
 1

Abstract

In the project, a redundant email detection system is designed and developed to help busy

email users detect emails whose body is repeated almost wholly in other emails. The core

detection algorithm of the system is implemented using string matching algorithm which

is used in DNA sequence matching. However, these algorithms are not meant for normal

text matching and hence they must be adapted and optimized for the use of the system.

The system is an email agent which allows users to connect to their mail box, retrieve,

read and most importantly, see which of their mails are redundant. Currently there are no

such systems around. The system is developed using Java, Eclipse and SWT. The report

will focus on implementation and optimizations.

Subject Descriptors:

E.1 DATA STRUCTURES

J.3 LIFE AND MEDICAL SCIENCES

H.3.1 Content Analysis and Indexing

H.3.5 On-line Information Services

H.2.8 Database Applications

I.5.3 Clustering

Keywords:

Data Structure and Algorithms, Computational Biology,

Information retrieval / processing, Data Mining / Pattern Recognition

Implementation Software and Hardware:

Intel Pentium 2.4 G, 256 M memory, Windows XP sp2, Java 1.5, Eclipse 3.2,

JavaMail, SWT

 2

Acknowledgement

I would like to thank my supervisor, Professor Wong Limsoon, for giving me invaluable

guidelines and suggestions to the project as well as his encouragement.

 3

List of Figures:

Fig 1.1.1 Mail 1 from gohhongy 6
Fig 1.1.2 Mail 2 from gohhongy 7
Fig 1.1.3 Mail 3 from Katherine 8
Fig 1.1.4 Mail 4 from myself 8
Fig 1.1.5 Mail 5 9
Fig 1.1.6 Mail 6 9
Fig 1.1.7 Mail 7 10
Fig 2.1 IRIS clustering results 12
Fig 2.2 IRIS clustering results 13
Fig 3.1 Overall architecture of system 14
Fig 4.2.2.1 Mail 8 18
Fig 4.2.2.2 Mail 9 18
Fig 4.2.2.3 Mail 10 19
Fig 4.2.2.4 Mail 11 19
Fig 4.2.5.2.1 Mail 3 and mail 4 27
Fig 4.2.5.3.1 Redundancy result shown in thread fashion 29
Fig 4.2.5.4.1 Redundant mails made redundant by mails with similar names30
Fig 4.2.6.1 Scatter plot of sensitivity VS accuracy 35
Fig 4.3.1 Tabs of the GUI 36
Fig 4.3.1.1 Log in tab 37
Fig 4.3.2.1 Mails tab 37
Fig 4.3.2.2 Mail content window 38
Fig 4.3.3.1 Redundant mails detection tab 39
Fig 4.3.4.1 Redundant mails detail tab 40
Fig 4.3.5.1 Mail structure inspector tab 41
Fig 4.3.6.1 Mail checking playground tab 42
Fig 4.3.7.1 Mail collection tab 43
Fig 4.3.8.1 Benchmarking tab 44
Fig 6.1.1 Machine generated mail falsely identified as redundant 48

 4

Table of Contents

Abstract 1

Acknowledgement 2

List of Figures 3

Table of Contents 4

1 Introduction 6

 1.1 Background and objective 6

 1.2 Report organization 11

2 Evaluation of Existing Solution 12

3 Architecture of the system 14

4 Implementation 15

 4.1 Connecting to mail box 15

 4.2 Detecting redundant mails 16

 4.2.1 Exact match detection 16

 4.2.2 Global alignment algorithm 18

 4.2.3 Adaptation of Needleman-Wunsch algorithm 21

 4.2.4 Complete detection process 24

 4.2.5 Optimizations 25

 4.2.5.1 Sender grouping 25

 4.2.5.2 Sub string screening 26

 4.2.5.3 Thread tracing 28

 4.2.5.4 Mail title similarity 29

 4.2.5.5 Attachment check 30

 4.2.5.6 Keyword check 31

 4.2.5.7 Missing line limitation 32

 4.2.5.8 Combo re-checks 32

 4.2.6 Setting of parameters 33

 4.3 Graphic user interface 36

 4.3.1 Log in tab 36

 5

 4.3.2 Mails tab 37

 4.3.3 Redundant mail detection tab 38

 4.3.4 Redundant mail detail tab 39

 4.3.5 Mail structure inspector tab 41

 4.3.6 Mail checking playground tab 42

 4.3.7 Mail collection tab 42

 4.3.8 Benchmarking tab 44

5 Benchmarking 46

6 Conclusion 47

 6.1 Limitations 47

 6.2 Further developments 48

 6.3 Summary 49

References 50

 6

Chapter 1 Introduction

1.1 Background and objective

In this age of electronic communication, our email boxes are constantly flooded with new

emails everyday. However, our busy schedules make it difficult for us to read and reply

to all of them. To compound the problem, there are a lot of emails that are redundant.

Reading these mails is simply a waste of our precious time. In this project, I have

developed an email agent which is able to detect and flag all the redundant emails, to help

users save time.

Redundant mails are mails whose essential content are repeated or quoted in later mails,

making it unnecessary to read these redundant mails. Here are some examples,

Fig 1.1.1 Mail 1 from gohhongy

 7

Fig 1.1.2 Mail 2 from gohhongy

These are two mails from my friend. The whole body of the first mail is appended at the

end of the second mail. The attached file of the first mail is also same as the second mail.

So the first mail is actually a redundant mail because of the second mail.

This is another example,

 8

Fig 1.1.3 Mail 3 from Katherine

Fig 1.1.4 Mail 4 from myself

 9

The content of the first mail is totally repeated in the second mail, except “Hi all” which

is not important. Hence the first mail is still considered redundant in respect to the second

mail.

Here is another more complicated example mentioned by Kwok and Wong[1],

Fig 1.1.5 Mail 5

Fig 1.1.6 Mail 6

 10

Fig 1.1.7 Mail 7

Mail 5 is asking two questions. Then mail 6 and mail 7 each quoted one question from

mail 5 and answered it. Hence mail 6 and mail 7 together make mail 5 redundant.

From the examples, we can see that there are actually 3 kinds of redundant mails.

 Those that are wholly repeated in another mail

 Those that are mostly repeated in another mail

 Those that are mostly repeated in combination of 2 or more than 2 mails

The objective of this project is to develop an efficient, reliable and user-friendly software

program that can help busy professionals and managers, who receive hundreds of new

mails everyday, to save time on reading redundant mails.

 11

1.2 Report organization

The main part of this report consists of 6 chapters. Chapter 1 is the introduction of this

project. It gives a rough description of what this project is about, as well as the

background and objectives of this project. Chapter 2 is the evaluation of an existing

solution that can be used to roughly detect redundant emails. Chapter describes the

architecture of my system. Chapter 4 shows how the system is implemented. Chapter 5

describes benchmarking. The last chapter draws a short conclusion of this project and

makes a summary.

 12

Chapter 2 Evaluation of Existing Solution

As redundant emails and the mails that make them redundant are quite similar, one

obvious solution is to cluster all the mails into different clusters. If all the mails on top of

each cluster are the ones that are worth reading, then our job is done.

Open IRIS 2.3[12] is an open source information organization software. It is able to cluster

emails using 3 different algorithms: Carrot, Latent Dirichlet Allocation and Katz.

(Clustering function is missing in Open IRIS 3.0) Here are the results clustering my

mails.

Fig 2.1 IRIS clustering results

The first 2 algorithm succeed in clustering a group of over 600 mails. Carrot algorithm

cluster them into 11 clusters.

For example, this is one of the clusters,

 13

Fig 2.2 IRIS clustering results

This cluster shows the problems with using clustering method to identify redundant

emails.

 All the mails that are related are clustered together. However, we have no clue that

which ones are redundant and which ones are not. The ones on the top do not

necessarily make the bottom top redundant. So we still need to go through all the

mails one by one in order not to miss important messages.

 Mails that are not related but have identical or similar keywords are grouped into

same cluster. In the above screen shot, there are mails “CM problem” and mails “FW:

Mapping the CM major modu…”. These mails are clustered together because they

have the same keyword “CM” in their title. However, “CM” in “CM problem” means

“Course Maker”, which is a system to mark students’ lab. “CM” in “FW: Mapping

the CM major modu…” means “Communication and Media” which is a major is our

School of Computing. They are totally unrelated.

There is currently no existing solution to identify redundant mails. This is the motivation

behind this project, to develop a system that is able to do the job.

 14

Chapter 3 Architecture of the system

To achieve the objective of detecting and flagging redundant emails, the system will have

to connect to the mail box and retrieve the mails to analysis. Next the system will run the

mails through redundancy detection component, which is the core of this system. After

that, the result will be communicated to the user through a user friendly interface. The

overall architecture is shown below.

Fig 3.1 Overall architecture of system

The critical element in the system is the core redundancy detection component. It must be

design to be accurate, sensitive and efficient in order to be useful. In next chapter I will

devote most of the effort to describe the design and optimization of this component.

 15

Chapter 4 Implementation

The main idea in the redundant mail detection process is to adapt biological sequence

alignment algorithm to do email text matching. In this chapter, I will start with how the

system connects to mailboxes. Then I will spend most of the chapter describing the main

detection mechanism of the system. Lastly I will discuss the graphic user interface, which

makes the system user friendly and practical.

4.1 Connecting to mail box

Before the mails can be retrieved and analyzed, we have to connect to a mailbox.

JavaMail API[8] is a platform-independent tool to deal with emails and messages using

Java. It is an external package that is not part of Java Standard Edition. My system uses

JavaMail to connect to mailboxes. By using JavaMail, the communication with mail

servers is encapsulated in one single class MailBoxOperation. Here is the interface,

public class MailBoxOperation {

 public void connect (int mailBoxType, String host, String username, String password)

 public String[] getFolderList () {}

 public Folder[] getSubFolders (String folderName) {}

 private Folder[] getSubFolders (Folder f) {}

 public Message[] getMailEnvelopsFromFolder (String mailFolderName) {}

 public Message[] getMailEnvelopsFromFolder (String mailFolderName, int str, int end){}

 public ArrayList<Mail> getMailsFromFolder (String mailFolderName) {}

 public ArrayList<Mail> getMailsFromFolder (String mailFolderName, int strMsgNum){}

 public ArrayList<Mail> getMailObjectsForMsgs (Message [] msgs, int strMsgNum){}

 public static Mail readMail (Message msg) {}

 private static String getTextFromMultipart (MimeMultipart mm) {}

 public void copyMsgs (ArrayList<Message> msgs, String from, String to) {}

 public static MailAttachment getAttachment (Message msg) {}

 public void closeStore () {}

}

 16

In this way, the detection algorithm can be shielded from talking directly to the mail

server. The MailBoxOperation can also be easily replaced by another class which

communicates with news group server, so the program can detect redundant news group

post. New mail protocols can also be easily incorporated.

4.2 Detecting redundant mails

4.2.1 Exact match detection

To detect redundant emails, we have to check for overlapping of emails texts. If texts of

email 1 are totally included or almost totally included in email 2, then email 1 is made

redundant by email 2. So how are we going to detect these overlapping?

One of the simplest ways is to do brute force string matching. If email 1 is of length n and

email 2 is of length m, to check whether email 1 is made redundant by email 2, we need

n*m units of time. Suppose we have q emails to check, and the average length is of n,

then we need q*q*n*n units of time to finish checking. This is unacceptable considering

the normal inbox size is probably of 200 over mails.

However, there are faster ways of matching 2 strings, for example,

1 2 3 4 5 6 7 8 9 10 11 12

H E L L O T H I S A G R

H E L L W

 H E L L W

When we first compare the last character ‘w’ of “hellw” with the fifth character ‘o’ of

“hellothisagr”, they are not a match. We also observe that character ‘o’ does not appear in

“hellw”. Hence it is no point to move “hellw” one place right and compare again just like

the brutal matching algorithm. We might just shift “hellw” 5 place right and compare the

‘w’ with ‘a’ just as shown above in the 4th row. In this way we accelerate the matching by

 17

a factor as large as the length of the second string. This is the idea behind Boyer-Moore

exact matching algorithm[4].

The Boyer-Moore algorithm preprocesses the 2 strings and builds 2 arrays which store

the shift information. During comparison, when mismatch is encountered, these 2 arrays

are consulted so that the program knows how many spaces to shift the second array to the

right and start comparing again. The normal running time for Boyer-Moore algorithm is

near n/m where n is the length of first string and m is that of the second string. This is a

considerable improvement from the brutal force matching algorithm.

This first redundant email detection algorithm suggested by Kwok and Wong[1] is built

using Boyer-Moore algorithm. I use a Boyer-Moore java implementation by Michael

Lecuyer[10]. Here is the algorithm for the detection,

Loop through every mail i

 For every mail j after mail i

 Strip mail i and mail j off all spaces and punctuations

 Run mail i and mail j through Boyer-Moore algorithm

 If mail i is has an exact match in mail j

 Flag mail i as made redundant by mail j

 End if

 End for

End loop

This detection program successfully detects 115 out of 159 redundant mails which I have

collected in 59 seconds. This is a 72% detection rate. It is a pretty good result considering

the simplicity and speed of this algorithm. However, there is still room for improvement.

I will start to describe a better algorithm which is at the heart of my final program in the

next section.

 18

4.2.2 Global alignment algorithm

The detection algorithm we just examined is not able to detect redundant emails in the

following case.

Fig 4.2.2.1 Mail 8

Fig 4.2.2.2 Mail 9

Mail 8 is totally included in mail 9 although interrupted by the answer into two parts. But

mail 8 is still made redundant by mail 9. If the two questions of mail 8 are included and

answered in two separate mails and we combined the 2 answer mails together, we will

 19

still have a similar case. However, the exact matching detection is unable to detect

redundancy in such case because there is not exact contiguous match for mail 8 in mail 9.

Sometimes, the redundant mail will not be totally included in another mail. Some trivial

parts may be missing. For example,

Fig 4.2.2.3 Mail 10

Fig 4.2.2.4 Mail 11

Mail 10 is included in mail 11 except the word “Jack”. The signature “Jack” is

unimportant and hence mail 10 is still considered redundant in respect to mail 11. The

exact match detection is also unable to detect redundancy in such case.

 20

Hence we have to find a way to allow for some flexibility in the detection algorithm. In

bioinformatics, a sequence alignment algorithm is used to identify similar regions in

different sequences, in an effort to reveal the possible relationships between these

sequences. Kwok and Wong suggest the method of using these algorithm to detect

redundancy in emails.[1]

Needleman-Wunsch algorithm[7] is one such algorithm used to identify the best way to

align sequences in terms of score. It uses dynamic programming to build up a two

dimensional array representing the score during the matching and shifting between the

two sequences. It then uses this array to trace back the best alignment found. I will

illustrate the principal of this algorithm with an example. Suppose we want to align

“ACBQ” with “ABQ”. We first need to decide what score to assign for every possible

matching. This is a two dimensional array of the alphabets allowed. In this case, the

alphabets are “ABCQ”. I will assume we use the following score matrix,

 A B C Q

A 10 2 1 -7

B 2 9 2 -2

C 1 2 6 -3

Q -7 -2 -3 3

When an ‘A’ is matched with another ‘A’, we increment the total score by 10. When a

‘C’ is matched with a ‘Q’, we decrement the total score by 3. Another parameter we need

is the gap cost. This is the cost of matching a letter with a space. Let it be -10 in this case.

Then we can start the dynamic programming to find the maximum alignment score of

“ACBQ” and “ABQ”. The follow table will be built.

 21

 A C B Q

 0 -10 -20 -30 -40

A -10 10 0 -10 -20

B -20 0 12 9 -1

Q -30 -10 2 10 12

After the table is built, the algorithm traces back to top left hand corner from the bottom

right hand corner. It finds how the score ‘9’ is obtained and an alignment will be traced

out.

Moving diagonally is a match while moving horizontally or vertically will represent a

insertion of a space. The alignment found is

ACBQ

A_BQ

The allowance of spaces between characters while aligning sequences makes

Needleman-Wunsch algorithm a good candidate for redundancy detection algorithm[1]. In

the next section, I will describe how Needleman-Wunsch algorithm is adapted to the

redundant email detection program.

4.2.3 Adaptation of Needleman-Wunsch algorithm

Several things need to be changed to adapt the standard Needleman-Wunsch algorithm to

serve my redundant email detection.

 22

Biology sequences use only limited alphabets. The set of alphabets need to be expanded

be accommodate ‘A’-‘Z’, ‘a’-‘z’ and ‘0’-‘9’. New line symbols and punctuation symbols

will be removed before the detection is run and hence they need not to be included.

The alphabet score matrix need to be changed. As my example score matrix in last

section shows, the score between ‘A’ ‘A’ and that between ‘B’ ‘B’ are different. That

serves the purpose of amino acid sequence matching but not emails text matching. The

score matrix is changed in this way. Score between any two exact character matches will

be 10 and any mismatch will be -10. The gap cost will be 8. These numbers are purposely

chosen so that the algorithm would rather leave a gap than to allow a mismatch. In this

way, interruption of the email texts will be allowed.

The original Needleman-Wunsch algorithm only returns the best alignment of the two

strings. However, the detection program needs to find how much of one string is

contained in another string. So the alignment returned by Needleman-Wunsch algorithm

need to be processed. The class MatchedStringExtractor is design for this purpose, to

extract degree of overlapping and the overlapping regions from the alignment string

return by Needleman-Wunsch algorithm. Here is a example. Alignment strings returned

from Needleman-Wunsch algorithm is shown below. [the previous sentence seems

incomplete. Something is missing.]

HOWAREYOUJOHNIAMMISSINGYOU

HOWAREYOU_____IAMMISSINGYOU

The second string has the ‘_’ characters in it, indicating those corresponding characters in

first string is not found in the second. The MatchedStringExtractor class will process and

return the number of character that is exactly matched. In this case there are 22. This

number can then be used to check what percentage of the mail body is included in

another mail.

However, for short mail body, it may also be totally matched. For example,

HOWAREYOUJOINIAMMISSINGYOU

H________________I___________YOU

 23

The second string “HIYOU” is totally matched with the first string. But it should not be

considered as redundant. This case is solved by restricting the minimum number of

contiguous matched characters to be considered valid. If the minimum number is set at 7,

then all three matched region, ‘H’, ‘I’ and “YOU” falls below the minimum number and

hence not counted as matched characters. The number of matched characters in this case

will be 0 and “HIYOU” is not redundant.

Another example will show how this alignment algorithm solves the problem of some

missing text in the redundant emails. Mail 10 in fig 3.2.2.3 is made redundant by mail 11

in fig 3.2.2.4, although mail 11 does not have the word “Jack” which appears in mail 10.

Below is the matched string of these two emails using the alignment algorithm.
Mail 11:

hihowareyoutwodoingiamrecentlyplanningatriptoeuropeforabout2weeksanyofyouinterestediamfinewhendoyouplantogoifyo

uareseriousaboutthatwecanmeetnextweektodiscusshow

Mail 10:

hihowareyoutwodoingiamrecentlyplanningatriptoeuropeforabout2weeksanyofyouinterestedja------------------------------------

------------c-------------k------------
In this alignment, mail 10 is almost totally matched in mail 11 but only with small bits of

texts missing, indicated by the scattered ‘c’ and ‘k’. So the percentage of overlapping is

high and we are still able to determine that mail 10 is made redundant by mail 11.

Another example will be mail 8 in figure 3.2.2.1 and mail 9 in figure 3.2.2.2. Mail 8

contains two questions and mail 9 inserts answers in between the questions. Using the

alignment algorithm, the matched string obtain is as shown below.
Mail 9:

hihowareyoutwodoingiamquitehappyrecentlybecausemyparttimebossjustgavemeasmallraisehahaiamrecentlyplanningatript

oeuropeforabout2weeksanyofyouinterestedwhenareyouplanningtogomyexamwillonlyfinishonmay5thandineedtogobacktoch

inaforatleast2weeksfirstbutiaminterestedineuropetripwemeetnextweektochatbah
Mail 8:

hihowareyoutwodoingiam----------recently---------p--lanningatriptoeuropeforabout2w

eeksanyofyouinteres---t--e---d---------

We can see 3 regions of matched texts in mail 8 separated with mainly spaces. So we

would still be able to conclude that mail 8 is made redundant by mail 9.

 24

In order to determine whether a mail is redundant using the percentage of matched texts,

a threshold is needed. This threshold is the redundancy threshold. If the percentage is

over this threshold, a mail will be flagged as redundant. The suitable value of this

threshold will be discussed in section 3.2.6.

Now a practical and effective way of detecting redundant emails is found. In the next

section, I will describe the complete process of detecting all redundant emails in a mail

box folder.

4.2.4 Complete detection process

After the core algorithm is found, the whole detection process can be drafted. First, all the

mails will need to be retrieved from the mail server. The mail body texts need to be

processed. All end line symbols and punctuation symbols will be removed. Next, sort the

mail in ascending order of send dates. Only mails that are sent later can make mails that

are sent earlier redundant, because it is impossible for a mail to repeat the texts of another

mail that has not been sent. So we just need to check whether a mail is made redundant

by any of the mails that are after it. Usually mails in mail boxes are sorted in received

date order. But mails may not always be received in the same order as they are sent. So

we need to sort them in the sent date order. Next, the program will go through every mail.

For every mail, all mails behind are chained together and detection algorithm is run on

the mail and the chained mails. The reason to chain up all the mails is to cater to the case

that an email is answer is two or more mails and all these answer mails together make the

original mail redundant. After the matched string is obtained, the percentage of repeat

characters is calculated. If the percentage is over a preset threshold, the mail will be

considered redundant. Then we have to find out which mail or mails actually contribute

to the redundancy. This is quite a complicated and bug-prone process. When the mails are

chained together, the length of each individual mail must be noted. After examining the

matched strings, we will be able to locate the position of the matched regions. Using

these location and individual mail length information, with painstaking carefulness, the

 25

mail or mails that contribute to the redundancy will be located. So this is a very basic

description of the detection process.

This process will work theoretically. However, after I implemented it, it only works for

mail boxes with very a small number of mails. The number of mails is around 20. For a

mail box with more mails, the program takes very long to run and most of the time,

memory is used up. Most normal mail boxes have more than 20 mails. So the program

needs serious optimization to be practical and efficient. In next section, I will examine all

the optimization techniques I have used to make the program efficient.

4.2.5 Optimizations

4.2.5.1 Sender grouping

Needleman-Wunsch algorithm is of n*m complexity both in terms of time and space,

where n and m are the lengths of the two strings respectively. This algorithm is hence

much slower than Boyer-Moore algorithm. In the detection process, Needleman-Wunsch

algorithm will have to be run once for every mail with a very long chain of mail texts.

This takes significant time and memory, and the program described in last section is

unable to finish for this reason. If we are able to make the chained mail texts shorter, it

will take significantly less memory and prevents the out of memory error.

The reason to check a mail against all other mails chained together is to detect

redundancy that is contributed together by multiple mails, such as case like mail 8 and

mail 9 in figure 3.2.2.1 and figure 3.2.2.2. However, after some observations, I found that

only the same sender will separate a mail into multiple parts and reply to them in

different mails separately. This implies that it is not needed to chain all mails together.

Instead, only mails from the same sender need to be chained up and check. This

significantly shortens the length the chained texts, because a usual mail box will include

 26

mails from 10 to several hundred senders. The optimized detection algorithm for a mail is

shown below.

For every mail i

 For every sender j

 Chain up all mails behind mail i by sender j

 Run Needleman-Wunsch algorithm on mail i and chained mails

 Analyze result

 End for

End for

In this way, Needleman-Wunsch algorithm needs to be run multiple times for one mail.

However, the memory requirement for each run will be significantly lower such that it

will fit into a normal desktop memory capacity. After this optimization is implemented,

my testing mail collection of 325 mails is run through the program. It takes 1 hour 32

minutes to finish. It is an improvement as the program is able to finish now. However, it

is not practical to wait for one and a half hour just to check a mail box consisting of about

300 mails, which is not particularly big. More optimizations are needed.

4.2.5.2 Sub string screening

Since Needleman-Wunsch algorithm is very time consuming, one way to optimize the

program is to find a way to reduce the number of times this algorithm is run. If there is a

way to easily identify those cases that the mail is probably not made redundant by

another specific mail or mails, Needleman-Wunsch algorithm would not need to be run.

This would save a great deal of time.

In figure 1.1.3 and figure 1.1.4, mail 3 is made redundant by mail 4. These 2 mails are

juxtapose here,

 27

Fig 4.2.5.2.1 Mail 3 and mail 4

From the lines in the blue box, all the lines in mail 3, except “Hi, all,” and the symbol ‘>’,

are repeated exactly in mail 4, including end line symbols. Normally when mail texts are

repeated in another mail, these mail texts are copied automatically or manually to the new

mail. The copying process will often keep all the end line symbols, so the mail texts

appear in the new mail in exactly the same format. The author will then delete some lines,

but not some words in a line. With this observation, it can be concluded that if most of

the lines from a mail does not appear in another mail unchanged, the mail is probably not

redundant. Hence a pre screening can be done before invoking the Needleman-Wunsch

algorithm. This screening will check if number lines in a mail appear in the chained mail

texts is over a threshold. If the result is positive, Needleman-Wunsch algorithm will be

run. Else it can be safely concluded that the mail is not redundant. The threshold is called

sub string threshold and its value will be discussed in section 3.2.6.

After sub string screening is implemented, the program is able to finish the checking

 28

process for the 315 mails collected. The checking time is 6 minutes 16 seconds, which is

about a 15 fold improvement.

4.2.5.3 Thread Tracing

When Needleman-Wunsch algorithm is run, it is guessed that a mail may be made

redundant by some mail or mails in the chained mails. The chained mails are long and

hence slow the Needleman-Wunsch algorithm. During checking of a mail, if another mail

that will most probably make the mail redundant can be identified first, then

Needleman-Wunsch algorithm can be run with this mail first. Since the mail will

probably be identified as redundant in this checking, the amount of time used run

Needleman-Wunsch algorithm against a much long mail chain will be saved.

When a mail is received from another person, this mail resides in our mail box and let it

be mail A. This mail will be replied with the content append in the replied mail. Let the

replied mail be B. Mail B will then be replied again with all contents of mail A and mail

B attached. Let this replied mail be C. This process goes on. This is quite common in our

daily emailing. When mail A and mail B are both from other person to a group of

recipients and we are in the group, both A and B will be in our mail box and mail A is

made redundant by mail B. When mail A and C are from our friend, B is our reply to A,

both A and C will reside in our mail box and A is made redundant by C. These two cases

are the most common source of redundancy. Recognizing this, another optimization can

be crafted.

A mail is stored in a mail box with a message id that unique identify the mail in the mail

box. A mail has also another field “reply-to”, which stores the message id of the mail it

replies to. A mail and the mail it replies to are in the same thread. The mail A, B and C in

last paragraph can be visualized as,

 29

A

|_ B

 |_ C

C replies to B and B replies to A. A is at top of the thread. Before the checking starts, all

the mails will be processed and put into their respective threads. Then for every mail, the

thread is traced and the 2 mails that are one level and two levels down the thread are

checked first. In this example, A will be checked against B and C first before being

checked against the chained mails by different senders.

This optimization will also allow the program to line up the redundant mails in a thread

fashion as shown below.

Without this optimization, a mail may not be identified to be made redundant by its

immediate reply but by some other reply deeper down the thread and it is not possible to

line up the redundancy result in this nicely thread fashion.

Fig 4.2.5.3.1 Redundancy result shown in thread fashion

In this screen, all mails are in the same thread and mails on the top are made redundant

by mails below. It is clear to see the redundancy in this way than to show all mails made

redundant by the same last mail at the bottom of the thread, which is mail 252 is this case.

After thread tracing optimization is implemented, the program now finish the checking

process for the 315 mails collected in 4 minutes 25 seconds, down from 6 minute 16

seconds at the end of last section.

4.2.5.4 Mail title similarity

 30

A fair amount of redundant mails results from forwarding the same mail by different

person or organizations. It may also result from sending a same mail multiple times from

the same person or organization. In both cases, the titles of the mails will probably be

very similar. Here are some examples.

Fig 4.2.5.4.1 Redundant mails made redundant by mails with similar names

In this result tree, a mail in the parent position is made redundant by a mail in a child

position. It is observed that all these mails are made redundant by a mail with very

similar name, with totally the same, or with some prefix like “REMINDER : “, “FW:” or

“RE:”. Making use of this observation, another optimization can be implemented. When

checking a mail, the mails with same name or similar with popular prefixes are checked

first. This achieves the same effect as thread tracing optimization. Time is saved for not

have to invoke Needleman-Wunsch algorithm against much long mail chains.

After mail title similarity optimization is implemented, the program now finish the

checking process for the 315 mails collected in 3 minutes 8 seconds, down again from 4

minute 25 seconds at the end of last section.

4.2.5.5 Attachment check

Attachments have been ignored in previous discussions and implementations. However,

 31

they should not be ignored in determining whether a mail is redundant. A mail may have

its texts totally repeated in another mail, but has a unique attachment and hence the mail

is not redundant.

The checking of attachment is done in the following way. If mail A has no attachment,

checking will proceed normally. If mail A has attachments, all the attachments must be

included in mail B, in order for mail B to make mail A redundant. If mail B does not

included all of mail A’s attachment, Needleman-Wunsch algorithm need not to be run as

mail A will not be made redundant by mail B. If mail A has attachments and it is detected

to be made redundant by a combination of multiple mails, then everyone of mail A’s

attachment must appear in at least one of the mails in the combination of mails for the

redundancy to be true. Two attached files are considered to be the same if their names

and file sizes are the same. This is a safe assumption, as a different file may have the

same name but seldom the same size.

The accuracy in redundancy detection in the 315 mails collection without attachment

check is 0.878 (redundant threshold = 0.9, sub string threshold = 0.9, discussed in section 3.2.6).

With attachment, the accuracy is increased to 0.962. Running time is not discernibly different as

the slight overhead cancels the slight saving of Needleman-Wunsch algorithm in some cases.

4.2.5.6 Keyword check

In the detection of redundancy, some missing words from the redundant mails are

allowed. In figure 3.2.5.2.1, “Hi, all,” in mail 3 are allowed to be missing in mail 4.

However, sometimes there are important keywords that cannot afford to be missing. For

example, Jack sent a long proposal to his boss and his colleagues. His boss replies first by

just adding a word “Approved” on top of the long proposal. His colleague then replies to

Jack’s original mail by adding some suggestions on top of the long proposal. After the

checking is run, the program will detect that the email by Jack’s colleague makes the

email by Jack’s boss redundant, because most of the boss’s email, the proposal, appears

 32

in Jack’s colleague’s email. So Jack’s boss email will be flagged redundant and risk not

being read by Jack. In this case, “Approved” is a keyword that cannot be missed.

Keyword check allows the user of the program to specify a list of words that are

important. After a mail is determined to be redundant, keyword check will be invoked.

The check will look at all the missing words gathered by the class

MatchedStringExtractor. If the words include any of the important keywords, the mail

will not be flagged redundant. This optimization greatly increases the reliability of the

program.

4.2.5.7 Missing line limitation

The sub string threshold dictates the percentage of the lines required to be present in the

sub string check. If percentage of lines present is below this threshold, further check will

not be run and the mail is flagged as not redundant. Needleman-Wunsch algorithm will

be run if percentage of lines present is above this threshold. However, with a 50 lines

email, a 0.8 sub string threshold will allow 10 lines missing. This may be too many and if

10 lines of a mail are missing in another mail, it is quite indicative that the mail is not

made redundant. Hence in extra to the sub string threshold, a maximum missing

limitation in sub string check is imposed. Number of lines allowed to be missing will be

the minimum of the number dictated by sub string threshold and the maximum missing

line limit.

The effect of this limitation is more obvious with lower redundancy threshold and sub

string threshold setting. When both redundancy threshold and sub string threshold are set

to 0.8, accuracy is 0.939 with missing line limitation being 10 and accuracy is 0.957 with

missing line limitation being 5.

4.2.5.8 Combo re-checks

 33

In the example shown in figure 3.2.5.2.1, if mail 3 is checked against a chain of mails, the

program may find most of the body of mail 3 to be in mail 4 and find the “hi, all” to be in

another mail, as it is a very common phrase in emails. So the program may declare mail 3

to be made redundant by a combo of mail 4 and another mail which is not true. Such

cases can be detected.

Whenever the match string from Needleman-Wunsch algorithm from is analyzed by

MatchedStringExtractor and the program finds a mail to be made redundant by a combo

of multiple mails, the program will look at the number of matched texts in each of the

individual mails in the combo. If the contribution from any of the individual mail exceeds

the redundancy threshold, the mail will be flagged to be made redundant by that mail

alone. This optimization reduces the number of false flagged combo redundancy case.

Before implementing combo re-checks optimization, the number of combo redundant

mail is found to be 10 in the 315 mail collection. After implementation of this

optimization, the number falls to 1 which is correct.

4.2.6 Setting of parameters

The following table shows the accuracy and sensitivity of detecting redundancy in the

315 mail collection, varying 3 parameters: redundancy threshold, sub string threshold and

missing line limitation.

Missing line

limitation

Redundancy

Threshold

Sub string

Threshold

Sensitivity Accuracy

 Redundancy threshold and sub string threshold the same

5 0.8 0.8 0.975 0.957

10 0.8 0.8 0.975 0.939

 34

5 0.9 0.9 0.950 0.962

10 0.9 0.9 0.950 0.962

5 0.95 0.95 0.918 0.973

5 0.98 0.98 0.862 0.992

5 0.99 0.99 0.824 0.992

 Redundancy threshold and sub string threshold are not the same

5 0.95 0.8 0.943 0.974

5 0.95 0.75 0.943 0.974

5 0.96 0.8 0.943 0.974

5 0.97 0.8 0.918 0.986

5 0.98 0.8 0.881 0.993

5 0.99 0.8 0.836 0.993

 Varying missing line limitation

3 0.95 0.8 0.943 0.974

7 0.95 0.8 0.943 0.974

10 0.95 0.8 0.943 0.974

3 0.98 0.98 0.862 0.992

7 0.98 0.98 0.862 0.992

10 0.98 0.98 0.862 0.992

Table Parameter setting and performance

Sensitivity and accuracy are the performance indicators of the program, hence these 2

columns are plotted as a scatter chart to find the dominant points and hence the default

optimum settings of parameters. Sensitivity is ratio of the number of correct flagged

redundant mails over the true number of redundant mails. Accuracy is the ratio of the

number of correct flagged redundant mails over the total number of flagged redundant

mails. [you should briefly explain what is sensitivity and what is accuracy.] The chart is

shown below.

 35

Sensitivity VS Accuracy

(0.881, 0.993)

(0.975, 0.957)

(0.95, 0.962)

(0.943, 0.974)

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0.8 0.85 0.9 0.95 1

Sensitivity

A
c
c
u
r
a
c
y

Fig 4.2.6.1 Scatter plot of sensitivity VS accuracy

In the chart, the only four points that are labeled are those that clearly dominate over

others. However, the point (0.881, 0.993) offers an extremely high accuracy. So the

corresponding setting (redundancy threshold = 0.98, sub string threshold = 0.8) will be

used when very high accuracy is needed and lower sensitivity is tolerable. The point

(0.975, 0.957) offers the highest sensitivity. Its corresponding setting (redundancy

threshold = 0.8, sub string threshold = 0.8) will be used when very high sensitivity is

needed and moderate accuracy is tolerable. Over the remaining point, (0.943, 0.974) is

chosen as an optimum default point as we favor higher accuracy, so that useful email may

not be flagged as redundant. Its setting (redundancy threshold = 0.95, sub string

threshold = 0.8) will be used as default setting. The parameters can be set in the user

interface to allow for flexibility. User will also be able to select 3 preset combinations

described above, namely high accuracy, high sensitivity and default. The parameter

setting interface will be described in section 3.3.3.

The last section in the parameter setting and performance table in last page shows the

setting of missing line limitation is irrelevant when redundancy threshold and sub string

 36

threshold is high. The default setting of redundancy threshold will be 0.95 and that of sub

string threshold will be 0.8 corresponding to point (0.943, 0.974) in the chart, while

missing line limitation will be set to be 5.

4.3 Graphic user interface

There are two choices for coding a java graphic user interface, swing and SWT. Swing is

included in standard java distribution. SWT stands for stand widget toolkit and is under

the eclipse project and it is an alternative to Swing. SWT is light weight compared to

Swing and takes up less memory. SWT is faster than Swing. Also SWT gives the

interface a native look of the operating system instead of a java look of Swing. SWT is

chosen to implement the system, as the redundancy detection process already takes up a

fair amount of memory and we do not want the GUI to take up more memory, which will

make the system difficult to run in slower machines.

Fig 4.3.1 Tabs of the GUI

The interface is broken into 8 tabs as shown above catering to different functions. These

8 tabs and their functions will be described respectively below in each section.

4.3.1 Log in tab

 37

Fig 4.3.1.1 Log in tab

This tab is used for logging in and logging off the user.

4.3.2 Mails tab

Fig 4.3.2.1 Mails tab

 38

This tab is used to show the mails in a selected folder. Folder can be selected in the left

column and its mails will be loaded and displayed on the right. Nested folders are

supported. Using the check boxes above the mail list, users can select to see only unread

mails, only mails that are checked for redundancy, only mail that are not flagged as

redundant or any combination of them. When a mail is double clicked, its content and

attachments will be brought up in a new window as shown below.

Fig 4.3.2.2 Mail content window

4.3.3 Redundant mails detection tab

 39

Fig 4.3.3.1 Redundant mails detection tab

This tab is used for the detection process and displaying the redundancy tree. The left

hand side includes the parameter setting panel and checking process message window.

The optimum preset parameter combination described in section 3.2.2 can be set using

three buttons, high accuracy, high sensitivity and default. The right hand side displays

result redundant email tree after detection process is finished. On this tree, mail in the

parent node is made redundant by the mail in the child node. This tree can be displayed in

normal fashion where every redundant mail is displayed as a root node, or in the thread

fashion discussed in section 3.2.5.3, where redundant mails of the same thread are trained

together under one root node. Double click any redundant mail in the result tree will

bring user to the redundant mail detail tag where the details about the redundancy in the

mail is displayed and highlighted.

4.3.4 Redundant mails detail tab

 40

Fig 4.3.4.1 Redundant mails detail tab

This tab displays the details of why the redundant email is marked redundant. The left

hand panel displays the redundant mail while the right hand panel displays the mail that

makes the redundant mail redundant. In both panel, the repeated texts in both mails are

highlighted in red.

Highlighting of the common texts is a difficult and bug prone task. During detection of

redundancy, all the spaces, new line symbols and punctuations are removed. After

redundancy is identified, the repeated texts obtained only contain all the characters. These

characters are separated into regions. Now the characters need to be fitted back to the

original contexts. The repeated texts and the original mail body are compared one

character by one character, skipping all spaces, new line symbols and punctuations.

Starting position and ending position of each corresponding regions must be recorded in

order to highlight them in the GUI.

 41

4.3.5 Mail structure inspector tab

Fig 4.3.5.1 Mail structure inspector tab

This tab is used to inspect the internal structure of how a mail is stored. It is mainly used

to assist in debugging the program. When a particular mail causes problem, this inspector

can be used to look into the mail in great detail to see what differences in the mail are

cause problem.

A mail is store with a lot of headers field and then contents. Some header fields include

message-id which uniquely identify a mail in a server and reply-to which store the

message-id of the mail that this mail is replying to. Contents include the mail body and

attachments. Mail body may not only be stored once but possibly several times. The

reason of this is different presentation of the contents are store, for example, plain text

and html. The presentation and the actual body are not separated and hence the body is

stored once for every presentation format. This has caused some problem during the

development.

 42

4.3.6 Mail checking playground tab

Fig 4.3.6.1 Mail checking playground tab

In this tab, any two mails in the current folder can be selected and run through the

detection algorithm to see whether the left one is made redundant by the right one. After

that, the two mails can be selected displayed in several formats, including “extracted

contents”, “cleansed with endlines”, “cleansed”, “raw match strings” and “highlight

contents”. “Extracted contents” option will display the body texts that are going to be

processed. “Cleansed with endlines” option will display the mail body with all spaces and

punctuation symbols removed. “Cleansed” option will display the mail body with all

spaces, end line symbols and punctuation symbols removed. “Raw match strings”

displays the match string returned by the Needleman-Wunsch algorithm. “Highlight

contents” display mails in the same fashion as in redundant mails detail tab.

4.3.7 Mail collection tab

 43

Fig 4.3.7.1 Mail collection tab

This tab is used to collect the 315 mails used in benchmarking and testing. Mail

collection is a complicated process and hence it is worthwhile to build an interface to

facilitate collection. Any two mails can be selected and a reference checking can be run

on them. I will them look through the two mails to check whether they are suitable mails

for benchmarking. If they are suitable, I will mark their redundancy relation and add them

to the top right hand panel. The program will check whether the mails are already in the

collection and sort out the redundancy relation with the existed mails in the collection.

For example, if mail A and mail B are already in the collection and mail A is marked to

be made redundant by mail B. Then when I add another relation that mail B is made

redundant by mail C into the collection. The program will only copy C into the collection.

At the same time, because C makes B redundant and B makes A redundant and C must

make A redundant. This new relationship must also be recorded. After collection, these

relations must be written into a file which will be used in benchmarking.

The grammar definition of this file is shown below.

 44

File ::= ReFile*

ReFile ::= MsgID NUMBER MakerFile MakerFile*

MakerFile ::= MsgID | ComboMakers

ComboMakers ::= "COMBO" NUMBER MsgID MsgID*

Mails are recorded by their message-ids. A mail is followed by the number of cases that

make it redundant and then each of these cases. Each case can be a mail or a combo of

multiple mails. A example is shown below.

<000d01c656e3$63468a10$f55a8489@comp.nus.edu.sg>

2

<001101c656e7$924b99a0$f55a8489@comp.nus.edu.sg>

<6C24CBA42F567B4380B621C6378C19351735D4@MBX01.stf.nus.edu.sg>

The mail identified by the id in the first line can be made redundant by 2 cases. Each case

is a mail.

4.3.8 Benchmarking tab

Fig 3.3.8.1 Benchmarking tab

 45

This tab is used for benchmarking of the mail collection. After checking on the mail

collection is done, the tab is used to do the automatic comparisons of the actual result and

the expected results. The top left panel displays the actual results, with detected

redundant mails that are not really redundant highlighted in red. The top right panel

displays the expected results, with expected redundant mails not detected highlighted in

red. Statistics about the detection are shown at the bottom panel. These statistics will be

described in details in chapter 4 benchmarking.

 46

Chapter 5 Benchmarking

315 mails are collected and using the mail collection tab in the GUI from my friend’s and

my mail boxes and their redundancy relationships are marked and stored in a expected

redundancy file, whose format is described in section 3.3.7. This mail collection is used

for benchmarking. Two performance indicators are used, namely sensitivity and accuracy.

Sensitivity is defined as the ratio of number of correctly flagged redundant mails over the

number of expected redundant mails. Accuracy is defined as the ration of number of

correctly flagged redundant mails over the total number of flagged redundant mails.

These two indicators have been used to fine tune parameters, as shown in section 3.2.2.

Accuracy is favored as the program must be reliable and the users do not want to miss

any mail that is not actually redundant.

After all the optimizations are implemented and enabled, the program is able to finish the

detection process for the 315 mails in around 3 minute 10 seconds. As these 315 mails

have high concentration of redundant mails, it takes longer than normal mail boxes to

process, because more sub string tests are passed and hence Needleman-Wunsch

algorithm are invoked more frequently. The redundancy detection process of a mail box

with 500 over mails can be expected to be finished in about 5 minute. This is an

acceptable time.

 47

Chapter 6 Conclusion

6.1 Limitations

There are several limitations in this project.

 Language limitation

Currently, the program is only able to deal with English mails. Singapore is a multi

cultural society and we can expect a lot of mails to be written in other languages. Being

limited to only English mails will limit the usefulness of the program in identifying

redundant emails.

 Dealing with redundant emails

In the program, redundant emails identified are only flagged and not dealt with. To boost

the usefulness of the program, redundant emails should be copied to some other folders

just as junk mails are copied to junk folders. The user can then check the redundant mail

folder from time to time to see whether any useful mails are thrown there.

 Accuracy problem

The program is still not 100% accurate. The kind of mails that will most likely to be

identify as redundant mails are machine generated mails. These mails are highly similar

except for a small part of the body. Below is an example.

 48

Fig 6.1.1 Machine generated mail falsely identified as redundant

These two mails are totally the same except the percentage of the fullness of the mail

box.

6.2 Further developments

 Detection of redundancy across different mail accounts

Usually people will have more than one email accounts. All the accounts can be logged in

at the same time and all the mails in all the accounts can be checked together. In this way,

a user will not need to read similar mails in different email accounts.

 Hiding the redundancy detection process

The redundancy detection process can be programmed to run in the background once the

agent is opened. The user can proceed to read new mails while the agent is checking on

 49

the background. Result will be shown once checking is finished.

 Redundancy checking plug in

The redundancy checking algorithm can be developed into a plug in of any popular email

agents such as Thunderbird. User normally would prefer to use their favorite mail agent

and the plug in can enable them to use the same agent while having the ability to identify

redundancy in mails.

 Possible application of redundancy detection algorithm in RSS readers

A lot of people use RSS readers nowadays and they subscribe to a large number of feeds.

There may be redundant post from different feeds. The redundancy detection algorithm

can be possibly added to RSS readers to detect redundant posts.

6.3 Summary

This project developed a redundant email detection program that enables busy

professionals and managers to detect redundant emails in their mail boxes and save the

time reading them. The critical element of this system is the redundant emails detection

algorithm. It has been designed from global alignment algorithm and is able to detect

redundant emails accurately within an acceptable time. The objectives of efficiency,

reliability and user friendliness have been achieved.

 50

References

[1] Chong-See Kwok, Limsoon Wong. A method for eliminating redundant email

messages. European Patent No. 1327192, 20 April 2005. Singapore Patent No. 95931

[WO 00/33981], 31 May 2005.

[2] Dan Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge Univ

Press, 1997.

[3] Richard Durbin. Biological sequence analysis : probalistic models of proteins

and nucleic acids. Cambridge University Press, 1998.

[4] RS Boyer, JS Moore. A fast string searching algorithm. Comm, ACM, 1977.

[5] DE Knuth, JH Morris, VB Pratt. Fast pattern matching in strings. SIAM J.

Comput, 1977.

[6] TF Smith, MS Waterman. Identification of common molecular subsequences.

J. Mol. Biol, 1981.

[7] SB Needleman, CD Wunsch. A general method applicable to the search for

similarities in the amino acid sequence of two proteins. J. Mol. Biol, 1970.

[8] JavaMail. http://java.sun.com/products/javamail/

[9] Standard widget toolkit. http://www.eclipse.org/swt/

[10] Michael Lecuyer. Boyer Moore algorithm java implementation.

http://www.theorem.com/java/BM.java

[11] Peter Sestoft. Needleman-Wunsch algorithm java implementation.

http://www.dina.kvl.dk/~sestoft/bsa.html

[12] Open IRIS. http://www.openiris.org/

