Pattern Spaces: Theory, Techniques, & Applications PI: Wong Limsoon, National University of Singapore

Objectives:

- Theoretical properties of pattern spaces
- Algo for their mining
- Algo for their incremental maintenance
 - Ways to build classifiers based on them

Novelty:

- Patterns with more complex measures
- Dynamic aspects of pattern spaces
- Improve link with statistics

Scope & Deliverables:

- Understanding of structural properties of pattern spaces
- Algo for mining such pattern spaces & their compact reps
- Algo for maintaining such compact reps when underlying db changes
- Accurate classifiers based on such patterns

Team Members:

Feng Mengling (RA)

Lee Terk Shuen (Student)

Wong Limsoon (PI)

Liu Guimei (RF)

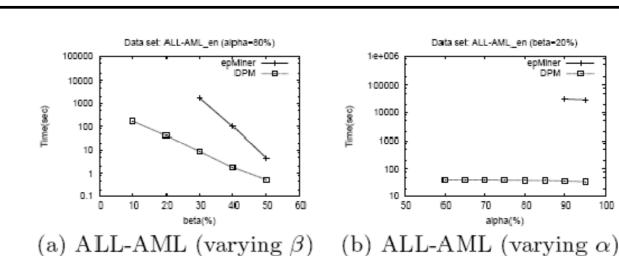
Ngo Thanh Son (RA)

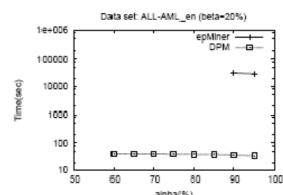
Wang Yue (Student)

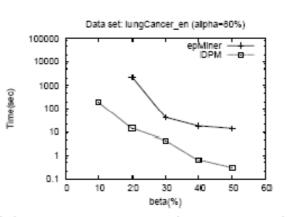
Donny Soh (RA)

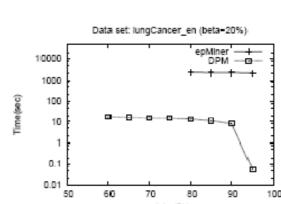
Wilson Goh (RA)

Achievement #1

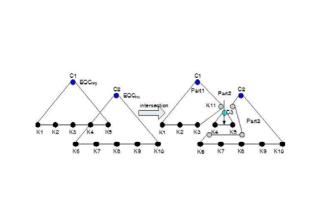

- Decomposition of various pattern spaces as convex equiv classes
- Equiv classes & positive borders as compact rep of various pattern spaces
- Efficient simultaneous mining of equiv classes of patterns having good odds ratio, relative risk, χ2 & other statistics

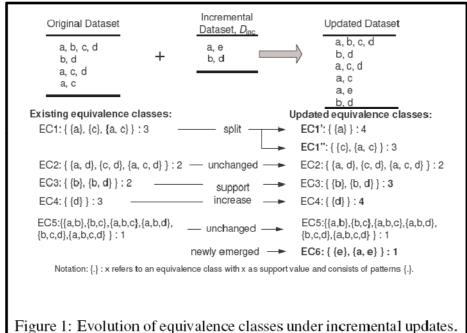

Associated Technologies


Fast algo (DPMiner, GrGrowthPBd) for mining of equiv classes & positive borders satisfying a variety of statistics


References

- J. Li, et al. Mining Statistically Important Equivalence Classes and Delta-Discriminative Emerging Patterns. Proc. KDD 2007, pages 430—439
- G. Liu, et al. A New Concise Representation of Frequent Itemsets Using **Generators and a Positive Border**. *KAIS*, 17:35—56, 2008


(c) Lung Cancer (varying β) (d) Lung Cancer (varying α)

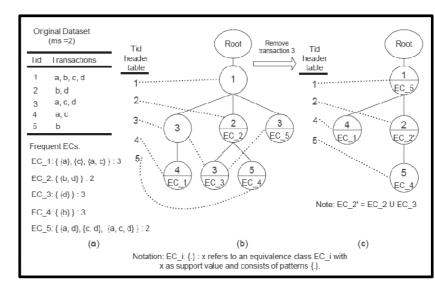

Figure 5: Running time comparison between DP-Miner and epMiner.

 α = min freq threshold in +ve samples, β = max freq the shold in -ve samples

Achievement #2

Full understanding of structural changes to pattern equiv classes as underlying db evolves → Exact characterization of equiv classes that emerge, disappear, split, or merge

Reference


M. Feng, et al. Pattern Space Maintenance for Data Updates & Interactive Mining. Comput Intel, 26(3):282--317, August 2010

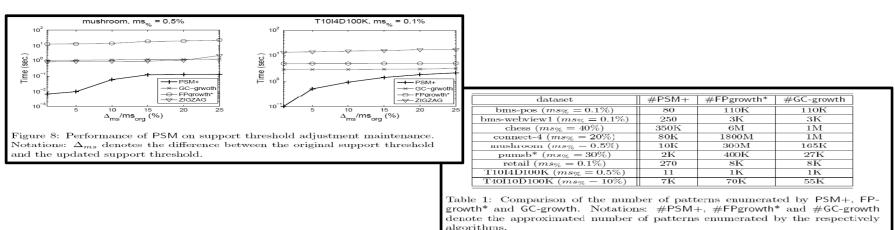
Achievement #3

Efficient maintenance of pattern equiv classes when transactions are removed

Associated Technology

- Fast algo (TRUM) for trend analysis of insert-only db
- Novel data structure Tid-tree

Reference

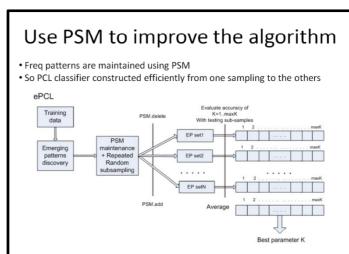

M. Feng et al. Evolution and Maintenance of Frequent Pattern Space when Transactions are Removed. Proc. PAKDD 2007, pages 489--497

Achievement #4

Efficient maintenance of pattern equiv classes when transactions are removed/added or threshold is changed

Associated Technology

Fast algo (PSM) for interactive pattern mining & trend analysis


- References
 - M. Feng et al. Negative Generator Border for Effective Pattern
 - Maintenance. Proc. ADMA 2008, pages 217--228
 - M. Feng, et al. Pattern Space Maintenance for Data Updates & Interactive Mining. Comput Intel, 26(3):282--317, August 2010

Achievement #5

- Statistically sound choice of # of patterns to use in robust pattern-based classifiers
- Fast sampling (using incremental pattern maintenance) for efficiently applying Central Limit Theorem

Associated Technology

Robust classifier (ePCL) based on emerging pattern generators

Reference

Ngo et al. Efficiently Finding the Best Parameter for the Emerging Pattern-based Classifier PCL. Proc. PAKDD 2010