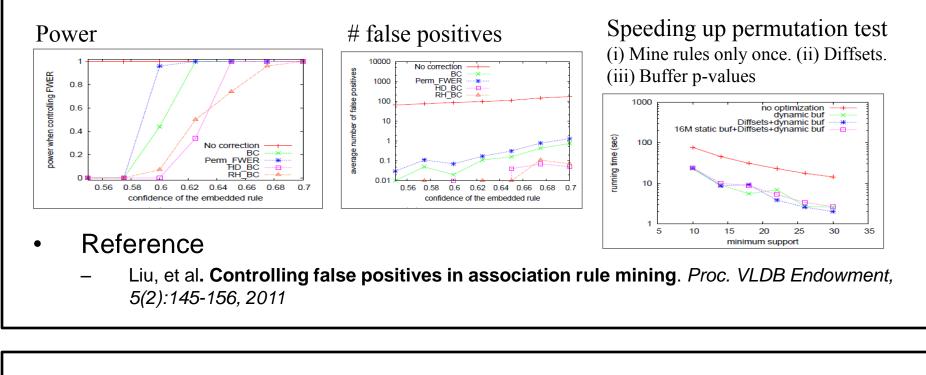
Case Study: Causal Factor Analysis

AN EXAMPLE OF A SIGNIFICANT HYPOTHESIS IDENTIFIED FROM DATASET *DrugTestII* AND POSSIBLE REASONS BEHIND IT. SNP_OAIPB_14 is a SNP at locus 14 of gene OATPB.

ID	Context	Comparing Groups	sup	mean	p-value	
H_1	{}	Ethnic_Group=Japanese Ethnic_Group=Caucasian	25 22	5.256 4.750	≤ 0.001	
(a) An example of significant hypotheses in dataset <i>DrugTest II</i>						

Context	Extra Attribute	Comparing Groups	sup	mean
	SNP OATPB 14=0	Ethnic_Group=Japanese	7	4.749
n	SNP_OAIPB_14=0	Ethnic_Group=Caucasian	21	4.785
{}	SNP_OATPB_14=1	Ethnic_Group=Japanese	17	5.489
		Ethnic_Group=Caucasian	1	4.009
(b) T	he attribute with the high	whest contribution with res	pect to	H_1

Associated Technology


- Implemented these algo's into the EHTA system, the mining engine of iDIG in I²R
- References
 - Liu, et al. Towards exploratory hypothesis testing and analysis. *ICDE 2011,* pp. 745-756
 - Liu, et al. Supporting exploratory hypothesis testing and analysis. ACM KDD, in press

• Achievement #2

- Proving necessity of controlling false positives in class-association rule mining: Many spurious rules are produced if no correction is made
- Proving that permutation-based approach is most effective in controlling false positives, and develop techniques to make it efficient

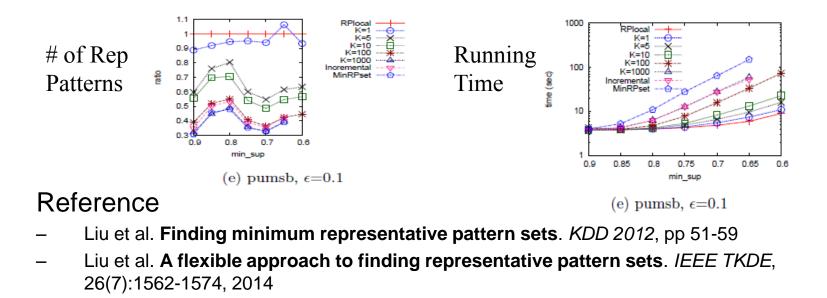
Associated Technology

- Implemented these techniques into ARminer

• Achievement #3

Case Study: Simpson's Paradox

 H_1 Race = White

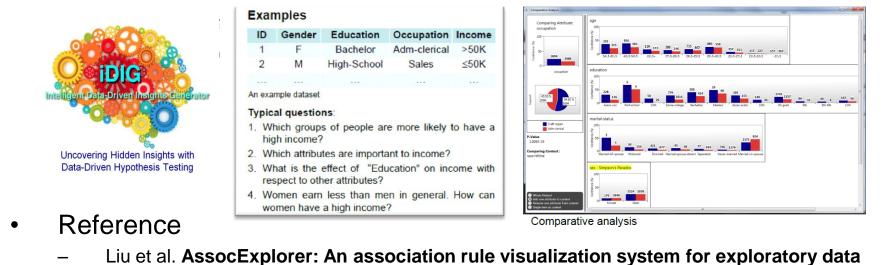

Race = White

 Finding minimum representative rule set that can 1/ represent all patterns with a minimum # of representative patterns and 2/ restore the support of all patterns with error guarantee

≤1.00E-08

< 1.00E-08

- Algorithms for doing the above efficiently: MinRPset (efficiently produces the smallest solution), FlexRPset (trades solution size for higher speed)
- Associated Technology
 - Implemented these into the EHTA system, the mining engine of iDIG in I²R

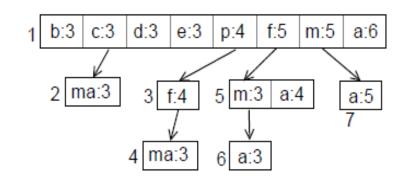


• Achievement #5

Management of large collections of frequent itemsets for analysis and

CPFtree

- Achievement #4
 - Association-rule visualization for exploratory data analysis
 - Relationship among rules reveal deep info of the data
 - Summarize this, with visualization, to help users understand the data and to suggest hypotheses to test
- Associated Technology
 - Implemented in AssocExplorer, the visualization engine of iDIG in I²R



 Liu et al. AssocExplorer: An association rule visualization system for exploratory data analysis. KDD 2012, pp. 1536-1539 user exploration.

 Refinement of CPFtree to index to provide efficient exact match, subset/superset search, etc. of frequent itemsets

Example data

ID	Itemsets	ID	itemsets	ID	itemsets
1	a:6	9	ac:3	17	acm:3
2	b:3	10	af:4	18	afm:3
3	c:3	11	am:5	19	afp:3
4	d:3	12	ap:3	20	amp:3
5	e:3	13	cm:3	21	fmp:3
6	f:5	14	fm:3	22	afmp:3
7	m:5	15	fp:4		
8	p:4	16	mp:3		

- Reference
 - Liu et al. A performance study of three disk-based structures for indexing and querying frequent itemsets.. Proc. VLDB Endowment, 6(7):505-516, 2013

Contact- Professor Wong Limsoon (<u>wongls@comp.nus.edu.sg</u>) Project URL- <u>http://www.comp.nus.edu.sg/~wongls/projects/hypothesis/index.html</u> Funding- A*STAR SERC PSF grant # 102 101 0030

