
i

HONOUR YEAR PROJECT REPORT

2006 – 2007

ELIMINATION OF REDUNDANT EMAILS

By

NGUYEN THE HUY

Department of Computer Science

School of Computing

National University of Singapore

Project ID : H114040

Advisor : Professor Wong Lim Soon

Deliverables : Report – 1 Volume

 Source code and Test data – 1 CD

ii

Abstract

Email is using by hundred of millions of people worldwide. Unfortunately, the

widespread use of email has given rise to several problems. Redundant email is one of

them. In this project we are exploring a solution to that problem by examining the

applicability of duplicate detection method in eliminating redundant emails. Following

fingerprint technique, we have developed a Duplicate Detection component used in our

email program. We also invent a new collision-free hash function that encodes more

information in a single hash value. Finally we present and discuss the result of our

evaluation on various types of redundant emails. Several experiments conducted during

the development of project are also included.

Subject Descriptors:

 E.5 Organization / Structure

 H.3.1 Content Analysis and Indexing

 H.3.2 Information Storage

 H.4.3 Communications Application

Keywords:

 Duplicate detection, k-gram, fingerprint, shingle, email, hash

Implementation Hardware and Software:

Platform: POSIX-compliant operating system.

Programming Language: C++

Software Library: VMime

iii

Table of Content

LIST OF FIGURE.. IV

INTRODUCTION .. 1

1.1. CONTEXT ... 1
1.2. PROJECT OBJECTIVE AND SCOPE.. 2
1.3. REPORT ORGANIZATION... 3

DIFFERENT TYPES OF REDUNDANCY & POSIBLE SOLUTIONS.. ... 4

2.1. DIFFERENT TYPES OF REDUNDANCY... 4
2.2. POSSIBLE SOLUTIONS... 7

DUPLICATE DETECTION.. 10

3.1. A QUICK SURVEY... 10
3.2. DUPLICATION, RESEMBLANCE AND CONTAINMENT ... 11
3.3. DESIRABLE PROPERTIES... 12
3.4. WORD... 13
3.5. HASH FUNCTION .. 15
3.6. SELECT FINGERPRINTS... 16
3.7. COMPARE FINGERPRINTS... 19

EMAIL HANDLING.. 20

4.1. CLIENT-SIDE OR SERVER-SIDE SOLUTION... 20
4.2. EMAIL LIBRARY ... 20

IMPLEMENTATION & EVALUATION........................ .. 22

5.1. OVERALL DESIGN .. 22
5.2. DUPLICATE CHECK .. 22
5.3. EVALUATION SETTING ... 24
5.4. WINDOW SIZE VERSUS PRECISION AND RECALL... 25
5.5. THRESHOLD VALUE VERSUS PRECISION AND RECALL ... 26
5.6. FALSE POSITIVE ... 27
5.7. FALSE NEGATIVE ... 29

POSSIBLE IMPROVEMENT .. 31

CONCLUSION... 33

REFERENCE ... 34

APPENDIX A: DERIVATION OF A AND B IN SECTION 3.5 .. 36

APPENDIX B: EXAMPLES OF EACH DUPLICATE CATEGORY 38

CATEGORY 1: IDENTICAL CONTENT.. 38
CATEGORY 2: ALMOST IDENTICAL CONTENT WITH SUBTLE DIFFERENCE... 39
CATEGORY 3: ARBITRARILY COMPONENT-REARRANGED MESSAGES.. 40
CATEGORY 4: MESSAGE QUOTED INSIDE ANOTHER.. 41
CATEGORY 5: COMBINATION OF THE FIRST THREE WITH THE FORTH CATEGORY...................................... 42

iv

List of Figure

Figure 1: Duplicate caused by emails having identical content.. 4

Figure 2: Duplicate by subtle difference in textual presentation. 5

Figure 3: Duplicate caused by quoting another email inside.. 6

Figure 4: containment and resemblance formulas .. 11

Figure 5: Delimiters .. 13

Figure 6: Several stop words... 14

Figure 7: A possible values for a and b.. 16

Figure 8: Result from experiment with RFC documents.. 16

Figure 9: Code for select fingerprints ... 18

Figure 10: Average size of documents's fingerprints.. 19

Figure 11: Overall Design... 22

Figure 12: Duplicate Check .. 24

Figure 13: Sample test result... 25

Figure 14: Window size vs. Precision & Recall, threshold = 95%................................... 25

Figure 15: Windows Size vs. Precision & Recall ... 26

Figure 16: Threshold vs. Precision & Recall, Window size = 3....................................... 26

Figure 17: Threshold vs Precision & Recall ... 27

1

Chapter 1

INTRODUCTION

1.1. Context
Along with the increasing use of computer has always been the development of storage

and communication technologies. Electronic Mail (or Email for short) has taken

advantage of those and evolved to an essential communication channel used by hundreds

of millions of people worldwide nowadays. According to an study conducted by School

of Information Management and System (University of California at Berkeley) [6], email

ranks second behind telephone as the largest information flow medium; about 31 billions

emails were sent daily in 2003 and that figure is expected to double in 2006. Another

result from the 2005 Email Usage Survey by ClearContext Corporation [7] shows that

most people have 2-6 email accounts; more than 50% of survey respondents spend over 2

hours and 14% spend over 4 hours in email every day.

Widespread use of email, however, has lead to several problems. In addition to spam,

email organization and overload are the other major challenges to many people (40%,

Email Usage Survey [7]). According to our observation, duplication of email content

makes it contribution to the latter two problems. Not only does duplication waste

system’s storage and channel’s bandwidth to store and transport redundant (duplicated)

emails but it also wastes people’s time and energy to read and classify them.

Such duplication of email content forms the so-called redundant message problem: a

message is considered redundant when the information it carries can be found inside

other message(s). Several problems may arise from having redundant messages: wasting

computer storage, channel bandwidth, increasing overhead in organizing and retrieving

emails… Besides email system, redundant message problem are also common in bulletin

board, newsgroup, discussion forum…

2

1.2. Project Objective and Scope
In our experience, there has been no complete solution to email problems yet. Most

current email solutions aim to resolve spam issue and / or automate the classification of

email into different folders. Quite a few email users have too many folders that

organizing them becomes yet another burden. Besides, our experience with Enron dataset

shows that many non-spam emails in a same folder are indeed redundant. Those

redundant emails create obstruction on email classification and retrieval process.

In order to help resolve email’s issues, we have put our effort in filling the gap left by

existing solutions: eliminating redundant emails. Our solution centers on the idea of

detecting duplication of email content. Given a list of email messages, our program will

analyze each email’s content, detect duplication between them and finally output a list of

emails being made redundant by others.

Our main objective is to examine the applicability of duplication detection approach to

redundant message problem. During this process, we discovered several interesting facts

about possible alternative approaches and word frequency in email communication. We

also invented a new collision-free hash function that encodes more information on a

single hash value. This collision-free hash function is a core component in our duplicate

detection method which satisfies all three important properties of a general duplicate

detection technique.

In order to concentrate on our core duplicate detection component, we have limited our

system to plain text messages. Nevertheless, by employing open strategy in system

design, features not considered in current implementation such as attachments, HTML

mails… can be added with minimal cost.

Currently, our solution is implemented to work on email message. However, because our

duplicate detection component is implemented to work on arbitrary document type, it can

be integrated to other messaging systems where redundant message due to duplication

occurs (e.g. newsgroup, bulleting, discussion forum).

3

1.3. Report Organization
This report is organized into seven Chapters numbered from 1 to 7 and two Appendixes.

Below is a brief description about each of them:

- Chapter 1 Introduction: An overview on current email usage and its problem. A brief

introduction on the project, its objective and scope.

- Chapter 2 Different Type of Redundancy and Possible Solutions: A closer look to

various situations where redundant messages occurs. A discussion on possible

solutions and their common property are presented in this chapter.

- Chapter 3 Duplicate Detection: A detailed explanation of our duplicate detection

method. Each subsection includes a discussion on related works and description of

our own. Section 3.5 talks about hash function.

- Chapter 4 Email handling: A short note on how email is handled in our project.

- Chapter 5 Implementation and Evaluation: A brief description on implementation

and discussion on evaluation results.

- Chapter 6 Possible Improvement: Discussion on possible future enhancement.

- Chapter 7 Conclusion: a short summary on what have been achieved.

- Appendix A: A detailed mathematical proof on how our hash function satisfies

collision-free property.

- Appendix B: Examples of each duplicate category.

4

Chapter 2

DIFFERENT TYPES OF REDUNDANCY &
POSIBLE SOLUTIONS

2.1. Different types of redundancy
An email message consists of two major sections: header fields - Meta information about

email (e.g. Message-ID, sender and receiver’s addresses) - and body – the information it

carries in text form. In this report, we will refer to content of an email as the information

contained in its body.

If duplicate is defined as “a copy that corresponds to an original exactly” [3] then only

emails with identical content are considered duplicates. In the following example, owner

of email address sally.beck@enron.com will receive two emails with the same

content as the one shown in Figure 1 . Each copy of this email is made redundant by the

other; obviously she only needs to keep one copy in her mailbox.

Message-ID: <15928422.1075855993904.JavaMail.evans@ thyme>

Date: Fri, 17 Nov 2000 00:50:00 -0800 (PST)

From: heidi.mason@enron.com

Subject: Reporting Line for Sydney Risk Officer

Cc: sally.beck@enron.com

Bcc: sally.beck@enron.com

Scott

With all our reporting changing to London Office an d now it

appears some restructure of risk and the broadening of

Sally's role, what we are going to do for the secon d report

for our new risk manager, Justin Den Hertog - he ha s taken

over from Alan.

With thanks

Figure 1: Duplicate caused by emails having identical content.

5

Different senders (e.g. people, mailing lists) sending a same text to a person will also

results in a similar situation as in our previous example. Occasionally, we have received

multiple copies of school announcement sent by different administrative officers. They

have exactly the same content except for the sender address and Message-ID fields.

However, detecting identical copy can be achieved easily and reliably by comparing

message1’s checksums (with a special treat to Message-ID header field and the like);

therefore that is not our focus. We turn to a more general definition of duplicate: “the

same semantic content whether or not it is a precise syntactic match” [5]. This new

definition covers several cases where two emails essentially carry same information yet

differ in their body’s character strings. Consider a modified version of the previous

message sent by heidi.mason@enron.com haft an hour later.

Message-ID: <15928422.1075855993904.JavaMail.evans@ thyme>

Date: Fri, 17 Nov 2000 01:20:00 00:50:00 -0800 (PST)

From: heidi.mason@enron.com

Subject: Reporting Line for Sydney Risk Officer

Cc: sally.beck@enron.com

Bcc: sally.beck@enron.com

Dear Scott ,

With all our reporting changing to London Office an d now it

appears some restructure of risk and the broadening of

Sally's role, so what we are going to do for the second

report for our new risk manager, Justin Den Hertog - he has

taken over from Alan.

With thanks

Thanks

Figure 2: Duplicate by subtle difference in textual presentation.

In spite of some addition and deletion of characters from the former message, the two

carry same information and are considered duplicates according to our definition. Note

that we have deliberately discarded their formatting codes and hence will not consider

1 We will use email and message interchangeably.

6

any difference in formatting. In our experience, having formatting code (e.g. HTML,

CSS) create more falsity while it is still debatable whether visual appearance can affect

original information or not.

Going further, we want to detect reproduction of email content inside another. The

quoted content may remain as a whole or be torn into smaller portions placed in arbitrary

order inside the containing message. Next example demonstrates a common situation

where the quoted email is made redundant by the reply.

Message-ID: <4627792.1075855692236.JavaMail.evans@t hyme>

Date: Wed, 9 Feb 2000 02:27:00 -0800 (PST)

From: phillip.allen@enron.com

To: keith.holst@enron.com

Subject: RE: W basis quotes

I'll get back to them on this. I know we have sent

financials to Clinton Energy...I'll check to see if this is

enough. In the meantime, is it possible to show me

indications on the quotes I asked for? Please advi ce.

George

> -----Original Message-----

> Sent: Monday, February 07, 2000 5:54 PM

> To: george.rahal@acnpower.com

> Subject: Re: W basis quotes

>

> George,

> Can you please call my credit desk at 713-85 3-1803.

They have not received any financials for ACN Power .

(The bolded reply above may appear here, as some people would prefer to do so)

>

> Thanks,

>

> Phillip Allen

Figure 3: Duplicate caused by quoting another email inside.

7

Originally our definition applies to entire body of an email messages. But in order to

cover cases of this type, we need to extend our definition of duplicate to sub-document

level. Where each message is a document, its paragraphs, sentences… are sub-

documents, if all sub-documents of a message are duplicated in another, that message is

considered duplicated and is mark redundant. Situations like this are seen commonly in

email threads when people conduct their discussion via emails.

Having defined what duplicate mean in this project, we classifies duplicate into 5 main

categories. Namely they are:

- Identical content: Messages with identical content, each message is made redundant

by the others.

- Almost identical content with subtle difference: Messages with subtle difference in

their content.

- Arbitrarily Component-rearranged messages: Messages which are difference only in

the order of their sentence, paragraph…

- Message quoted inside another: Message whose content is quoted inside other

messages.

- Combination of the first three with the forth category: Content of the quoted

message remain unchanged, or is subtly changed, or is disorderly re-arranged.

Appendix B gives examples of each category.

2.2. Possible Solutions
There have been several attempts to tackle redundant message problem. Grouping

discussion messages into thread is one. A well-known email system utilizing this idea is

Gmail1. Gmail groups all replies with their original message, creating thread or

conversation. However, this idea does not work for other types of redundancy mentioned

before. Furthermore, messages in a same thread need not be redundant, e.g. the reply

does not quote the original message. Thus organizing messages into threads does not

1 Google Mail http://gmail.google.com

8

guarantee detection of redundant emails but rather provides a way to group possibly

redundant emails together.

Automating classification of messages is also a possible approach. This idea is

implemented by many email filter programs such as procmail, slocal and ifile.

Unfortunately, duplication of messages in a same folder is not their concern. Another

system described in US paten 5404488 routes messages into pre-defined categories and

retains only the newest message in each category. For instance, in a financial data feed

system, only newest share prices are kept in Share Prices category. Kwok and Wong [17]

note that “while the result may assist in eliminating redundant message, it also eliminates

all information about previous messages in the same category”. Besides, this type of

solution only seems to work with messages with special characteristics (e.g.

characteristics that satisfy classification rules) but does not fit in general email

communication.

Another approach described in European paten 1327192 [17] detects redundancy by

considering overlap between messages. Specifically, the paten makes use of string

matching algorithms to compute the overlap. While the technique does promise good

results, its performance may not be as good as expected when operating on large

messages; current online string algorithms do not provide adequate performance [11]

while indexed searching algorithms which are faster come at high cost of space.

Nevertheless, the strategy – computing overlap between messages – is a promising hint to

redundant message problem.

After carefully studying these possible solutions, we recognize that the crucial point in

solving our problem is to measure the similarity between messages. Similarity appears in

different forms: communication context (original – reply, grouping messages into thread),

special characteristics of message (automating classification) and repeat of content

(computing overlap). The last form of similarity seems to fit well in our definition of

duplication. It is also the most flexible approach compared to others.

9

Based on that discovery, our next step is to develop an efficient and cost-effective

duplicate detection solution. Chapter 3 will describe in detail our invention.

Furthermore, it would be of great benefit if our technique can combine with other email

solutions. We find that our preprocessing mechanism is similar to many email

classification methods. Xiao-lin Wang and Ian Cloete [18] note that “most systems treat a

message as a bag of words”. Coincidentally, that is exactly how we preprocess email

messages. This suggests the ability of integrating email classification techniques into our

program.

10

Chapter 3

DUPLICATE DETECTION

3.1. A Quick Survey
In recent decades, the increase in volume of data is tremendous. A study in 2003 [6]

reveals that new stored information grew 30% a year between 1999 and 2002 to

approximately 5 exabytes (one exabyte equals 1018 bytes) in 2002. Email generates

400,000 terabytes of new information each year worldwide. That growth in volume of

stored information emphasizes the importance of detecting duplicates.

Both industry and research communities have placed considerable interest on developing

efficient and cost-effective method to solve duplicate problem. Many systems such as

MOSS, COPS, and SCAM are results from their effort. Distinguished by their

approaches, their techniques can be classified into two major categories [2]:

- Shingling approach: A document is divided into a set of contiguous terms or shingles.

By comparing the number of matching shingles we can determine whether two

document are duplicates or not. Some examples are COPS (Brin, Davis et al. 1995),

KOALA (Heintze 1996), and DSC (Broder 1998).

- Similarity Measures Calculation approach: Each document is represented by a set of

features. Similarity between two documents can be measured by calculating distance

between two sets. Usually the feature is extracted using Information Retrieval

techniques and distance is represented by cosine. An famous example is SCAM

system.

Another approach to solve duplicate problem is to compare two documents’ character

string directly. However, as argue by Broder [5], this approach is not feasible for very

large collection of documents. Furthermore, none of the existing standard distance

defined on string seems to well capture the notion of resemblance and containment.

11

In this project, we follow the Shingling approach and develop a mechanism to detect

duplicate in our system. Specifically, we divide a document into shingles, hash them and

select a subset of these hashes to be the document’s fingerprints. By comparing

fingerprints, we can detect duplication between two documents.

We will discuss the background of our method in subsequent sections.

3.2. Duplication, Resemblance and Containment
Recall from our discussion in section 2.2 Possible Solutions, we need a metric to

measure the similarity between messages. Broder [5] has already defines two similarity

metrics: resemblance and containment. The resemblance r(A,B) of two

documents, A and B, is a number between 0 and 1, such that when the resemblance is

close to 1 it is likely that the documents are roughly the same. Similarly, the

containment c(A,B) of A in B is a number between 0 and 1 that, when close to 1,

indicates that A is roughly contained within B. They fit well within our definition of

duplicate.

However, we notice that if A and B roughly resemble each other, resemblance can be

written as: A is roughly contained within B and B is roughly contained within A. That

suggests resemblance can be written in term of containment. If content (A) returns a

quantity representing amount of information in A, overlap (A, B) returns a quantity

representing amount of overlapped information between A and B, we can compute

containment (A, B) and resemblance (A, B) by the following formulas:

Figure 4: containment and resemblance formulas

It is followed from these formulas that when containment (A, B) get close enough

to 1, the portion of A inside B – overlap (A, B) – is large enough for us to say that

containment (A, B) = overlap (A, B) / content (A)

resemblance (A, B) = (containment (A, B) + containment (B, A)) / 2

12

content of A is duplicated inside B; that means A is made redundant by B. We use a

threshold value t such that when containment (A, B) is larger than t,

containment (A, B) is considered close enough to 1. In Chapter 5, we use

different value of t to measure our system’s precision and recall ratios.

Applying the above to resemblance, if resemblance (A, B) get close enough to 1

then we can assert that A is made redundant by B and B is made redundant by A.

In our method, content (A) is the number of fingerprint of document A and

overlap (A, B) is the number of matched fingerprints resulted from comparing A

and B’s fingerprints. Section 3.5 and 3.6 go into details how to select and compare

fingerprints.

3.3. Desirable Properties
The inventors of Winnowing [4] have defined several properties that a duplicate detection

method should possess. Namely, they are:

- White spaces insensitivity: In matching text files, matches should not be affected by

such things as extra white spaces, capitalization, punctuation, etc. In other domains

the notion of what string should be equals is different – for example, in matching

software text it is desirable to make matching insensitive to variable names.

- Noise suppression: Any match must be large enough to imply that the material is

copied and is not simply a common word or idiom of the language in which

document is written.

- Position independence: Coarse-grained permutation of the contents of a document

(e.g. scrambling the order of paragraphs) should not affect the set of discovered

matches. Adding to a document should not affect the set of matches in the original

portion of the new documents. Removing part of a document should not affect the set

of matches in the portion that remains.

13

In subsequent sections we will show that our method satisfies all of the above properties.

3.4. word
In many shingling techniques, a shingle is a contiguous substring of length k, called k-

gram. The value of k is usually fixed. Schleimer et al [4] note that “the larger k is, the

more confident we are that matches between documents are not coincidental; however

larger value of k will limit the sensitivity to detect relocation of substring of length less

than k”. A sufficiently long k is expected to satisfy the noise suppression property.

However, in several other techniques [1, 8, 9], a shingle is not a fixed sized k-grams;

instead they choose strings to be hashed to be sentences or paragraphs or strings with

“anchor” words. However the implementation of such methods will be limited to a

particular type of data (e.g. English text). Schleimer et al claim that using k-gram is more

robust. [4]

Our approach is a mix between the above two. We introduce the notion of word as a

sequence of characters delimited by a list of delimiters. For instance, in a document

containing “Hello world!” with space and exclamation mark (!) as our delimiters, we

have the following words: Hello, world. Our notion of word works well on various data

type such as English and software code. To some extends, we can also consider each

word as a k-gram with variable k.

Figure 5 presents a list of delimiters used in our tests.

Figure 5: Delimiters

To satisfy white space insensitivity property, we include all punctuation marks in our list

of delimiter and convert all words to lower case.

' ' , '\t' , '\n' , '\r' , '<' , '>' , '.' ,
',' , ';' , '"' , '\'' , '?' , ':' , '-' ,
'_' , '+' , '=' , '*' , '&' , '!'

14

We also want to remove stop words from our messages. A stop word is one that has low

information content yet frequently occurs. Our frequency analysis of 112,554 email

messages extracted from Enron data set1 allows us to construct a list of stop words.

Figure 6 presents some stop words with corresponding frequencies.

3,146,830 the

2,522,569 to

1,407,508 and

1,293,236 of

1,217,486 a

 985,325 in

 812,264 from

 795,889 for

 647,838 on

 620,620 is

 612,054 that

 200,202 http

 198,926 an

 188,304 was

 131,296 www

 115,992 about

 10,788 hi

 5,666 hey

Figure 6: Several stop words

(As a side note, the present of http and www in our list may suggest a close link between

the World Wide Web and email.)

In our method, each word corresponds to an entry in a dictionary. Each entry is

associated with a unique odd number which will be used in our hash function later. The

dictionary is constructed during preprocessing stage which essentially tokenizes

document (message) into words.

1 http://www.cs.cmu.edu/~enron

15

Although our choice of word itself is not sufficient to satisfy Noise suppression property,

contribution from our hash function and hash selection process will allow us to do so.

3.5. Hash Function
Hash function usually carries the burden of accuracy and performance. Hash collision

will possibly lead to false positives. Many common hash functions such as MD5, SHA…

can be used because they are easy to compute, have low probability of collision and can

be calculated on arbitrary data/document length. Campbell et al [1] define their near-

perfect sentence-based hash function that claims to produce at most one collision in their

method. MOSS, an implementation of Winnowing [4] use a tuned rolling hash function

originally developed by Karp-Rabin.

We observe that the resulted hash values from the above hash functions do not contain

any information about the before and after shingles. We took a new approach: the hash

value returned by our function still maintains information about the preceding or

succeeding word. We demonstrate a version of our hash function that maintains

information about the succeeding word.

This hash function takes in a sequence of two contiguous words and returns the hash

value for the former one. For example, Current_Word and Next_Word are the function’s

input and the value returned is the hash of Current_Word.

Each word associates with a unique odd number. Let x be the Current_Word’s odd

number and y be the Next_Word’s odd number; each pair of x and y will uniquely

identify the sequence Current_Word Next_Word. We would like to find a value E such

that E can only be computed from a unique pair of x and y .

Consider the following equation:

Previous_Word Current_Word Next_Word

ax + by = E (1)
with a and b are integers

16

We found that with appropriate values of a and b, we can find such E. Our function will

return E as the hash value of Current_Word. Appendix A explains in details how to find

a and b. Figure 7 shows a possible pair of values for a and b, largest (y) can be

obtained after the preprocessing stage.

Figure 7: A possible values for a and b

Because the returned hash value contains information about the succeeding word, each

value will differentiates a sequence of two from others. In other words, our hash function

is collision-free. In fact, result from our experiment with the entire collection of RFC

(Request For Comment) documents1 verifies that conclusion. Figure 8 shows the result

of that experiment.

Total number of documents : 4728

Total size of collection : 227 MB

Total different words : 212,913

Total different sequences : 3,965,797

Total different hashes : 3,965,797

No collision is detected

Figure 8: Result from experiment with RFC documents

3.6. Select Fingerprints
A subset of word’s hashes is selected to be the document’s fingerprints. A naïve approach

is to select all hashes. In Winnowing method, the size of the fingerprints would be much

larger than the original document itself [4]. For our technique, considering an English

document with average word length of 5, applying naïve scheme on 4-byte hashes will

not result in a larger index as in Winnowing; however there are other cases (e.g. when we

1 Downloadable from http://www.rfc-editor.org/download.html

b = -1
 largest(y)
a = ------------ + 1
 2

17

switch to 8-byte or 64-bit hash) which will generate fingerprints larger than the

document.

Another approach suggested by Heintze [10] is to choose n smallest hashes. However,

having a fixed number of hashes limit the effect of detection, only near copies of entire

documents could be detected. Documents vastly different in size also does not fit well in

this approach. [4]

Another strategy from Manber [9] is to choose all hashes that are 0 mod p, for some p.

This method generates variable size fingerprint for document and work well according to

Manber’s observation. However, as pointed out in [4], this approach does not guarantee

that matches are detected. Since the distance between consecutive k-grams whose hashes

are selected can be quite large in some cases, matches inside the gap are not detected.

It is our best interest not to restrict our solution to limited application by following these

schemes. Instead, we choose the approach described in Winnowing [4]. Let a window of

size w be w consecutive hashes. In each window select the minimum hash value. If there

are more than one hash with the same minimum hash value, select the rightmost

occurrence. Each hash is selected only once.

void DupDetection::fingerprint(vector<string> &word s,

 vector<unsigned int> &fprt){

 //document is tokenized into a vector of words

 //its fingerprints will be stored inside fprt

 int pInd = -1, mInd = -1; //previously chosen hash ’s index

//and minimum hash’s index

 unsigned int min = UINT_MAX; //min hash value in a window

 for (int i=0; i<=words.size() - wsize-1; i++){

 //fill in window and find minimum hash

 int p1 = dict[words[i]].odd;

 for (int j=1; j<=wsize; j++) {

 Word w2 = dict[words[i+j]];

 unsigned int h = hash(p1, w2.odd);

18

 if (h <= min) { //select the right most min

 min = h;

 mInd = i + j-1;

 }

 p1 = w2.odd;

 }

 if (mInd != pInd) { //each hash is chosen once

 fprt.push_back(min);

 pInd = mInd;

 }

 //prepare for new window

 min = UINT_MAX;

 mInd = -1;

 }

}

Figure 9: Code for select fingerprints

Scheimer et al [4] in their paper claim this approach more efficient than others. Central

to the approach in Winnowing is the notion of local algorithm. “An algorithm is local if,

for every window of w consecutive hashes hi,...,hi+w-1, the algorithm decides to select one

of these hashes as a fingerprint and this choice depends only on the window’s content”

[4]. It is supported by a mathematical proof that any local algorithm is able to detect

match between substrings of length at least w + k - 1 with k is number of characters in a

k-gram. Hash value of a k-gram differentiates that k-gram from others. So far no collision

on hash value is reported [4].

There is a direct mapping from Scheimer et al’s solution to ours: Our hash function

operates on sequence of L (= 2) consecutive words while theirs operates on k consecutive

characters; we both apply Winnowing algorithm to select document’s fingerprints. These

direct correspondences allow us to draw similar conclusion: our solution is able to detect

match between sequences of length at least w + L -1 with L = 2. With appropriate value

of w, we are confident that our method satisfies noise suppression property.

The choice of w, in our experience, depends on document types. Consider a sequence of 4

words in an email sent to a friend listing possible tourist destinations.

19

New York, Tokyo, London, Paris

In the reply, the sequence has become:

> New York

NO

> Tokyo

NO

> London

YES

>, Paris

NO

If a large window size is used (e.g. 100 in Winowing [4]), this duplication is not

guaranteed to be detected. Smaller window size, however, results in larger set of

fingerprints. Thus, there is a trade of between space and precision that we have to decide.

In our experiment, window size of 3 gives best precision.

Window Size 1 2 3 4 5 6 7 8 9 10
Average size of Fingerprints 250 166 123 97 81 68 60 53 48 43

Figure 10: Average size of documents's fingerprints

3.7. Compare Fingerprints
Comparison of two documents’ fingerprints should be independent with the order these

fingerprints were selected since re-ordering of paragraphs or sentences can result in new

selection order.

Firstly, we sort fingerprints of each document in ascending order. This is to ensure that

re-ordering of document’s substrings does not exit our detection. Then we perform one-

by-one comparison between two fingerprints of two documents. Our comparison runs

from the smallest fingerprint (hash) to the largest until one of two documents run out of

fingerprint. The total number of matches is then returned to the calling function.

20

Chapter 4

EMAIL HANDLING

This chapter discusses various email-related issues encountered in this project.

4.1. Client-side or Server-side solution
Electronic Mail originally referred to “technologies that allowed people to send

documents to one another through electronic means” [13]. Nowadays, “email” generally

equals “network email” which means “the asynchronous transmission of messages by

using computers and data-communication networks” [13]. That brings up a question:

Client-side or server-side solution?

The ultimate goal of this project is to detect redundant emails and it can be performed

either on client side or server side or both. However, we feel that it is the client-side

solution that offers the most flexibility to user. For instance, many email service

providers impose storage limit on their user’s accounts. A server-side solution, if ever

built, is only able to operate on a limited number of messages while a client-side one can

provide the same service on a much larger number of messages.

4.2. Email Library
There are quite a few protocols defining how emails are transferred across network.

Among them, POP3 (Post Office Protocol, RFC 1939) and IMAP4 (Internet Message

Access Protocol, RFC 3501) are the most prevalent protocols for email retrieval. In

addition to basic services, these protocols also support authentication and security. More

than a handful of RFC documents were written for them. A full implementation of IMAP

at http://www.washington.edu/imap/ requires 36 RFCs!

Parsing email message is also a tedious job. Format of a message is defined in RFC 2822

and extended through various other documents including those describing MIME

(Multimedia Internet Mail Extension). The introduction of MIME allows an email

message to contain “text in character sets other than ASCII, non-text attachments,

21

multipart message bodies and header information in non-ASCII character sets” [14].

However, it complicates the parsing process.

Since implementing these protocols and parsing email message can be a very tedious job

and we need to focus on our duplicate detection component, we decided to use ready built

email library instead. We found VMime1, a powerful email library written in C++.

VMime has support for POP3, IMAP4, SASL authentication and various email

extensions including MIME. VMime is used in our project to implement email parsing

and retrieving functions.

1 http://www.vmime.org/index.shtml

22

Chapter 5

IMPLEMENTATION & EVALUATION

5.1. Overall Design
Figure 11 captures an overview of our system. Our system composes of three main

components: Mail Client responsible for retrieval emails from mail server, Mail Store

responsible for storing and managing email messages on local file system and Duplicate

Detection responsible for duplicate check. The first two components both have access to

Profile objects in order to differentiate different email accounts. Duplicate Detection can

be invoked through Mail Store.

Figure 11: Overall Design

A sample run of our system would be:

- Connect to email server using Mail Client component.

- Download email messages using Mail Client and save them to local file system using

Mail Store

- Run duplicate check on downloaded mail messages by invoking Duplicate Detection

component via Mail Store.

5.2. Duplicate Check
Figure 12 presents three main stages in duplicate detection process. Namely they are:

23

- Preprocessing: A vector of email messages (documents) is passed in as input. Each

message is then tokenized into words; all stop words are cleaned out. Each word in a

document maps to an entry in a dictionary which is build concurrently. Each entry

associates with a unique odd number. The largest odd value in the dictionary is used

to compute a used in hash function (see Section 3.5)

- Fingerprinting: A vector of words obtained from each document after preprocessing

stage is passed to fingerprint function which performs two operations: hashing and

select fingerprints. Figure 9 shows code for fingerprint function.

- Comparing fingerprints: Each document fingerprints are compared against others.

The number of matches between message A and B is chosen to be overlap (A,

B), while the total number of fingerprints of message A is content (A). By

dividing content (A) by overlap (A, B) we get containment (A, B).

If containment (A, B) is greater than a threshold t , A is said to be made

redundant by B. List of messages being made redundant by others are output to file

output.txt by default.

24

Figure 12: Duplicate Check

5.3. Evaluation Setting
In order to test our system, we compare result from our system (output.txt) versus manual

classification (ManualClassification.txt). Figure 13 shows an example of how a test

result looks like.

1 Finish loading ManualClassification.txt.
2 Total = 128
3 Finish loading output.txt
4 Total = 127
5 Fail to find email with ID =
6 <18046211.1075861682008.JavaMail.evans@thyme>
7 Size does not match for email with ID =
8 <8089597.1075858304759.JavaMail.evans@thyme>,
9 output.txt: 2, ManualClassification.txt: 3
10 Fail to find email with ID =
11 <8969154.1075861682403.JavaMail.evans@thyme>
12 Correct = 124
13 Precision = 0.976378

25

14 Recall = 0.96875

Figure 13: Sample test result

Line 1 and 2 tell us that the checking program has finished loading

ManualClassification.txt and find 128 redundant emails. Similarly, in line 3 and 4

checking program find 127 redundant email in our system output (output.txt). Line 5 and

6 say that email with ID = 18046211.1075861682008.JavaMail.evans@thyme is

not found in the ManualClassification.txt, which indicate a false positive. Line 7, 8 and 9

say that our system only found 2 other messages that made email with ID =

8089597.1075858304759.JavaMail.evans@thyme redundant, while it should

have found 3 as required by ManualClassification.txt. Finally line 12, 13 and 14 output

total number of correct classifications, precision and recall.

Since window size and threshold value can vary, we would like to measure our system’s

precision and recall against these two variables. Our test data consists of 143 email

messages belong to 4 categories: Identical Content (20 messages), Almost identical with

subtle differences (16 messages), Arbitrarily component-rearranged messages (20

messages) and Message quoted inside another (Category 4 and 5, Appendix A) (87

messages). Average running time of our program is 5 seconds.

5.4. Window size versus Precision and Recall
Figure 14 and Figure 15 show the changes of precision and recall with variable

window size and fixed threshold 95%.

Windows Size 1 2 3 4 5 6 7 8 9 10
Precision (%) 97.14 97.14 97.16 97.14 97.08 94.78 94.74 96.24 96.24 95.42
Recall (%) 96.45 96.45 97.16 96.45 94.33 90.07 89.36 90.78 90.78 88.65

Figure 14: Window size vs. Precision & Recall, threshold = 95%

26

Window Size vs Precision & Recall

84.00%

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

1 2 3 4 5 6 7 8 9 10

Window Size

P
re

ci
si

o
n

 &
 R

ec
al

l

Precision

Recall

Figure 15: Windows Size vs. Precision & Recall

As we have seen in Figure 15 , a window with size 3 results in best precision and recall.

While precision is relatively high and stable in window size of range 1 – 5, it drops

significantly when size get larger than 5. Change in recall, even though seems to follow

precision’s pattern, reacts stronger to change in window size. Perhaps loss of sensitivity

due to larger window size (our method can detect matches between sequence of length at

least w + 1, Section 3.6) accounts for this strong reaction.

5.5. Threshold Value versus Precision and Recall
Figure 16 and Figure 17 show the changes of precision and recall with variable

threshold and fixed window of size 3.

Threshold 85 88 90 92 95 96 97 100
Precision (%) 89.74 91.50 92.11 94.48 97.16 97.04 99.20 100
Recall (%) 99.29 99.29 99.29 97.16 97.16 92.91 88.65 68.09

Figure 16: Threshold vs. Precision & Recall, Window size = 3

27

Threshold vs Precision & Recall

82.00%
84.00%
86.00%
88.00%
90.00%
92.00%
94.00%
96.00%
98.00%

100.00%
102.00%

85 88 90 92 95 96 97

Threshold

P
re

ci
si

o
n

 &
 R

ec
al

l

Precision

Recall

Figure 17: Threshold vs Precision & Recall

The graph in Figure 17 shows two opposite trends of precision and recall. Threshold

value 95% seem to give us most balanced and satisfied performance. Lower value of

threshold results in more false positive but higher recall; in contrast, a higher value of

threshold gives lower false positive and lower recall.

It is noticeable that when threshold value is set to 100%, precision reaches 100% and

recall drops significantly to 68.09% (not shown in graph). In this setting, our system will

not allow any difference between messages. However, in spite of high precision, a 100%

threshold is not favorable since it offers minimal help to user.

5.6. False Positive
False positive is seen in long emails. The duplicated content between two long emails is

so large that it containment measure surpasses threshold value. For example, we

encounter a false report of redundant email of two messages:

Message 1:

those bad Dynegy seeds are infecting already.

 -----Original Message-----

From: =09Forney, John M. =20

Sent:=09Thursday, November 15, 2001 10:26 AM

28

To:=09Twiggs, Thane

Subject:=09RE: ASAP please: ERCOT Questions OOMC & OOME

I kind of lost my temper a bit with Mark. Probabl y

wont sound good on tap but I told him that a monkey -man

wouldnt interpret the protocols that way.

Its the Dynegy thang talking.

JMF

(220 duplicated lines)

Message 2:

I wanted to get a response in writing rather than

verbal so I sent an e-mail to Kent Saathoff. I wil l

call and prod a response again today.

 -----Original Message-----

From: =09Portz, David =20

Sent:=09Friday, November 16, 2001 10:56 AM

To:=09Twiggs, Thane

Cc:=09Ryall, Jean; Forney, John M.; Nicolay, Christ i

L.; Gilbert-smith, Dou=

g

Subject:=09RE: ASAP please: ERCOT Questions OOMC & OOME

Thane -- I think word back from you is the next ste p

needed in this process. If ERCOT's position is tha t

within the text of the Protocols, OOMC means "runni ng",

then unacceptable risks are presented to our Custom er

and to EPMI as their QSE. If such is ERCOT's posit ion,

then they should cite us chapter and verse for that

position within the Protocols, offsetting the clear

implications for the contrary position in the

protocols' other ancillary services products, in th e

Operating Guides, the Market Guide, ERCOT's prior

29

operating and marketing guides (predating this

marketplace), and based on customary industry

understanding of the term "capacity". –David

(220 duplicated lines)

Their difference as shown here is not enough to lower their containment measure which

is 96.6%, higher than our threshold 95%. We expected that more false positive will

occurs on long email with a large duplicated body.

5.7. False Negative
False negative occurs on small messages with subtle different. An example of false

negative encountered in our evaluation is shown below.

Message 1:

Dear all,

Skilling will be speaking at the National Press Clu b

next week. He'll give overview of Enron's business ,

talk about what's going on in power markets, and wh at

should be done to fix the current problems.

California will get covered as well. Other than wh at

we have already discussed, is there anything Jeff

should know or address in his remarks?

Message 2:

Skilling will be speaking at the National Press Clu b

next week. He'll give overview of Enron's business ,

talk about what's going on in power markets, and wh at

should be done to fix the current problems.

California will get covered as well. Other than wh at

we have already discussed, is there anything Jeff

should know or address in his remarks?

30

Because the number of fingerprint of message 2 is so small such that even a mismatch

will cause its containment to fall below threshold value: In this case, the number of

matches is 7 over a total of 8 fingerprints. That leads to 7 / 8 = 87.50 % smaller than

threshold 95%.

A good list of stop words can help reduce this type of false negative. By adding “dear”,

“ll” and “will” into the list, we have significantly reduce the number of false negative.

However, it is not always possible to do so because some words contain rich meaning

that an insertion of such words to stop word list can cause serious information loss.

31

Chapter 6

POSSIBLE IMPROVEMENT

Even though evaluation result is very good, lots of things can still be improved. The

existence of false positive and false negative are indeed challenges to us. We list here a

few possible improvements.

Current implementation of our duplicate detection component aims to work for arbitrary

type of document. We expect that an optimization based on understanding email

characteristic would reduce the number of false positive. For example, if we can group

conversation emails together into thread, like what Gmail does, we can isolate them from

other messages and impose higher threshold. This promises better elimination of false

positive comparing to current implementation. Another improvement can be achieved is

about including attachment in duplicate check. Different checksum values of message’s

attachments suggest messages are not redundant.

In addition, further preprocessing of email message can be of great benefit. Stemming

can be incorporated into our current preprocessing stage to reduce the number of entries

in the dictionary and further enhance the sensitivity of our program. Consider two false

negative messages with almost identical content except for one uses “introduce ” and

the other uses “introduces ”, probably due to typing mistake. Applying stemming

would allow our program to detect this duplication and avoid false negative. Going

further, if our program can correct simple typo error like “introdcue ” to its correct

form “introduce ”, our system can produce much better result. It is feasible, as

demonstrated in Microsoft Word program.

A further improvement is to enable detection of one message made redundant by two or

more other messages. Currently, we did not implement that feature in our system, but the

approach is simple. We build a database consist of all fingerprints of our messages. Each

fingerprint associates with a set of documents containing that fingerprint. For a message

32

to be checked, we search each of its fingerprint in our database and record the set of

documents associated with that fingerprint. A union of all recorded set of documents is

the desired result.

33

Chapter 7

CONCLUSION

In brief, we have presented our duplicate detection technique as a good candidate solution

to redundant messages problem. We introduce the notion of word as a basic unit in a

message and invent a novel hash function that encodes information about succeeding

word in the hash value. We have also proved that our hash function is collision-free and

verify that conclusion by experimenting on the entire collection of RFC documents.

We also discuss the evaluation of our system against various type of redundancy. The

obtained result is promising in spite of the existence of falsity. We have analyzed and

suggest several possible improvements that can further enhance performance and reduce

error.

Furthermore, our duplicate detection satisfies all three important properties of a duplicate

detection method. This promises opportunities to deploy our technique on many different

scenarios, including eliminating redundant messages in Bulletin board, newsgroup…

34

REFERENCE

[1] Douglas M. Campbell, Wendy R. Chen, Randy D. Smith. Copy Detection Systems

for Digital Documents. Advances in Digital Libraries, 2000.

[2] Abdur Chowdhury. Duplicate Data Detection.

http://ir.iit.edu/~abdur/Research/Duplicate.html

[3] “duplicate”. WordNet 1.7.1, Princeton University. Published by Princeton

University. http://www.answers.com/topic/duplicate

[4] Saul Schleimer, Daniel S. Wilkerson, Alex Aiken. Winnowing: Local Algorithms

for Document Fingerprinting. ACM SIGMOD 2003.

[5] Andrei Z. Broder. On the resemblance and containment of documents. SEQS:

Sequences ’91, 1998

[6] School of Information Management and System, University of California at

Berkeley, How much Information in 2003.

http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/

[7] ClearContext Corporation. 2005 Email Usage Survey.

http://blog.clearcontext.com/2005/04/making_email_wo.html

[8] Sergey Brin, James Davis, Hector Garcia-Molina. Copy detection mechanisms for

digital documents. Proceedings of ACM SIGMOD Confererence, pages 398-409,

1995.

[9] Udi Manber. Finding similar files in a large file system. Proceedings of the

USENIX Winter 1994 Technical Conference, page 1-10, 1994.

[10] Nevin Heintze. Scalable document fingerprinting. 1996 USENIX Workshop on

Electronic Commerce, November 1996.

[11] Gonzalo Navarro. A guided tour to approximate string matching. ACM Computing

Survey, March 2001.

[12] Enron Corpus. http://www.cs.cmu.edu/~enron/

[13] "e-mail." McGraw-Hill Encyclopedia of Science and Technology. The McGraw-

Hill Companies, Inc., 2005. Answers.com 01 Apr. 2007.

http://www.answers.com/topic/e-mail

35

[14] “MIME”. Wikipedia. Retrieved April 01, 2007, from Answers.com Web site:

http://www.answers.com/topic/mime-1"Maildir ."

[15] “Maildir”. Wikipedia. Wikipedia, 2007. Answers.com 02 Apr. 2007.

http://www.answers.com/topic/maildir

[16] "mbox." Wikipedia. Wikipedia, 2007. Answers.com 02 Apr. 2007.

http://www.answers.com/topic/mbox-1

[17] Kwok Chong See, Wong Lim Soon. Method for eliminating and identifying

redundant message information. European Patent No 1327192.

[18] Xiao-lin Wang, Ian Cloete. Learning to classify email: a survey. Proceeding of the

Fourth International Conference on Machine Learning and Cybernetics, Guangzhou

2005.

36

Appendix A: Derivation of a and b in Section 3.5

Consider the following two equations:

ax + by = E (1)

xy = F (2)

With a, b, x, y, E, F are integers; a, E > 0; x, y are positive

odd number.

Since a value of F in equation (2) can be traced ba ck to two

different pair of x and y: (X, Y) and (Y, X), equat ion (2) cannot

be used to compute hash function. We are interested in using

equation (1). If we can find a value of a and b suc h that E can

only have one possible pair of x and y, equation (1) will be used

to compute our hash function, E will be the resulte d hash value.

From equation (2):

x = F/y (3)

From equation (1) and (3):

 aF/y + by = E

<-> by
2
 – Ey + aF = 0 (4)

Since x can be computed from y, we will find a and b such that

equation (4) have exactly one positive odd number s olution.

Substitute y = 2z + 1 into equation (4), we get:

 (4) <-> b(2z +1)
2
 – E(2z +1) + aF = 0

 <-> 4bz
2
 + (4b – 2E)z + (b – E + aF) = 0 (5)

Consider: X = (4b)(b – E + aF). As we all know, if X < 0 equation

(5) have exactly one positive solution z, which map to a unique

positive odd y.

By choosing b = -1, we have:

 X = (-4)(-1 – E + aF)

 E = ax – y

 F = xy

37

Substitute E and F into X, we get:

 X = (-4)(-1 – ax + y + axy)

 = (-4)(y – 1)(1 + ax)

Thus we have X < 0 for all valid x, y and a.

Since E must be positive:

 E = ax – y > 0

Or equivalently

 a > y / x

Consider case where a hash collision occurs:

 ax1 – y1 = ax2 – y2

 <-> a(x1 – x2) = y1 – y2

 <-> a = (y1 – y2) / (x1 – x2)

Since y1 – y2 < largest (y) and x1 – x2 >= 2

 (y1 – y2) / (x1 – x2) <= largest(y) / 2

Thus if we choose a = Ceil(largest (y) / 2), hash collision

will never occurs.

Conclusion:

b = -1

 largest(y)

a = ------------ + 1

 2

38

Appendix B: Examples of Each Duplicate Category

Category 1: Identical content
Message 1:

Message-ID: <15928422.1075855993904.JavaMail.evans@ thyme>

Date: Fri, 17 Nov 2000 00:50:00 -0800 (PST)

From: heidi.mason@enron.com

Subject: Reporting Line for Sydney Risk Officer

Cc: sally.beck@enron.com

Bcc: sally.beck@enron.com

Scott

With all our reporting changing to London Office an d now it

appears some restructure of risk and the broadening of

Sally's role, what we are going to do for the secon d report

for our new risk manager, Justin Den Hertog - he ha s taken

over from Alan.

With thanks

Message 2:

Message-ID: <43928422.107585599387.JavaMail.evans@t hyme>

Date: Fri, 17 Nov 2000 00:50:00 -0800 (PST)

From: heidi.mason@enron.com

Subject: Reporting Line for Sydney Risk Officer

Cc: sally.beck@enron.com

Bcc: sally.beck@enron.com

Scott

With all our reporting changing to London Office an d now it

appears some restructure of risk and the broadening of

Sally's role, what we are going to do for the secon d report

for our new risk manager, Justin Den Hertog - he ha s taken

over from Alan.

With thanks

39

Category 2: Almost Identical content with subtle difference
Message 1:

Message-ID: <43928422.107585599387.JavaMail.evans@t hyme>

Date: Fri, 17 Nov 2000 00:50:00 -0800 (PST)

From: heidi.mason@enron.com

Subject: Reporting Line for Sydney Risk Officer

Cc: sally.beck@enron.com

Bcc: sally.beck@enron.com

Scott

With all our reporting changing to London Office an d now it

appears some restructure of risk and the broadening of

Sally's role, what we are going to do for the secon d report

for our new risk manager, Justin Den Hertog - he ha s taken

over from Alan.

With thanks

Message 2:

Message-ID: <199284238.1075855993904.JavaMail.evans @thyme>

Date: Fri, 17 Nov 2000 01:20:00 00:50:00 -0800 (PST)

From: heidi.mason@enron.com

Subject: Reporting Line for Sydney Risk Officer

Cc: sally.beck@enron.com

Bcc: sally.beck@enron.com

Dear Scott ,

With all our reporting changing to London Office an d now it

appears some restructure of risk and the broadening of

Sally's role, so what we are going to do for the second

report for our new risk manager, Justin Den Hertog - he has

taken over from Alan.

With thanks

Thanks

40

Category 3: Arbitrarily component-rearranged messages
Message 1:

Message-ID: <4209920.1075861681494.JavaMail.evans@t hyme>

Date: Thu, 15 Nov 2001 05:33:13 -0800 (PST)

From: allan_taylor@anadarko.com

To: m..forney@enron.com

Subject: Course offer

1) Fundamentals of Energy Futures, Options & Deriva tives

2) Fundamentals of the Electric Power Industry

3) Gas-to-Electricity Arbitrage & How to Maximize t he

Profitability of Electric Generation Assets

4) Developing Effective Risk Management Policies &

Procedures (John Wengler)

5) Fundamentals of Statistical Analysis (Dr. Ken Sk inner)

6) How to Value Electric Generation Assets as Real Options

7) Fundamentals of Value-at-Risk (Soli Forouzan)

Message 2:

Message-ID: <1329920.1075861681494.JavaMail.evans@t hyme>

Date: Thu, 15 Nov 2001 06:33:13 -0800 (PST)

From: allan_taylor@anadarko.com

To: m..forney@enron.com

Subject: Course offer

- Fundamentals of Energy Futures, Options & Derivat ives

- Fundamentals of the Electric Power Industry

- Developing Effective Risk Management Policies &

Procedures (John Wengler) (item 3 and 4 switch their

position)

- Gas-to-Electricity Arbitrage & How to Maximize the

Profitability of Electric Generation Assets

- Fundamentals of Statistical Analysis (Dr. Ken Ski nner)

- Fundamentals of Value-at-Risk (Soli Forouzan) (item 6 and

7 switch their position)

- How to Value Electric Generation Assets as Real Opt ions

41

Category 4: Message quoted inside another
Message 1:

Message-ID: < 30675736.1075840054052.JavaMail.evans@thyme>

Date: Thu, 13 Dec 2001 15:15:07 -0800 (PST)

From: alan.comnes@enron.com

To: alan.comnes@enron.com, tim.belden@enron.com

Subject: RE: ISO Disbursed $404 million this mornin g

I am told that ISO disbursed to participants the CE RS

monies it received last week for trade month Februr ary '01

for approx. $404 million. Every week another month is

supposed to be processed but I beleive Feb was the biggest

month.

Alan

Message 2:

Message-ID: <23733199.1075840053967.JavaMail.evans@ thyme>

Date: Fri, 14 Dec 2001 20:05:14 -0800 (PST)

From: legal <.hall@enron.com>

To: alan.comnes@enron.com, tim.belden@enron.com

Subject: RE: ISO Disbursed $404 million this mornin g

Of this amount, we received approximately $536,000.

-----Original Message-----

From: Comnes, Alan

Sent: Thursday, December 13, 2001 11:15 AM

Subject: ISO Disbursed $404 million this morning

I am told that ISO disbursed to participants the CE RS

monies it received last week for trade month Februr ary '01

for approx. $404 million. Every week another month is

supposed to be processed but I beleive Feb was the biggest

month.

Alan

42

Category 5: Combination of the first three with the forth category
Message 1: (As in category 4)

Message 2:

Message-ID: <23733199.1075840053967.JavaMail.evans@ thyme>

Date: Fri, 14 Dec 2001 20:05:14 -0800 (PST)

From: legal <.hall@enron.com>

To: alan.comnes@enron.com, tim.belden@enron.com

Subject: RE: ISO Disbursed $404 million this mornin g

Of this amount, we received approximately $536,000.

-----Original Message-----

From: Comnes, Alan

Sent: Thursday, December 13, 2001 11:15 AM

Subject: ISO Disbursed $404 million this morning

I am told that ISO disbursed to participants the CERS

monies it received last week for trade month Februr ary '01

for approx. $404 million. Every week another month is

supposed to be processed but I beleive Feb was the biggest

month.

Alan

Message 3:

Message-ID: <23733199.1075840053967.JavaMail.evans@ thyme>

Date: Fri, 14 Dec 2001 20:05:14 -0800 (PST)

From: legal <.hall@enron.com>

To: alan.comnes@enron.com, tim.belden@enron.com

Subject: RE: ISO Disbursed $404 million this mornin g

> I am told that ISO disbursed to participants the CERS

> monies it received last week for trade month Febr urary

>'01 for approx. $404 million.

Of this amount, we received approximately $536,000.

-----Original Message-----

43

From: Comnes, Alan

Sent: Thursday, December 13, 2001 11:15 AM

Subject: ISO Disbursed $404 million this morning

> Every week another month is supposed to be proces sed but

> I beleive Feb was the biggest month.

>

> Alan

