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Summary

Molecular Dynamics (MD) simulation is a well-established method used for

studying protein motion at the atomic scale. However, it is computationally

intensive and generates massive amounts of data. One way of addressing the

dual challenges of computation efficiency and data analysis is to construct

simplified models of long-timescale protein motion from MD simulation data.

This thesis proposes the use of Markov Dynamic Models (MDMs) for the

modeling of long-timescale protein motion. In a MDM, each state represents

a probabilistic distribution of a protein’s 3-D structure, and the transitions

between states represent the change of conformation over time, i.e. motion.

Therefore, the dynamics of protein motion can be intuitively analyzed from

the explicit graphical representation of a MDM.

A principled criterion is also proposed for evaluating the quality of a

model by its ability to predict simulation trajectories. This allows the

most suitable model complexity to be determined, and addresses a main

shortcoming of existing methods. In addition, equations are derived to

compute ensemble properties of protein motion. This crucially allows MDMs

to be validated against wet lab experiments.

Experimental results on the alanine dipeptide and the villin headpiece

proteins are consistent with current biological knowledge, and demonstrate

the usefulness of MDMs in practical use.
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Chapter 1

Introduction

Proteins are essential molecules responsible for carrying out vital functions

necessary for life. From enzymes promoting reactions, to hormones carrying

signals from one cell to another, proteins are not only essential to the living

and breathing of human beings, but also critical to all known forms of life.

Proteins’ wide range of functions is due to their dynamic, yet specific,

interactions with other molecules. Stabilized by strong covalent bonds and

weak forces of attraction, each protein molecule is not only rigid enough to

maintain a 3-D structure conducive for specific functions, but is also flexible

enough to be folded from simple linear chains.

The biological importance of proteins makes the understanding of their

motion dynamics crucial to furthering science. However, an intuitive

abstraction of the complex dynamics is needed for human comprehension.

This thesis proposes using Markov Dynamic Models (MDMs) to model

protein motion as a probabilistic distribution of 3-D structures changing

over time [27]. By unveiling graphically a protein’s biologically significant

changes at experimentally inaccessible timescales, MDMs beneficially offer

scientists an opportunity to gain a deeper understanding of protein dynamics.
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1.1 Protein Motion and Function

Proteins are one of the most abundant biological molecules in the cell.

Critical proteins include hormones such as insulin, oxygen carriers such as

hemoglobin in blood cells, the DNA replicating polymerase . . . etc. [2, 71, 77].

The key to proteins’ broad range of functions is their structural flexibility

and chemical diversity. Therefore, understanding how proteins interact

with other molecules, and consequently, perform their cellular functions,

is critical to the molecular basis of biology.

1.1.1 Protein structure and organization

A protein molecule consists of one or more chains of polypeptides and

its overall 3-D structure is known as its conformation , see Fig. 1.1.

Each polypeptide is a linear, unbranched chain of amino acids joined

together via peptide bonds. There are many types of amino acids, and when

combined into chains of different lengths, can create an infinite variety of

polypeptides with distinct structural and chemical properties. The precise

sequence of amino acids in a polypeptide (primary structure) is determined

by genetic information encoded in the DeoxyriboNucleic Acid (DNA) [19].

A polypeptide is flexible and extensively foldable due to freedoms of

rotation along its backbone. It is structurally organized according to the

range of interactions involved: secondary structures only involve amino

acids not too far apart along the same polypeptide, tertiary structures

involve farther interactions across the same polypeptide, while quaternary

structures involve interactions between different chains of polypeptides.

The different levels of structural organization result in a highly compact

molecule that is both biologically functional and energetically stable.
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Figure 1.1: A protein’s structural organization. Alanine (Ala), glycine (Gly),
phenylalanine (Phe) . . . etc. are names of different amino acids with distinct
structural and chemical properties. Primary structure is the precise
sequence of amino acids along a bonded chain. Secondary structures
α-helix and β-sheet only involve amino acids not too far apart along the same
polypeptide. Tertiary structure involves interactions between secondary
structures across the same polypeptide. Quaternary structure involves
interactions between different chains of polypeptides. [1]
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1.1.2 Protein motion and function

Motion is critical for a protein to achieve its function. The long-range motion

of folding a linear polypeptide into a compact conformation is a critical step

towards cellular function. For proteins serving as enzymes, the 3-D structure

of the functional or native conformation places catalytic agents at positions

conducive for reactions to take place. Whereas for structural proteins,

complementary 3-D structures allow multiple molecules to bind together and

form larger tissues. The consistent folding of a polypeptide into a native

conformation unique to its amino acid sequence remains one of the great

unsolved mysteries of biology [8, 68].

However, the long range folding process is not the only motion. A protein

in its native conformation is still structurally flexible because many of

the stabilizing forces are reversible non-covalent bonds. Therefore, even

“folded” proteins undergo constant structural rearrangements, and the

native conformation is actually a set of closely related conformations [110].

For example, certain segments of a protein may slide or shear against each

other locally, or open and close as if connected by a hinge. These localized

motions collectively affect the way a protein interacts with other molecules.

They have also led to mechanisms such as the induced fit model of enzyme

action, in which a protein has to reshape itself in order to bind to a substrate

and catalyze the reaction [18, 32, 41].

More importantly, it is the unique combination of different motions that

allows a protein to perform its life critical function. Any mutation that

changes the structural or chemical properties of a protein can potentially

affect the way it folds or interacts with other molecules, and lead to

debilitating illnesses such as mad cow, Huntington’s, Alzheimer’s and

Parkinson’s diseases [28, 85, 92].
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1.2 Trends in Structural Biology

Structural biology is concerned with the structural basis of molecular

function and is at the forefront of biology today. The goal is to understand

how molecules, such as proteins, acquire their 3-D structure, and how

changes in their structure affect their biological function. The trend over the

past decade has been towards the adoption of ever more precise experimental

techniques in order to obtain better resolution of structural changes.

1.2.1 Wet lab approaches

Ever since James Watson and Francis Crick unraveled the double helix

structure of DNA in 1953 [112], scientists have striven to unravel the

3-D structure of biological molecules. Over the years, the number of

3-D molecular structures that have been confirmed has exploded (Fig. 1.2).

The main reason behind this phenomenal success is the improvement in

X-ray crystallography and Nuclear Magnetic Resonance (NMR) spectroscopy

techniques for the imaging of proteins at atomic resolutions [78, 79].

Figure 1.2: Growth in the number of 3-D molecular structures in Protein
Data Bank (PDB) [15].
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Both X-ray crystallography and NMR spectroscopy can pinpoint the

positions of atoms relative to each other to the nanometer scale [23, 73, 91].

By reconstructing the overall 3-D geometry of a protein based on the atomic

positions, scientists can understand how the relative placement of different

parts of a protein can facilitate, or inhibit, its cellular function [52, 99].

Structures of mutated proteins can also be compared to investigate the

effects of mutation on structure, and by extension, the folding process [88, 89].

The 3-D geometry of protein molecules is invaluable to scientists.

Unfortunately, X-ray crystallography and NMR spectroscopy are severely

limited by lengthy sample preparation times [78, 79]. For example,

X-ray crystallography relies on the lattice structure of crystallized proteins

to scatter X-ray in a reconstructible diffraction pattern. However, purifying

and crystallizing proteins can take months, or even years for difficult cases.

Although NMR spectroscopy does not use crystallized proteins, the resource

intensive process of culturing and purifying proteins is still unavoidable.

More importantly, it is difficult to directly observe protein motion in 3-D.

Since X-ray crystallography relies on crystallized proteins, it only provides

a static view of fixed structures. Although NMR spectroscopy handles

proteins in solution, the information derived is rather indirect. A typical

wet lab approach relies on exposed parts of a protein to uptake deuterium

isotopes from the solvent faster than other parts hidden within the protein’s

structure [78, 79]. By stopping the reaction at various times and measuring

the difference in deuterium uptake with NMR spectroscopy, the folding

process can be inferred. However, this approach is far from a comprehensive

view of proteins in motion.
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1.2.2 Computational approaches

Fortunately, advances in computer hardware and algorithms are making

computational methods increasingly feasible for studying molecular motions.

Early successes include investigations into short range motions of molecular

binding [57, 96], and the flexibility of native conformations [95, 108].

The wealth of structural information in Protein Data Bank has also enabled

scientists to deduce the structure of mutated proteins by comparing sequence

similarity to known structures [62, 83, 113].

However, great potential still exists in Molecular Dynamics (MD),

which is the computational simulation of molecular motions based on

statistical mechanics [36, 44, 66]. MD simulation computes successive

changes to all atoms in a molecular system by integrating Newtonian physics

at the femtosecond timescale (10−15 s), i.e. F = −∇V , where V is the

potential energy of a conformation, and F is the resultant force acting on it.

The resulting trajectory is a temporal sequence of the positions, velocities,

and even higher order derivatives of all atoms in the simulated system.

MD simulation not only allows scientists to directly visualize the

precise motion of a protein molecule as it folds or binds with a substrate.

More importantly, the wealth of information available from MD simulation

is impossible to obtain with existing wet lab techniques.

With today’s petaFLOPS computers, thousands of atoms can be

accurately simulated for up to a millisecond (10−3 s) in real time [14, 94].

Although sufficient to study proteins with 30 amino acids, there are plenty

of more complex molecules to be investigated. Fortunately, scaling up

MD simulation is an actively pursued research area, notable projects

including IBM’s Blue Gene [3], and the distributed computing Folding@home

project [14].
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1.3 Challenges in Modeling Protein Motion Dynamics

The dynamics of a protein’s motion is about its change of conformation

over time . More specifically, this includes both the direction and

magnitude of the change, as well as the time of the change. In addition,

scientists want to understand what makes a protein change its conformation.

Therefore, capturing the precise sequence of events is important. A better

understanding of the underlying factors that determine protein motion will

allow novel molecules and better drugs to be designed and engineered de novo.

Like any scientific pursuit, gaining a better understanding requires a

continuous cycle of making observations, formulating hypothesis, and testing

predictions. Modeling is an integral part of this process, and a good

approach should allow scientists to formalize theories into understandable

representations, for the validation and prediction of future outcome.

1.3.1 Massively distributed MD simulation

However, the molecular nature of a protein’s structural changes make direct

observations in the wet lab difficult. Therefore, MD simulation at the atomic

resolution is a very attractive experimental alternative.

In order to accurately simulate protein motion, MD simulation has to

be carried out at the femtosecond timescale (10−15 s), and sustained up till

the biologically interesting milliseconds (10−3 s), or even seconds [56, 64].

Moreover, for a realistic simulation, a large number of protein molecules

has to be simulated to better represent the diverse motion of individual

protein molecules in actual solution. Due to these considerations, large-scale

MD simulation is usually required, and gathering sufficient data for modeling

is a significant challenge in itself [3, 14, 39, 94].
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1.3.2 Abstraction for a better understanding

Unfortunately, gaining a conceptual understanding by direct data analysis of

MD trajectories is not very effective, and considering the massive amounts

of data, can be humanly impossible.

For example, Fig. 1.3 shows two MD trajectories of villin headpiece

protein that started from the same initial I0 conformation. However,

at around 1.5 µs, we can see that one trajectory achieves the native

conformation, while the other came close temporarily, before deviating

significantly again. Scientists want to know: “Why?”

Traditional direct data analysis is rather tedious. To know the difference

between the trajectories in Fig. 1.3, it is necessary to visually inspect how

the 3-D structures change at 1.5 µs. However, there can be thousands

of trajectories to compare. Furthermore, due to the stochastic nature of

molecular motion, similar events can occur at different times for different

trajectories. It is even more difficult to understand the sequence of events.

The RMSD in Fig. 1.3 is only with reference to the native conformation.

In order to discover intermediate conformations along the folding process,

it is necessary to include other reference structures for comparison. This either

requires prior knowledge of the protein, or a brute force comparison against

all possible intermediates. More crucially, theories of mechanisms have to

generalize over individual MD trajectories, and yet, be applicable for all

protein molecules with the same sequence, under the same conditions.

Consequently, it is crucial to construct an accurate model of protein

dynamics that abstracts away unnecessary details, and reveal the biologically

interesting events in an easily comprehensible representation. Without

which, the MD trajectories painstakingly obtained from large-scale simulations

will be of rather limited use.
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a) RMSD of all heavy atoms to the native conformation.

I0 PDB: 2F4K
b) Initial (I0) and native (2F4K) conformations.

Figure 1.3: MD trajectories of villin headpiece protein from the
Folding@home project [14, 40]. a) Two trajectories were started from
the same initial I0 conformation. Between 1.3 µs and 1.5 µs, the red
trajectory quickly achieved the native conformation with a RMSD ≈ 3 Å.
While at the same time, the green trajectory also came close to the native
conformation, but quickly deviated afterwards. RMSD is the root mean
square deviation between the Cartesian coordinates of corresponding atoms
in two conformations. For two conformations q and r with n atoms each,

RMSD(q, r) = minT

√
1
n

∑
||qi − Tri||2, where T is a rigid body transform

that minimizes the deviation between the two sets of atomic coordinates [51].
Due to atomic fluctuations, an exact match with RMSD = 0 Å is difficult
to observe in practice.
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1.3.3 Model selection

A key question that arises when constructing a model is:

What is the most suitable model?

This is an important consideration because it is possible to construct

different models from the same set of data. Although a model with a greater

number of parameters has the ability to better fit data, an over-complex

model can also fail to generalize over training data and lose its predictive

accuracy on unseen data. On the other hand, although a simpler model may

be easier to interpret, a model can be too simplistic to provide any useful

information. Since each model offers a different interpretation of dynamics,

it is crucial to have an appropriate criterion to compare between different

models so that the most suitable model can be identified.

1.3.4 Experimental validation

The computational modeling of biology is only possible due to the culmination

of scientific advancement over the centuries. From biology to biophysical

theories, then from MD simulation to models of dynamics, an important

question is whether the resulting MDMs are still biologically accurate.

The ultimate test of accuracy is a direct validation of computational

results against wet lab experiments. However, the molecular nature of

protein motion makes it difficult to observe directly. This means that

only ensemble properties (e.g. a protein’s average folding time) that are

measurable in the wet lab, are usable for comparison and validation.

Computationally, this requires a model to generalize over the individual

trajectories used for its construction, and accurately capture a protein’s

ensemble dynamical properties. More specifically, experimental validation
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requires computable equations that can provide numerical quantities for

comparison against corresponding values measurable in the wet lab. In addition,

the way the quantities are computed has to adhere closely to scientific

theories explaining the dynamical property being compared. It is only with

such experimental validations that computational models can be relied upon

for gaining scientific understanding.

1.3.5 Computational efficiency

The space and time efficiency of modeling protein motion dynamics are

significant challenges. MD trajectories are huge datasets, and building

a compact model that can summarize only the essential details is critical.

Although compactness suggests a simple model, simplicity alone is insufficient.

To understand protein motion, we need compact models that can identify

both the biologically significant conformational changes, as well as the time

of the corresponding change.

More importantly, to be truly useful, a modeling approach must model

a protein with minimal prior knowledge of its motion. This requires an

efficient search for the most suitable model and the interesting timescales.

Consequently, the efficiency of the overall modeling process significantly

outweighs the time it takes to construct a single model at one timescale.

In addition, the choice of a suitable initialization that allows model

parameters to be efficiently optimized is going to be crucial to the success

of the modeling approach.

24



1.4 Contributions and Thesis Overview

1.4.1 Contributions

The main contributions are:

� The Markov Dynamic Model (MDM) proposed here accurately

models long-timescale protein motion as a graphical model that

intuitively identifies both the interesting motions, and the relevant

timescales for analysis.

� A principled criterion is proposed for evaluating the quality of a model

based on its likelihood on MD trajectories. This allows the most

suitable model complexity to be determined, and addresses a main

shortcoming of existing methods.

� Equations are derived to compute ensemble properties of protein motion.

This crucially allows MDMs to be validated against wet lab experiments.

1.4.2 Overview of Thesis

This dissertation is organized as follows:

� Chapter 2 covers the background of the thesis, including a brief

outline of the historical developments and techniques relevant to the

study of protein motion dynamics.

� In Chapter 3, Markov Dynamic Models (MDMs) is proposed for the

modeling of long-timescale protein motion. Motivation for modeling

the dynamics of an energy basin as a hidden state is discussed.

Model construction procedure is given. Results on the widely studied

alanine dipeptide protein demonstrate the key contribution towards

gaining biological understanding.
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� In Chapter 4, a hierarchical model of protein motion dynamics is

proposed to scale up the modeling approach. Reasons for the hierarchy,

the relevance to biology, as well as the gain in space and time efficiency

will be discussed. Model construction procedure is given. Results on

the larger villin headpiece protein demonstrate the usefulness of MDMs

for practical scientific research.

� In Chapter 5, equations to compute ensemble properties are derived.

Ensemble quantities such as mean first passage time are measurable

from wet lab experiments. The equations here allow MDMs to be

directly validated against wet lab experiments. Models of alanine

dipeptide and villin headpiece are validated here.

� Finally, Chapter 6 concludes with a summary of the thesis and

discusses areas with potential for future development.
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Chapter 2

Background

Many attempts have been made in the past to model protein motion dynamics.

Initially, simple approximations have often sufficed because data with

accurate dynamics is scarce. Since long simulations are harder to obtain,

the range of motion that can be studied is also limited. However, with rapid

improvements in MD simulation, data is becoming more readily available.

Consequently, the need for better analysis is becoming increasingly urgent.

In this chapter, various approaches will be discussed. In Section 2.1,

the class of graphical models is highlighted due to their many desirable

properties. In particular, the pictorial representation of graphical models

is extremely beneficial for analysis. By representing the global relationship

across a system as local connections between individual components,

graphical models allow complex interactions to be intuitively presented and

easily comprehended.

In Section 2.2, other approaches are also discussed due to their applications

in specific areas. Although these techniques are more limited, and some do

not have an explicit model, they can still be helpful as a pre-processing step,

or when the range of motion is constrained.
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2.1 Graphical Models of Protein Motion

This thesis proceeds from a series of developments that started with adapting

motion planning algorithms from robotics to model molecular motion [59, 65].

The relevance of robotics to biology is due to the similarity between a robot’s

configuration and a protein’s conformation. The configuration of an

articulated robot is its overall shape, and is usually encoded as orientation

angles of segments of a robot with respect to each other. A protein’s

conformation can be similarly encoded as (φ, ψ) rotation angles along

its polypeptide backbone [19]. The similarity in their representations makes

motion planning algorithms adaptable for protein motion.

In Section 2.1.1, the probabilistic roadmap models are the very first

adaptation from robot motion planning. However, without timing information,

it is actually not a model of dynamics.

In Section 2.1.2, initial Markov Dynamic Models (MDMs) show how time

can be incorporated, but are unspecific in how the states should be defined.

In Section 2.1.3, the point-based MDMs attempt to model each conformation

(without velocity) as a state. However, this violates the Markovian property

because velocity is dependent on history.

In Section 2.1.4, the cell -based MDMs attempt to correct the problem of

point-based MDMs by modeling a region of conformation space as a state.

However, without a systematic criterion for evaluating the model quality,

it is difficult to determine the most suitable model without prior knowledge

of the protein, i.e. number of states.

Consequently, existing graphical models have limited use in practice.

This is because without being able to determine the number of biologically

significant states a protein has, it is difficult to apply existing methods to

investigate new proteins with less well understood dynamics.
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2.1.1 Probabilistic RoadMap models (PRMs)

PRMs are originally used to control the motion of complex robots [59, 65].

The goal is to compute a continuous motion that changes a robot from

a starting configuration to a destination configuration, without collisions.

More precisely, a PRM for a robot is an undirected graph. Each node q in the

graph represents a feasible configuration, and an edge between two nodes

q and q′ represents a reversible, collision-free motion that connects them.

By creating a graph with nodes broadly sampled from the space of all

feasible robot configurations, a PRM can be constructed to control and

move a robot safely to anywhere within its range of possible motions.

The PRM approach was first adapted to model the motion of a flexible

ligand binding with a protein [96]. The modified roadmap is a directed graph.

Each node in the graph represents a sampled ligand conformation, and each

directed edge represents the change from one conformation to another.

Additionally, a heuristic weight is assigned to each directed edge to reflect

the energetic preference for changes that lead to a lower potential energy.

The different paths in the constructed graph represents the different ways

a ligand can move and bind with a protein. By searching the graph for paths

of least resistance (e.g. Dijkstra’s algorithm), PRM has successfully been

used to predict the active binding sites of proteins [96], and the dominant

order of secondary structure formation in protein folding [6].

The main contribution of PRM is in opening up a new class of algorithms

for modeling protein motion. However, the heuristics based PRM is actually

not a model of dynamics. This is because the heuristic weight is only an

indication of the preference for change based on the difference in potential

energy, while the timing of the corresponding change critical to the actual

dynamics is left unspecified.
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2.1.2 Markov Dynamic Models (MDMs)

In order to incorporate time, a PRM can be transformed into a Markov

Dynamic Model (MDM) with stochastic transitions. Instead of heuristic

weights, each edge of the graph now represents a probabilistic transition

that occurs over a certain unit of time. Each graph node becomes a state

with “clocked” transitions. In this way, the motion dynamics can then be

modeled as the state-to-state transitions taking place over time.

However, the inclusion of time requires the issue of history to be

considered in the modeling process. More specifically, the length of

history to take into account for each transition has to be well defined.

Consequently, the Markov assumption is enforced to explicitly bound the

temporal dependency [16, 61]. A first-order Markov chain is simply this:

Given the current state of the system st at time t, the future

outcome of the system st+1 is independent of its past (s0, . . . , st−2, st−1)

p(st+1|s0, . . . , st−2, st−1, st) = p(st+1|st). (2.1)

In many applications, the common practice is to approximate the dynamics

by discrete transitions uniformly spaced in time, and a set of conditional

transition probabilities invariant with time.

Figure 2.1: A first-order Markov chain. The probability of transitioning
from state st at time t, to state st+1 at time t + 1, is independent of
the past (s0, . . . , st−2, st−1).
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2.1.3 From PRMs to point-based MDMs

The first MDM applied to the analysis of molecular motion treated each

node in a PRM as a Markov state, and assigned each edge (q, q′) a transition

probability derived from the energetic difference between the conformations

corresponding to q and q′ [9]. The transformation to MDM is crucial in

allowing a protein’s conformational changes to be temporally correlated

with the time-step of individual transitions. Additionally, the probabilistic

transitions embody the stochasticity of molecular motion. Since each state

represents a single conformation, we call this model a point-based MDM.

The point-based MDM was used to efficiently compute a protein’s

probability of folding (p-fold) [9]. The p-fold value measures the progress

of folding on a scale between 0 to 1, with 0 indicating a protein is totally

unfolded, and 1 being totally folded [38]. P-fold is calculated based on the

ensemble of all possible motion pathways a protein can follow, and is a

significant improvement over the graph search algorithms previously used

in PRMs. Crucially, p-fold enables the dominant energy barrier that limits

the rate of folding to be characterized, and then used to computationally

predict wet lab experimental measures of folding kinetics, such as folding

rates and φ-values [25, 26].

By now, what is becoming evident is that a good sampling of conformations

and an accurate measure of time are both necessary to model dynamics.

Consequently, an improved sampling method made use of MD trajectories to

create the states of a MDM, and thus obtained better coverage of biologically

relevant parts of the conformation space [97]. It is also apparent that the

intuitive analysis made possible by graphical models is useful for modeling

molecular motion.
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2.1.4 From point-based to cell-based MDMs

The transformation from a point-based MDM to a cell-based MDM is an

attempt at correcting a number of problems.

In a point-based MDM, a state represents a single conformation

without velocity. However, a single conformation rarely contains sufficient

information to guarantee the Markovian property fundamental to MDMs.

The reason is that a protein’s motion is determined by both its momentum

and the instantaneous forces it experiences. In the absence of explicit velocity,

history in the form of consecutive conformations can also serve as a

good proxy. Consequently, without velocity or history, a single conformation

is hardly adequate to determine the future motion of a protein.

Additionally, a point-based MDM needs to create a tremendous number

of states in order to achieve sufficient coverage of the conformation space.

However, not only is a comprehensive sampling of the high-dimensional

conformation space impossible, but analyzing thousands or more states for

biological understanding is also humanly inconceivable.

The cell-based MDMs attempt to correct these problems by defining

a state as a region (a cell) of the protein’s conformation space that

roughly matches an energy basin [29, 53, 81]. The idea is that a protein

will interconvert rapidly among different conformations within a basin s

before it overcomes the energy barrier and transits to another basin s′.

The assumption is that after many interconversions within s, the protein will

“forget” its history as it gradually loses the initial momentum that brought

it into s. Therefore, when the protein eventually emerges from s, it will

transit to s′ with a probability dependent only on s, and is thus Markov.

The much fewer states based on regions is also more amenable for analysis.
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In order to construct a cell-based MDM with K states, MD trajectories

are first used to create a large number of microstates. The microstates are

then clustered into a small number of K states in a way that maximizes

the sum of self-transition probabilities over the K states [29]. The process

of creating the microstates and clustering them is iterated to adjust the

boundaries between the cells. Ideally, each cell of the final model will outline

a biologically significant energy basin and capture its dynamics.

However, clustering microstates into the K states of a cell-based MDM

is only applicable when the actual number of energy basins is precisely K.

This requires prior knowledge of the protein. If K is wrong, the resulting

cell-based MDM will falsely identify biologically inaccurate regions as

distinct energy basins. This raises doubts about the generality and accuracy

of cell-based MDMs.

In addition, energy basins may not be well separated enough to be

precisely partitioned into individual cells. Instead of lumping a number

of closely connected energy basins into a single cell, identifying their tightly

coupled dynamics is potentially much more interesting.

More importantly, the optimization based on self-transition probabilities

is unable to determine the most suitable value ofK. This is because although

a trivial one-state model has the optimal self-transition probability of 1,

it is rather uninformative. Therefore, without a systematic criterion for

evaluating model quality, it is difficult to determine the actual number of

energy basins. This significantly limits the usefulness of cell-based MDMs

in the investigations of new proteins with unknown dynamics.
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2.2 Other Approaches

The key to modeling protein dynamics is to capture the change of

conformation with respect to time. However, due to the structural

complexity of biological molecules and their broad range of motion timescales,

each of the following approaches only addresses a specific area of concern,

and comes with various limitations.

Gaussian network models (Section 2.2.1) is only applicable to motion

near the native conformation. This is due to its approximation of motion

according to harmonic oscillations. Although this greatly simplifies the

complexity of motion, it is an unsuitable approximation for the long-range

motion of folding.

The reaction coordinate (Section 2.2.2) measures the progress of a

protein’s change in conformation, e.g. folding motion. Although reaction

coordinate is theoretically applicable to the whole range of protein motion,

it is difficult to compute in practice. More crucially, knowing the extent

of conformational change alone is insufficient for a model of dynamics.

The reason is that the change needs to be correlated with time in order

to predict dynamics.

Dimension reduction (Section 2.2.3) is useful for identifying major

conformational changes in the high-dimensional MD data. Unfortunately,

linear techniques are only appropriate for local motions near the native

conformation. Although non-linear techniques are also available, dimension

reduction usually only captures the range of motion, but not time.

Consequently, the result is not a model of dynamics that can predict the

change of conformation over time.
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2.2.1 Gaussian network models

Gaussian network models are used to understand a protein’s motion

near its native conformation. A Gaussian network model represents

a protein molecule as a mass-spring system, and approximates its motion

as fluctuations about an equilibrium [13, 45]. The model is constructed

by first assuming the native conformation to be the equilibrium position.

Then, each atom or amino acid is represented as a node, and each node

is connected to other nodes within a cutoff distance rc by elastic springs to

form an elastic network. The protein’s motion about its native conformation

is then mimicked by the harmonic oscillations of the mass-spring system,

and the approximated fluctuations are Gaussian distributed.

More specifically, the network of nodes and springs representing the

protein’s structure is encoded as the Kirchhoff or connectivity matrix Γ.

Each element Γij is based on the distance between the ith and jth nodes:

Γij =



−1 if i 6= j and Rij ≤ rc

0 if i 6= j and Rij > rc

−
N∑
i,i 6=j

Γij if i = j


, (2.2)

where for N nodes, Rij is the distance between the ith and jth nodes,

and rc is the cutoff distance between interacting nodes, usually around 7Å.
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In order to analyze the motion of the protein molecule, it is necessary to

first decompose Γ−1:

Γ−1 = U (Λ−1) UT

=

N∑
i=2

λ−1
i uiu

T
i , (2.3)

where the columns of the matrix U are the eigenvectors ui of Γ, and the

elements of the diagonal matrix Λ are the corresponding eigenvalues λi [45].

The first eigenvalue of Γ is zero and corresponds to the zero net translation

of the molecule, therefore, it is not included in the summation of Eq. 2.3.

Therefore, the motion of a protein molecule can be seen as the sum of

different modes of motion. Each eigenvector indicates a mode of motion

based on a particular contributing combination of network nodes, and the

associated eigenvalue indicates its relative significance to the overall motion.

The key benefit of this analysis is that the motion of the protein molecule

can be reconstructed and animated by using individual modes, or a set of

modes for a more general understanding. More importantly, the correlated

fluctuations of the network nodes can be validated against X-ray measured

experimental quantities known as β-factors [11, 12].

The main disadvantage of Gaussian network models and related methods

based on elastic networks [10, 49, 109, 114] or normal mode analysis [31, 70]

is that they are only applicable to short range motions near an equilibrium.

Additionally, the structure of the elastic network deviates from the actual

network of bond interactions that is maintaining a protein’s conformation.

The dissimilar strengths of different chemical bonds are also unaccounted for.

These shortcomings can potentially distort the analysis of concerted motions

between different parts of a molecule, or the binding between molecules.
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2.2.2 Reaction coordinate

The purpose of finding the reaction coordinate is to better understand

significant rate limiting events by mapping them out along a principal axis.

Traditionally, the reaction coordinate of a chemical reaction is the path

of minimum energy resistance from the initial to the final states of the

reaction [36]. Similarly, protein folding can also be described as a reaction

occurring along a reaction coordinate, or the path of least resistance.

If scientists can understand the order of events along the reaction coordinate

and identify the reasons that prevent a protein from folding according to the

desired rate or form, better molecules may be designed and engineered.

However, to analytically choose a reaction coordinate for protein folding

requires a priori understanding of the detailed protein motion trajectory.

Moreover, due to the high degrees of flexibility, not all proteins can have their

motion described and understood along a single pathway. To address this,

Du et al. introduced the notion of probability of folding (p-fold) [38].

In a folding process, the p-fold value of a conformation q is defined as the

probability of a protein to reach the native conformation before reaching an

unfolded conformation, taking into account all possible pathways starting

from conformation q. Therefore, p-fold measures the kinetic distance

between conformation q and the native conformation, and allows the

sequence of structural formation of the folding process to be identified.

The use of p-fold as a reaction coordinate is advantageous because

it takes into account all possible pathways. However, calculating p-fold

is nontrivial because it requires the simulation of infinite trajectories.

Fortunately, a technique called Stochastic Roadmap Simulation (SRS) was

developed to compute p-fold efficiently [9], and has allowed experimental

quantities such as folding rates and φ-values to be predicted [25, 26].
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2.2.3 Dimensionality reduction

Instead of building simplified dynamic models, one may also analyze

MD simulation data directly through dimensionality reduction methods.

However, dimensionality reduction does not provide a predictive model that

generalizes the original data. Additionally, without the time component,

dimensionality reduction is not able to provide a dynamically accurate

representation of the original data.

Linear dimensionality reduction

Principal Component Analysis (PCA) is a technique commonly used in data

analysis to reduce the dimensionality of data, while retaining as much of

the variance in the data as possible [58]. PCA makes use of orthogonal

linear transformations to convert data points from the original observation

space into data points in a new vector space. The transformation is done

such that the first vector, the principal component, contains the greatest

variance among the data points. Subsequent vectors constitute decreasing

amounts of variance in the data. By retaining the most significant vectors, a

substantial portion of the total variance can be preserved within a reduced

dimension space.

PCA is commonly used to analyze near equilibrium motions such as

the fluctuations about a protein’s native conformation [5, 69, 105, 106].

Due to the short range motion of such fluctuations, linear dimensionality

reduction can often extract the major modes of motion while removing much

of the noisy, high-frequency vibrations. The obvious downside is that for

conformational changes involved in the folding process, motion is likely to

be nonlinear, and linear dimensionality reduction techniques are likely to

introduce artificial distortions.

38



Nonlinear dimensionality reduction

Nonlinear dimensionality reduction methods attempt to alleviate the limitations

of linear techniques. A commonly used technique involves making use of a

nearest-neighbor graph to embed relationships in the original data into a

low dimensional nonlinear space [33, 37, 84, 90].

The key to the embedding is to preserve the geodesic, or shortest path,

distance between the original data points [104]. For neighboring points,

direct distance in the original space well approximates the geodesic distance.

For two faraway points, the geodesic distance can be approximated by a

sequence of shortest paths that connects them via some intermediate points.

Therefore, the shortest paths in a nearest-neighbor graph can be used to

provide a good approximation of the geodesic distance in the original data.

In order to embed the original data, a geodesic distance matrix is created

using the shortest-path distance between all pair-wise data points in the

nearest-neighbor graph. Multidimensional scaling via eigen-decomposition

of the geodesic distance matrix can then be applied to obtain a nonlinear

embedding. The resulting embedding minimizes the difference in geodesic

distances between the original space and the embedded space [104].

However, the major drawback of dimensionality reduction techniques

is that they do not provide a predictive model of the motion dynamics.

Even though dimensionally reduced data can approximately exhibit the

same range of motion, and if timestamped according to MD simulation,

can exhibit similar motion dynamics, but it is only a simplified version of

the original data with little predictive power of the phenomenon in general.

Consequently, although tremendously useful, dimensionality reduction is

better suited as a pre-processing step in the modeling of protein motion

dynamics.
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Chapter 3

Modeling Motion Dynamics

with Hidden States

The limitation of wet lab techniques to directly observe proteins in

motion frustrates scientists who seek a more fundamental understanding

of molecular biology. However, with the progress of computer science and

MD simulation, the mathematical modeling of protein motion is becoming

increasingly feasible (Section 1.2).

A model is both a representation as well as a tool to assist understanding.

For biologists, the usefulness of a model is measured by the amount of

biological insight it can help to unravel. Therefore, a useful model of

protein motion has to accurately identify biologically significant events,

and discard noise, from among a tremendous number of MD trajectories.

Moreover, in order to assist understanding, a useful model has to capture

the biologically significant motions in a simple and easily comprehensible

representation. These requirements lead us to the challenge of creating

a model that can automatically and efficiently summarize MD trajectories

in a compact representation that reveals scientific insight.
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3.1 Protein Motion and Dynamics

The dynamics of a protein’s motion is about its change of conformation

over time . This includes both the direction and magnitude of change,

as well as the timing of change. More importantly, scientists are keen to find

out what makes a protein change its conformation, this requires knowing the

sequence of conformational change.

3.1.1 Simulating change of conformation over time

The motion of a protein molecule is the aggregate result of complex

interactions among a protein’s atoms, as well as between the protein and

other molecules in its environment. MD simulates protein motion by taking

into account forces acting on atoms of the protein molecule, and atoms in

its environment, e.g. water:

V = Vcovalent + Velectrostatic + Vwaals︸ ︷︷ ︸
non−bonded interactions

, (3.1)

where V is the total potential energy of the system. The covalent

interactions Vcovalent are due to the arrangement of bonded atoms with

respect to each other in the same molecule, which is fewer in number.

The non-bonded interactions are due to the interaction between all atoms

in the system, and is much more numerous [44, 66].

Since each term in Eq. 3.1 is dependent on the distance between atoms,

not only do different protein conformations experience different forces, even

in the same conformation, a protein can experience different forces due to

differences in its environment. Consequently, the same folding event can

occur at different times for different molecules of the same protein, as we

saw earlier in the villin headpiece trajectories in Fig. 1.3 (page 22).
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3.1.2 A Markovian abstraction of dynamics

Unfortunately, MD simulation generates massive amounts of data and is

difficult to analyze. More importantly, among the numerous trajectories,

what is truly biologically interesting is the ability of different molecules of

the same protein, to attain the same native conformation. Therefore, it is

the ensemble behavior of protein molecules that is biologically important.

However, a protein’s motion is also dependent on the velocities of atoms

in the system. The dependence on velocity is the reason that MD simulation

is required to study protein motion, because velocity is the result of a

molecule’s past interactions with its environment. Without simulation, it is

difficult to predict how a particular conformation will change over time.

Without a large number of trajectories, it is difficult to know the ensemble

behavior of protein molecules in solution.

This dependency on velocity is also a main source of difficulty faced by

previous attempts at modeling protein motion dynamics. This is because the

need to analyze MD data collectively requires an abstraction that generalizes

over individual trajectories. Previous attempts at constructing MDMs have

tried to satisfy the Markovian property. However, the important issue of

identifying the number of biologically significant states remains unresolved.

More importantly, the abstraction of the velocity space is nontrivial.

Predicting a protein’s motion without knowing its velocity involves significant

assumptions about the uncertainty in its dynamics. It requires finding a

compatible match between the underlying phenomenon and the Markovian

model assumptions, as well as mutually verifiable observables. This crucial

abstraction is essentially what we are searching for.
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3.2 Markov Dynamic Models with Hidden States

A Markov Dynamic Model (MDM) Θ of a protein can be represented as a

weighted directed graph. A node s of Θ represents a state of the protein, and

a directed edge (s, s′) from node s to s′ represents a transition between the

corresponding states. Each edge (s, s′) is assigned a weight ass′ representing

the probability that the protein in state s transitions to state s′ in a time

step of fixed duration 4t. The probabilities associated with the outgoing

edges from any node s must sum up to 1. The duration 4t is the time

resolution of the model.

A MDM describes how the state of the protein changes stochastically

over time. Given an initial state s0 of the protein at time 0, a MDM can be

used to predict a sequence of future states {s1, s2, . . . , etc.}, where st is the

state of the protein at time t × 4t for t = {1, 2, . . . , etc.}. If st = s, then

the next state st+1 can be predicted by choosing an outgoing edge (s, s′)

from s with probability ass′ and setting st+1 = s′. The simple and explicit

structure of MDMs allows such predictions to be computed efficiently.

In a point-based MDM, a state represents a single conformation, whereas

in a cell-based MDM, a state represents a set of conformations (Section 2.1).

The definition of states is crucial. The choice of a single conformation as

a state is more precise than the choice of a set of conformations. However,

choosing a single conformation as a state causes serious violation of the

Markovian property and consequently reduces the predictive power of the

point-based MDM. Therefore, the question is:

What should be a state?
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3.2.1 Why hidden states?

By defining a state as a subset of the protein conformation space, rather

than a single conformation, cell-based MDMs achieve the dual objectives

of better satisfying the Markovian assumption and reducing the number

of states (Section 2.1). Even though this is a major step forward,

cell-based MDMs still violate the Markovian assumption in a subtle way.

Consider a protein at a conformation q near the boundary of a cell.

The future state of the protein is not only dependent on q, but is also

highly dependent on the protein’s velocity, in other words, on the past

history of how the protein reached q. Therefore, by requiring each

conformation to belong to a single state, cell-based MDMs violate the

Markovian assumption. This is especially so near the cell boundaries,

where a slight difference in conformation can drastically affect the state

assignment. Similar violations also occur in cells corresponding to shallow

energy basins, where a conformation’s momentum will carry it further before

it is overshadowed by the force of the relatively flat energy surface.

One way of avoiding such violations is to define more refined states using

both conformation and conformational velocity. However, the additional

velocity dimension necessarily increases the number of states, thus partially

reversing a key advantage of cell-based MDMs. Furthermore, a much larger

dataset is needed for model construction in order to capture the detailed

transition probabilities among the refined states.

In contrast, in order to satisfy the Markov assumption, we propose

to assign every conformation to multiple states and use probability to capture

the uncertainty of state assignment. This leads us to a MDM with

hidden states, formally, a Hidden Markov Model (HMM).
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3.2.2 Hidden Markov Models (HMMs)

Figure 3.1: A Hidden Markov Model (HMM). st is the hidden state at time t.
qt is the observed conformation at time t and is dependent on state st.
The probability of transitioning from state st at time t, to state st+1

at time t + 1, is independent of the past (s0, . . . , st−2, st−1), and is also
independent of qt, for t = {0, 1, . . .}.

In an HMM, the state is not directly visible, while the observed data is

dependent on the state (Fig. 3.1).

Our HMM MDM for protein dynamics is defined as Θ = (C,S, A,Π, E):

� The conformation space C of a protein.

� The set of states S = {i | i = 1, 2, . . . ,K}.

� A = {aij | i, j = 1, 2, . . . ,K}, where aij = p(st+1 = j|st = i) is the

probability of transitioning from state i ∈ S to state j ∈ S in a single

time step of duration 4t.

� Π = {πi | i = 1, 2, . . . ,K}, where πi is the prior probability that the

protein is in state i ∈ S at time t = 0.

� E = {ei(q) | i = 1, 2, . . . ,K, q ∈ C}, where ei(q) = p(q|st = i) is the

emission probability of observing conformation q when the protein is

in state i ∈ S, and is invariant for any time t.
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The state space S is discrete, while the conformation space C is continuous.

Intuitively each hidden state i ∈ S loosely matches a basin in the

protein’s energy landscape, and the corresponding emission probability

ei(q) = p(q|st = i) connects each hidden state with the observed conformations

by modeling the distribution of protein conformations influenced by the basin.

In an HMM MDM, we cannot assign a conformation q to a unique state.

Instead we calculate p(st = i|q), the probability that q belongs to a state i.

The uncertainty in state assignment arises because at the conformation q,

the protein may have different velocities, as well as other differences that we

choose not to model or do not know about. For instance, if conformation q

is on a relatively flat energy landscape and we do not know its velocity,

we cannot be certain how q will change. We model the uncertainty due

to this lack of information with the emission probability distributions.

Therefore, we estimate the probability that q belongs to a particular state,

and by extension future states, based on the proportional outcome of the

trajectories that have crossed q in the past.

In contrast, a cell-based MDM in Section 2.1 partitions the conformation

space into disjoint regions C = {C1, C2, . . .}, and each state i represents

a particular region Ci. As a result, a conformation q can be assigned to

a unique state. If we define the HMM MDM’s emission probability ei as

a step function such that ei(q) is a strictly positive constant for q ∈ Ci,

and 0 otherwise, then the states are no longer hidden, and our model

degenerates into a cell-based MDM. Therefore, our distribution-based

models provide a more general abstraction than cell-based MDMs.

Even though hidden states has been used to model protein structure [50],

the goal there was to capture the variations in an ensemble of static protein

structures from NMR experiments, rather than the motion dynamics.
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3.2.3 What is a good model?

Another difficulty with cell-based MDMs in Section 2.1 is the lack of

a principled criterion for evaluating model quality. Cell-based MDMs are

constructed to maximize the self-transition probabilities for the states [29].

This criterion, however, results in the paradoxical conclusion that a trivial

one-state model encompassing the whole conformation space is perfect.

This is because all transitions are self-transitions of the only state, and

as such, can be predicted with absolute certainty. Since simple models are

usually preferred, how can we decide that a simple model, such as the trivial

one-state model, is not as good as a more complex one?

Originally, the purpose of building a model Θ from a dataset D of

MD trajectories is to better understand a protein’s motion. Additionally,

for experimental validation and scientific understanding, we want to use

model Θ to predict a protein’s kinetic and dynamic properties, e.g. mean

first-passage times [66], p-fold [38], transition state ensembles [66], . . . etc..

Ideally, we want to compare the predictive power of alternative models on all

such properties, and then pick the most accurate model for scientific study.

Unfortunately, we may not have comparable values of all known properties

in advance, and we also do not know what other properties might be useful

in the future.

Fortunately, since the kinetic and dynamic properties of a protein

are determined by its motion and molecular interactions, we can check

instead the ability of the model Θ to predict the MD trajectories. In our

HMM MDM framework, we do this by calculating the likelihood p(D|Θ),

which is the probability that a dataset D of MD trajectories will occur

under the model Θ. The likelihood p(D|Θ) measures the quality of Θ.
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Specifically, let D = {Di | i = 1, 2, . . .} be a dataset of MD trajectories.

Each trajectory Di is a sequence of protein conformations (q0, q1, . . . , qT ),

where qt is the protein conformation at time t × 4t. The likelihood of

model Θ for a trajectory Di is:

p(Di|Θ) =
∑
Q∈ST

(
p(s0)

T∏
t=1

p(st|st−1)
T∏
t=0

p(qt|st)
)
, (3.2)

where st is the state of the protein at time t ×4t, while p(s0), p(st|st−1),

and p(qt|st) are given by the parameters Π, A, and E of Θ, respectively [16].

The summation
∑

Q is performed over all possible state assignments

Q = (s0, s1, . . . , sT ) ∈ ST to the conformations (q0, q1, . . . , qT ) in trajectoryDi.

The likelihood of Θ for the entire dataset D is:

p(D|Θ) =
∏
i p(Di|Θ). (3.3)

Therefore, in order for a model Θ to score well in Eq. 3.3, it has to accurately

predict the change of conformation over time for all MD trajectories.

In contrast to cell-based MDMs in Section 2.1, the likelihood p(D|Θ)

provides a quantitative measure of model quality that enables us to compare

models with different number of states. This is possible because our model

makes use of emission probabilities ei(q) = p(q|st = i) to connect

states with conformations. Whereas a cell-based MDM does not even

attempt to predict the conformations. In fact, the likelihood criterion

shows that a trivial one-state MDM is bad. For a one-state MDM,

although the transition probability p(st|st−1) = 1 is perfect for all t, emission

probabilities p(qt|st) are small because the model relies on a single state to

capture variability over the entire conformation space. Hence, the overall

likelihood p(D|Θ) of a one-state MDM is bad.
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3.2.4 Benefits and limitations

The key benefit of modeling an energy basin as a hidden state is that

it allows us to build a MDM that satisfies the Markovian property.

When a protein converts rapidly between closely related conformations

within an energy basin, it loses the initial momentum it had when it

first entered the energy basin. This allows the protein’s transition to the

next energy basin to be independent of history, and is therefore Markov.

Consequently, an HMM MDM accurately represents the change of a protein’s

conformation between energy basins as Markovian transitions between states.

The likelihood score in Eq. 3.3 plays the critical role of allowing us to

quantitatively measure the ability of a model to predict the dynamics of

MD trajectories. By comparing the likelihood scores of different models on

the same dataset D, we can objectively determine the suitable number of

states, and identify the biologically significant energy basins of the protein.

The successful characterization of the energy basins, and the accurate

prediction of transitions among them, provide a compact abstraction of the

original data useful for understanding a protein’s dynamics.

Additionally, modeling the conformations of each energy basin as a

probabilistic distribution over the entire conformation space is beneficial.

The emission probabilities p(qt|st) allow us to capture the inherent uncertainty

of conformations, especially those mid-way between energy basins, by assigning

them to multiple states. More importantly, probabilistic distributions allow

states to overlap each other. When an excess state overlaps directly on top

of another state, it contributes little to the likelihood score (Section 3.3.5).

Therefore, for K energy basins, the likelihood score is expected to plateau

when the number of states exceed K. This is the primary reason that we

are able to determine if a model is sufficiently complex.
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Furthermore, one goal of modeling is to predict a protein’s kinetic and

dynamic properties. Since our model is constructed from MD trajectories,

a basic question is: “How can the model provide better predictions than the

MD trajectories themselves?” The answer is that the model generalizes the

data under the Markovian property and thus contains a lot more trajectories

than the data used to construct the model. Consider, for example, a dataset

containing two trajectories with state sequences (s0, s1, s2) and (s′0, s1, s
′
2).

Using the Markovian property, the model assumes that two additional

state sequences (s0, s1, s
′
2) and (s′0, s1, s2) are also valid. By combining the

trajectories, the model generates exponentially more trajectories than the

dataset contains. If the assumption of the Markovian property is valid, then

the resulting model is a more accurate approximation of the underlying

protein dynamics and can better predict kinetic and dynamic properties.

A related question is: “With MD trajectories at the nanosecond scale,

how can the model predict events at the microsecond or millisecond scale?”

Again, using the Markovian property, the model concatenates short simulation

trajectories into much longer ones [29, 30], and uses them to predict

long-timescale kinetic and dynamic properties. This approach can succeed

even for large proteins, if the transitions between stable energy basins are

relatively fast enough to be simulated, they can be reliably estimated and

effectively concatenated [47].

At the same time, our model cannot have state transitions not implied by

the original simulation trajectories and thus does not address the question

of how to sample the conformation space comprehensively and efficiently.

This is a difficult problem, but it has also seen rapid progress in recent

years [87, 97]. Advances in sampling methods will provide better simulation

data and improve the quality of the resulting models.
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3.3 Model Construction

The process of modeling protein motion dynamics is a search for the

most suitable model across both space and time. In terms of space, we

are interested in discovering the number and structural characteristics of

biologically significant conformations, i.e. states. In terms of time, we are

interested in characterizing the different timescales of a protein’s motion.

Most crucially, it is through the transitions between states over time, that

we can better understand a protein’s motion and function.

We will begin by first assuming that the timescale of interest is

known and search for models across the number of states. The reason

is that a protein’s folding time is easier to ascertain through wet lab

experiments [78, 79], as compared to the precise sequence of folding events.

In Chapter 4, we will relax our assumption on timescale, and build

hierarchical models that identify the interesting timescales of dynamics.

Under the likelihood criterion, we want to construct eachK-state model Θ

such that it maximizes p(D|Θ) for a given dataset D of MD trajectories.

Expectation Maximization (EM) is a standard algorithm for such optimization

problems. However, EM is computationally intensive. It may also get stuck

in local optima and fails to find the model with maximum likelihood.

In order to alleviate the difficulties of EM, we take advantage of

the density of conformations near energy basins and attempt numerous

initializations before utilizing EM. We proceed as follows:

� We pre-process the MD trajectories to remove “noise”, i.e. motions at

timescales much quicker than that of interest. The data is also divided

into separate training Dtrain and test Dtest sets.
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� We useK-medoids algorithm to identify compact clusters of conformations.

Intuitively, each cluster represents a possible energy basin, and will

serve as the basis of a state when creating the initial MDM Θ0.

Since clustering is much faster than EM, we can afford to run the

clustering algorithm numerous times and choose the best result.

This reduces the chance of ending up with a bad local optimum.

� We use the clustering information to create an initial MDM Θ0.

A state is created based on the distribution of a corresponding cluster.

In addition, each trajectory is labeled according to the sequence

of clusters it traverses. The labeling provides an approximation of

dynamics that allows us to estimate the parameters of Θ0.

� We initialize EM with Θ0 and optimize for the K-state model Θ with

maximum p(Dtrain|Θ). Due to the use of K-medoids, parameters of Θ0

are already well estimated, and only a few iterations of EM is needed.

� Finally, we score the model Θ on the test dataset Dtest, compare the

score to other models with a different number of states, and choose

the most suitable model ΘK .

3.3.1 Data preparation

We first consider the sub-sampling of MD trajectories according to the

timescale of interest. The temporal resolution 4t of a model is determined

by the time between successive conformations along trajectories used

for training. If 4t is too slow, the model may miss biologically interesting

events. If 4t is too fast, the model will try to capture uninterestingly fine

details and become unnecessarily complex. Also, the model’s accuracy may

suffer due to the influence of non-Markovian high-frequency fluctuations.
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In our experiments, h is typically set to be 1/100 to 1/10 of the timescale

of interest. We then apply standard signal processing techniques [69, 80, 93]

to smooth and sub-sample every MD trajectory by taking successive

conformations spaced 4t apart. If smoothing is incorporated into MD to

direct the simulation in real-time, it will also be beneficial for the quick

exploration of biologically relevant parts of the conformation space [69, 82].

3.3.2 K-medoids clustering

The ideal modeling algorithm should not require prior knowledge of the

protein’s dynamics. Although knowing a protein’s biologically significant

conformations can allow us to directly initialize the states of a model, relying

on such information will also limit the usefulness of the algorithm. However,

this broadens the search for the most suitable model.

In order to create an efficient modeling algorithm, we take advantage of

the density of conformations to attempt different initializations. This is possible

because the states in our model correspond to energy basins. Within an

energy basin, a protein interconverts rapidly, this allows inter-state protein

motions to satisfy the Markovian property. The rapid interconversion results

in a high-density cluster of conformations roughly centered at each energy

basin. Intuitively, if we can first locate the clusters of conformations, we can

then locate the energy basins, and subsequently build a model of dynamics.

Therefore, the idea is to first identify the clusters of conformations, and then

make use of each cluster to initialize a hidden state in our MDM.

More importantly, the use of K-medoids clustering allows us to identify

the most significant energy basins first. This is important because energy

basins are not necessarily well-separated enough to be considered distinct

entities. Since the K-medoids algorithm minimizes the sum of intra-cluster
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distances [16], it favors the initial identification of large clusters of densely

packed conformations. These initial clusters are likely to be broad, and due

to the insufficient model complexity, are also likely to encompass smaller

clusters internally. Only when the number of states increases, can the smaller

clusters be individually characterized. Since each cluster is used to initialize

a state, K-medoids beneficially allows us to initially model tightly coupled

energy basins collectively as one, and when the number of states is sufficient,

to characterize them individually.

We proceed by treating the training data Dtrain as a set of conformations,

but without time information . We then use K-medoids algorithm to

group the conformations into K clusters, for a particular K. Although

K-medoids clustering does not create a model of dynamics, each resulting

cluster will be used later to initialize a hidden state of a MDM. More importantly,

since clustering is relatively cheap, we can afford to run K-medoids multiple

times with random restarts, and choose the best clustering result. This helps

us to efficiently avoid creating models stuck in local optima [46, 102].

The resulting K clusters of conformations implicitly define a K-partition

of the conformation space, with the boundary between partitions delineated

by the separation between clusters. However, this K-partition may not

be an accurate demarcation of the energy basins. If K is too small, two

energy basins may be erroneously lumped together as one partition, with

the center of the partition far away from the actual bottoms of the energy

basins. If K is too large, an energy basin may be artificially partitioned

into two. Consequently, the clustering only provides an indication of the

locations of possible energy basins, and we do not have a model of dynamics

at this stage yet.
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3.3.3 Initialization

There are two aspects of an HMM MDM that need to be initialized. First,

the emission probabilities that characterize the states need to be initialized.

Since a state loosely correspond to an energy basin, the location and

dimension of its distribution of conformations is modeled as a temporally

static property in our MDM. Consequently, we assume that each cluster

obtained from K-medoids represents the distribution of conformations

influenced by a hidden energy basin. This allows us to quickly initialize

the emission probabilities directly from the results of K-medoids clustering.

However, in order to capture dynamics, we need to incorporate time and

parameterize the transitions that capture the change of conformation.

The key to this is the K partitions implicitly defined by the K clusters.

The K partitions reveal the “hidden” nature of states and allow us to assign

each conformation unambiguously to a single state. This allows us to label

each trajectory Di = (q0, q1, . . . , qT ) by an unambiguous sequence of states

Qi = (s0, s1, . . . , sT ), where st is the state of the conformation qt at time t.

The labeling provides an approximation of dynamics that allows us to

estimate the transition probabilities. Details are as follows.

Emission probability distributions E0 = {ei(q)}

The emission probability ei models the distribution of protein conformations

of state i. Consequently, the complexity of ei determines the precision

in which an energy basin can be characterized. We have two main

considerations in choosing ei. First, it should match the distribution

of conformations influenced by an energy basin. Second, it should be simple

enough to be learned effectively with our limited amount of data.
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Under the theoretical framework of energy minima acting as basins of

attraction [36, 44, 66, 86], we approximate ei with a Gaussian distribution:

ei(q) = N (q|µi, σ2
i ) =

1

(2πσ2)1/2
exp
(
− 1

2σ2
d2(q, µi)

)
, (3.4)

where q is a conformation, µi is the conformation at the center of state i,

σ2
i is the variance of state i, and d(q, µi) denotes a suitable distance measure

between conformations q and µi. Other distributions are also possible.

Here, we assume a one dimensional Gaussian distribution, because

RMSD or the graph based distance we used for the large villin protein are

one dimensional (Chapter 4). However, higher dimensional distributions can

also be used, as is the case for our synthetic examples (Section 3.4.1) and

alanine protein (Section 3.4.2). To estimate ei(q), we only need to consider

conformations within state i:

µi = arg min
q

∑
Di∈Dtrain

T∑
t=0

{d(q, qt) | st = i}, (3.5)

σ2
i =

∑
Di∈Dtrain

∑
T

t=0 {d2(µi, qt) | st = i}∑
Di∈Dtrain

∑
T

t=0 δ(st = i)
, (3.6)

where q is any conformation within state i, qt is the conformation of a

particular trajectory Di at time t, st is the state of qt, and d(qi, qj) is the

distance between conformations qi and qj .

The high degree of conformation flexibility of a protein entails that the

energy landscape is highly convoluted when the protein is compact and

hard collisions between atoms are frequent. As a result, the distribution

of conformations near the native state can be incredibly complicated.

Therefore, if sufficient data is available, it is also possible to use a simpler

distribution early in the training process for efficiency reasons, and then
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switch to a more complex distribution after the number of states has been

determined, to further characterize the energy basins.

Prior probability Π0 = {πi}

The prior πi = p(s0 = i) is the probability that the protein is in state i at

time t = 0. The dependency on time means that we need to make use of

the sequence of states Qi = (s0, s1, . . . , sT ) when estimating the parameters.

However, we only need to count the first state s0 traversed by each trajectory

Di = (q0, q1, . . . , qT ):

πi =

∑
Di∈Dtrain

δ(s0 = i)

N
, (3.7)

where δ(·) evaluates to 1 if the condition is true, and
∑

Di∈Dtrain
sums over

all N trajectories in Dtrain.

Transition probability A0 = {aij}

The transition probability aij = p(st+1 = j|st = i) is the probability of

transitioning from state i to state j in a single time step. Therefore, we

make use of the sequence of states Qi = (s0, s1, . . . , sT ), and count the

successive states traversed by each trajectory Di = (q0, q1, . . . , qT ):

aij =

∑
Di∈Dtrain

∑
T−1
t=0 δ(st = i, st+1 = j)∑

Di∈Dtrain

∑
T−1
t=0 δ(st = i)

, (3.8)

where T is the last time step of each trajectory, and the denominator is the

sum of all the transitions from state i.

Therefore, instead of the more expensive EM algorithmO(K2T ) (Section 3.3.4),

the unambiguous sequence of states Qi allows us to efficiently initialized the

transition probabilities in O(T ) time.
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3.3.4 Optimization

The model Θ0 initialized with K-medoids clustering is only an initial step.

In particular, Θ0 is estimated from the clustering criterion of minimizing

the sum of intra-cluster distances between conformations. This is different

from the likelihood criterion based on the accuracy of predicting a temporal

sequence of conformations (Eq. 3.2). Therefore, although Θ0 is a model of

dynamics, it has not been optimized for its purpose.

For optimization, we initialize the EM algorithm with Θ0 and search

for a K-state HMM MDM Θ that maximizes the likelihood p(Dtrain|Θ).

EM iterates over two steps, expectation (E) and maximization (M), and

improves the current model until no further improvement is possible.

The distinction between the optimization via EM and the initialization

via K-medoids is the probabilistic distribution over the hidden states.

For a particular conformation qt at time t, instead of an absolute assignment

to one state, we now use a probabilistic assignment over all states (E-step).

Instead of simple counting to estimate the model parameters Θ = (Π, A,E),

we need to use a weighted average (M-step).

Inspection of Eq. 3.2 shows that the main difficulty is the summation of

all possible state assignments Q = (s0, s1, . . . , sT ) ∈ ST to the conformations

(q0, q1, . . . , qT ) along a trajectory Di. Performing this summation by brute

force takes time O(KT ), which is exponential in the length T of the

trajectory. EM overcomes this difficulty through dynamic programming in

O(K2T ) time [4, 16, 61]. In practice, the length T of a trajectory is usually

orders of magnitude larger than K.
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Expectation (E) step

The purpose of E-step is to calculate a probability distribution of the missing

state labels using the current estimate of the model parameters, so that we

can re-estimate the parameters in the M-step [4, 16, 61].

Given a trajectory Di = (q0, q1, . . . , qT ) of length T and model Θ,

we proceed in two phases. First, we compute variables αt(i) and βt(i)

that estimate the hidden states by accounting for only a partial trajectory.

Then, we combine αt(i) and βt(i), and compute variables ξt(i, j) and γt(i)

that estimate the hidden states by accounting for the whole trajectory.

First, the forward variable αt(i) = p(q0, q1, . . . , qt, st = i) is the probability

of observing the partial sequence (q0, q1, . . . , qt) up till time t and being in

state i at time t. αt(i) can be calculated recursively:

� Initialization:

α0(i) = p(q0, s0 = i)

= p(q0 | s0 = i)p(s0 = i)

= πiei(q0), (3.9)

� Recursion:

αt+1(j) = p(q0, q1, . . . , qt+1, st+1 = j)

=

[
K∑
i=1

αt(i)aij

]
ej(qt+1), (3.10)

where πi is the prior probability that the protein started in state i, and

ei(q0) is the probability of observing conformation q0 when in state i.
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In Eq. 3.10, αt(i) is the probability of observing the conformations up

till time t and ending in state i at time t. By following a transition aij from

state i to state j, we can account for the next conformation qt+1 at time t+1.

Therefore, by summing over all states at time t,
∑

K

i=1 in Eq. 3.10 accurately

accounts for all possible sequences that lead to state j at time t+ 1.

However, αt(i) only accounts for the partial trajectory up till time t,

and we need to compute a similar variable, in reverse temporal sequence.

We define the backward variable βt(i) = p(qt+1, qt+2, . . . , qT | st = i) as the

probability of being in state i at time t and observing the partial sequence

(qt+1, qt+2, . . . , qT ) from time t+ 1 onwards, computed similarly:

� Initialization:

βT (i) = 1, (3.11)

� Recursion:

βt(i) = p(qt+1, qt+2, . . . , qT | st = i)

=

K∑
j=1

aijej(qt+1)βt+1(j), (3.12)

where in Eq. 3.12, the reasoning is that we can transit from state i to

K possible states via aij , then observe the conformation qt+1 at t+1, before

continuing on via βt+1(j).
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Now, we can combine the variables αt(i) and βt(i), and estimate the

hidden states with the whole trajectory. We define ξt(i, j) as the probability

of being in state i at time t and in state j at time t+ 1:

ξt(i, j) = p(st = i, st+1 = j)

=
p(q0, . . . , qt, st = i)p(st+1 = j|st = i)p(qt+1|st+1 = j)p(qt+2, . . . , qT )

p(q0, q1, . . . , qT )

=
αt(i)aijej(qt+1)βt+1(j)∑

K

m=1

∑
K

n=1 αt(m)amnen(qt+1)βt+1(n)
, (3.13)

where αt(i) explains the first t conformations while ending in state i at

time t, this is followed by a transition to state j via aij , observation of

conformation qt+1 at time t + 1, before continuing on from state j for the

rest of the trajectory, i.e. βt+1(j). The normalization is over all possible

pairs of states that can be visited at time t and time t+ 1.

Lastly, we can calculate the probability of being in state i at time t by

marginalizing over all possible next states in ξt(i, j):

γt(i) =

K∑
j=1

ξt(i, j). (3.14)

With the estimated state labels from variables ξt(i, j) and γt(i), we are

ready to re-estimate the model parameters.

61



Maximization (M) step

The purpose of M-step is to calculate the parameters of a new model based

on weighted averages of state occupancies estimated from the current model.

The prior πi = p(s0 = i) is the probability that the protein is in

state i at time t = 0, therefore, we only consider the first state s0 of every

trajectory Di:

πi =

∑
Di∈Dtrain

γ0(i)

N
, (3.15)

where
∑

Di
sums over all N trajectories in Dtrain.

The transition probability aij = p(st+1 = j|st = i) is the probability of

transitioning from state i to state j in a single time step, therefore, we need

to consider the states of successive conformations along every trajectory Di:

aij =

∑
Di∈Dtrain

∑
T−1
t=0 ξt(i, j)∑

Di∈Dtrain

∑
T−1
t=0 γt(i)

, (3.16)

where T is the last time step of each trajectory, and the denominator is the

sum of all the transitions from state i.

The emission probability ei(q) of state i can be estimated accordingly:

µi = arg min
q

∑
Di∈Dtrain

T−1∑
t=0

γt(i) d(q, qt), (3.17)

σ2
i =

∑
Di∈Dtrain

∑
T−1

t=0 γt(i) d
2(µi, qt)∑

Di∈Dtrain

∑
T−1

t=0 γt(i)
, (3.18)

where q is any conformation in the dataset Dtrain (see next page), qt is the

conformation of a particular trajectory Di at time t, and d(qi, qj) is the

distance between conformations qi and qj .
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The estimation of the emission probabilities ei(q) is a potential bottleneck

of optimization. The reason is because for analysis reasons, we want to

use a feasible conformation to be the center of a state, as opposed to a

simple averaged conformation. The consequence is that arg min
q

requires a

pair-wise comparison of all conformations in O(T 2) time. Although it is

possible to limit the search for q in Eq. 3.17 to only conformations near

the current µi, this may potentially increase the number of EM iterations

required. Later in Chapter 4, for the larger villin headpiece protein, we make

use of a distance graph to reduce the cost of this search down to O(M2),

where M is a much smaller number of representative “microstates”.

More importantly, based on our experiments, the likelihood of the

model Θ0 created in initialization is relatively close to optimum, and is

sufficient to significantly narrow the range of K-state models to compare.

We simply perform a few iterations of EM to ensure optimality before we

determine the number of states.

3.3.5 Determining the number of states

Until now, we have constructed models with different number of states

without knowing which is the most suitable model to use for analysis.

In choosing the most suitable model, our primary concern is the accuracy

of a model in predicting new data, with respect to the complexity of the

model, i.e. K. In principle, a complex model with many states is able to fit

the data better. However, an excessively complex model may over-fit, and

fails to generalize over individual trajectories. On the other hand, although

a simple model is easier to analyze, an overly simple model may not be

accurate enough. Therefore, the most desired model should be the one that

is both simple and accurate.
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In order to choose the most suitable value of K, we need to calculate the

likelihood of each model Θ on an unseen test dataset Dtest, and compare

the likelihood score to models with different number of states. We make use

of the αt(i) variable in Eq. 3.10 to calculate the likelihood p(Dtest|Θ):

p(Dtest|Θ) =
∏

Dj∈Dtest

p(Dj |Θ)

=
∏

Dj∈Dtest

 ∑
Q∈ST

(
p(s0)

T∏
t=1

p(st|st−1)
T∏
t=0

p(qt|st)
)

=
∏

Dj∈Dtest

[
K∑
i=1

αT (i)

]
, (3.19)

where αT (i) is the probability of observing the whole trajectory Dj and

being in state i at time T .
∑

K

i=1 marginalizes αT (i) over all states at time T

to obtain p(Dj |Θ), for Dj ∈ Dtest.

If the actual number of energy basins is K, we expect:

� K � K. We expect the improvement in likelihood to be steep.

Each additional state accurately models the dynamics of an additional

energy basin, and the model gains an increase in predictive power.

� K ≈ K. We expect the improvement in likelihood to start leveling off.

Due to the density based K-medoids clustering, the last few energy

basins to be characterized are less important to the overall dynamics.

� K � K. We expect the likelihood to remain relatively constant.

When multiple states are trying to model the same energy basin, they

overlap and contribute little additional information.

Therefore, the most suitable value for K is the number of states when

the likelihood score first plateaus out.
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We can perform such a search over model complexity because the

likelihood criterion enables us to compare different models based on their

accuracy in predicting the same test set of trajectories. Consequently, each

state in the most suitable model ΘK corresponds to an energy basin crucial

to understanding a protein’s motion dynamics. This addresses a main

shortcoming of existing methods, which are unable to determine the number

of states without prior knowledge of the protein, e.g. cell-based MDMs.

More importantly, the EM optimization process iteratively improves the

model parameters in order to better predict the correct conformation at the

correct time. Simultaneously, the model is also predicting the absence of the

wrong conformation at the wrong time. The objectivity of the likelihood

criterion is an important issue to investigate. In Chapter 4, we will make

use of false data to address this issue and illustrate why we do not consider

models with K � K to be suitable, despite their similarly good scores.
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3.4 Results

We apply our modeling approach in two experiments to illustrate the

applicability of our method. So far, we have assumed that a particular

timescale of interest is known in advance. However, biologists are actually

interested in events occurring across a range of timescale, e.g. 10−6 s to 10−3 s.

This necessitates the building of different models at different timescales,

either from the beginning, or by raising the transition matrix At to create

a model at t×4t. We will relax this requirement later in Chapter 4.

In Section 3.4.1, we first make use of synthetic energy landscapes to

better understand how our modeling process will perform under different

scenarios. More importantly, we wish to demonstrate that we are able to

identify the most suitable number of energy basins that influence the motion

dynamics. This is important because the energy landscape of real proteins is

usually not explicitly available. Moreover, energy basins are not necessarily

well-separated enough to be considered distinct entities. Therefore, it is

crucial to first understand what are the characteristics that can be captured

with an increase in model complexity.

In Section 3.4.2, we apply our approach on alanine dipeptide, a protein

with two amino acids. This is a well studied protein in biology, and has

served as a model system due to its ability to exhibit torsion angles observed

in α-helix and β-strands of proteins [20, 98]. This is our first test on a real

protein, and we produced interesting results on the number of states required

to predict its dynamics.
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3.4.1 Synthetic energy landscapes

Synthetic energy landscapes are useful for testing our algorithms in controlled

settings where the ground truth is known. In particular, we want to

examine whether our likelihood criterion and model construction algorithm

can identify simple models with strong predictive power.

We created a series of five energy landscapes in two dimensions (Fig. 3.2).

Each dimension corresponds to a degree of freedom in an artificial molecule,

and the XY-space corresponds to the space of all possible conformations C.

The main difference in these landscapes is the gradual change from one

energy basin to two distinct energy basins. Landscapes A and B each

contains one energy basin, but B’s basin is slightly more elongated.

Landscapes C, D, and E each contains two basins with varying amount

of separation. The corresponding energy barrier between the basins is

an important factor in determining the ease of transitions between them.

This is a crucial scenario to investigate because basins in a real protein’s

energy landscape are not necessarily well separated. Therefore, we are

interested to understand how our models will characterize the dynamics.

Each landscape is constructed by parameterizing the potential function:

V =

K∑
i=1

ai exp

(
−
(
x− xi
bi

)2

−
(
y − yi
ci

)2
)
, (3.20)

where for K energy basins, (xi, yi) is the center, and ai, bi, ci are constants

of each basin. For each landscape, we used Langevin dynamics to generate

1000 trajectories of 200 time steps each [44, 66]. We set aside half of

the trajectories as the training dataset Dtrain for model construction, and

the other half as the test dataset Dtest for checking the quality of models

constructed.
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A B C D E

Contour plots of synthetic energy landscapes.

Training dataset generated from Langevin dynamics.

Conformations generated from 1-state HMM MDMs.

Conformations generated from 2-state HMM MDMs.

Figure 3.2: Five synthetic energy landscapes and the corresponding
HMM MDMs. The energy landscapes are labeled A, B, C, D and E, with
a gradual change from one energy basin to two distinct energy basins.
Each square box represents the XY conformation space C of an artificial
protein (axis not labeled).
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Figure 3.3: Average log-likelihood scores of HMM MDMs for the synthetic
energy landscapes.

For each landscape, we built models with increasing K number of states

at 4t = 10 simulation time steps. The distance measure d used in defining

the emission probabilities E is the Euclidean distance in the plane.

Fig. 3.3 plots the scores of all the models. The score is the average

log-likelihood of a model for a single transition step along a trajectory.

It is computed by dividing the log-likelihood of a model given Dtest by the

total number of conformations in Dtest. For each K number of states:

� K = 1. We can see that for landscape A, which contains only

1 energy basin, the 1-state model is slightly better than the other

models. However, as we move from landscape A to E, the predictive

power of the 1-state model degrades. This is because when there

are actually 2 energy basins, the 1-state model generalizes over

both basins (Fig. 3.2). Consequently, it is less accurate in predicting

trajectories as compared to models with a greater number of states.
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� K = 2. The 2-state model performs fairly well on all five energy

landscapes. This is because when there is only one energy basin, the

emission probabilities E of the states begin to overlap almost directly

on top of each other (Fig. 3.2). Although this brings no additional

improvement in likelihood score, it allows the 2-state model to perform

well on all five energy landscapes.

� K ≥ 3. Due to the overlapping of emission probabilities E, increasing

the number of states further has negligible benefit. Although excess

states are not reflected in the likelihood scores, we penalize them by

choosing simpler models when the likelihood scores are similar.

In summary, although these results are not surprising, they highlight

the importance of a principled criterion for evaluating the model quality.

In particular, we consider additional model complexity to be beneficial

only when it results in a more accurate prediction of MD trajectories.

Therefore, when modeling a protein with unknown motion dynamics,

a search across the number of states is required. More specifically, the most

suitable K-state HMM MDM ΘK can only be determined by comparing the

predictive accuracy of models with different number of states.
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3.4.2 Alanine dipeptide

Alanine dipeptide (Ace-Ala-Nme) is a protein with two amino acids widely

used for studying biomolecular motion [20, 98]. This is due to its simple

structure and its ability to exhibit the wide range of torsion angles observed

in α-helix and β-strands of proteins (Fig. 3.4). We use the same dataset

as that from a previous study [29]. It consists of 1000 MD simulation

trajectories, each roughly 20 ps in duration. Again, we divide them equally

into training Dtrain and test Dtest datasets.

We built models with up to 7 states. They are named K1 to K7.

As alanine dipeptide is relatively small, its motion is fast. So the time

resolution 4t of the models is set to 1.0 ps. A conformation of alanine

dipeptide is specified by three backbone torsional angles (φ, ψ, ω), and the

distance between two conformations is defined as the root sum squared

angular differences between the corresponding torsional angles.

The conformation space of alanine dipeptide has also been manually

decomposed into 6 disjoint regions, each corresponding to a meta-stable state.

This well-accepted decomposition has led to several dynamic models of

alanine dipeptide [29, 30]. For comparison, we built an additional 6-state

model M6 based on the same manual decomposition. During the model

construction, instead of applying K-medoids, we group conformations

into a cluster if they belong to the same disjoint region of the manual

decomposition. Other steps of the construction algorithm remain the same.
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a) Data

b) αR conformation (α for short) c) β/C5 conformation (β for short)

Figure 3.4: MD trajectories and structures of alanine dipeptide. In a), the
φ and ψ angles have the greatest freedom of rotation and are projected here,
while the ω angle is much more rigid (180±15 degrees). The black line traces
a trajectory going from the β/C5 conformation to the αR conformation.
Red dots are a sample of conformations from the rest of the dataset.
In b) and c), the main difference between the two conformations is the
rotation of the red portion of the molecule about the polypeptide backbone.
This corresponds to the large change in the ψ angle. In a long polypeptide,
such a rotation can result in a large change of conformation further down
the chain. Since the change in φ angle is small, rotation of the blue portion
of the molecule is correspondingly small.
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Figure 3.5: Average log-likelihood scores of alanine dipeptide HMM MDMs.
K1 to K7 are initialized via K-medoids clustering, while M6 is initialized
manually based on a 6-state partition according to Chodera et al. [29].

Figure 3.6: Frequency analysis of smoothed alanine dipeptide trajectory.
Trajectories are sampled at 1.0 × 1012 Hz, and most of signal is within the
Nyquist frequency of 0.5 × 1012 Hz. Amplitude is the average fluctuation
of heavy atoms. Filtering is done using Gromacs [48], reducing fluctuations
with period 0.4 ps by 85%, with period 0.8 ps by 50%, and with period
1.2 ps by 17%.
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Fig. 3.5 plots the average log-likelihood scores of the models for a single

transition step along a trajectory. Models K3 to K7 all achieve scores

comparable to that of M6. The interesting finding is that although the

score jumps substantially as we move from K1 to K3, the score of K3 is

almost as good as those of K6 and M6. This indicates that for predicting

the motion of alanine dipeptide, the simpler 3-state model K3 is almost

as good as the 6-state model M6, which is derived from the well-accepted

manual decomposition of the alanine dipeptide conformation space!

Fig. 3.7 shows the difference between K3 and M6. Both models

accurately capture the frequently visited regions of the conformation space,

shown in red and blue in Fig. 3.7a. These densely sampled regions

correspond to energy basins that dominate the long-timescale dynamics,

and the accurate modeling of these regions is crucial. For K3, the

conformations shown in green capture a large, but less frequented region

of the conformation space. Although M6 models the same region as two

closely spaced clusters of conformations, the overall density and the location

of the conformations are similar in both models. M6 also models the rarely

visited region between 0 < φ < 90. Due to the transient nature of the protein

in these conformations, the additional model complexity contributes little

to the observable long-term dynamical phenomena. Therefore, the average

log-likelihood score levels off when the number of states surpasses 3.

More importantly, dynamics is about the change of conformation over

time, which corresponds to the transitions between states shown in Fig. 3.7b.

The size of a node intuitively indicates the relative importance of a state,

and the weight of an edge indicates the ease of transition between two states.

We can see that the major transitions are between states 1 and 2 in both

models. This corresponds to fast equilibration between the two regions.
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K3 M6
a) Generated conformations.

K3 M6
b) Transitions between hidden states.

Figure 3.7: 3-state K3 versus 6-state M6 HMM MDMs of alanine dipeptide.
In a), the black line traces a trajectory going from the αR conformation to
the β/C5 conformation. For the dots, each color represents conformations
generated by a particular state. In b), the size of the node corresponds
to the state’s stationary distribution probability. The weight of an edge
corresponds to the transition probability. The self-transitions are not shown.
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What is interesting to note is that in M6, transitions between states

3 and 4 also occur with high probability. However in K3, the dynamics in

the same region is modeled as the self-transitions of state 3 (edge not shown),

but generalized over a broader distribution. Despite this difference, the

likelihood scores between the models indicate that the additional detail of

M6 does not predict trajectories more accurately.

More specifically, M6 attempts to provide a more precise prediction

of the conformation by modeling this region with two individually tighter

distributions of conformations. On the other hand, K3 models the same

region with a single state, via a broader distribution of conformations.

However, dynamics is not just about the conformation, it is also about

the transition. Consider a trajectory traversing within the region mentioned

above. For M6, predicting the next transition requires accurately predicting

whether a self-transition to the same state, or a transition to the neighboring

state has occurred. Whereas K3 predicts the next transition perfectly via

the self-transition of the only state in the region.

Consequently, the similar likelihood scores of the 3-state K3, versus the

6-state M6, suggests that there is a compensating trade-off between the

increased precision in the predicted conformation, versus the loss of accuracy

in the predicted transition. This is reasonable because when a basin of

attraction is shallow, it is unlikely to trap a trajectory within a localized

region for long. Therefore, trajectories have insufficient time to equilibrate

internally, before a transition to a different region occurs. Consequently, the

dynamics is insufficiently Markov for a more complex model to achieve a

better accuracy.
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More importantly, we are concerned about analyzing larger proteins

with more complex motions. In particular, as the complex network of

edges in the 6-state M6 already suggests, analyzing the K2 transitions

between many states is going to be a significant challenge. Although

smaller states and edges can be pruned, such simplifications is undesirable.

For example, it is important to know that although the transition out

of states 1 and 2 are difficult, but it is not impossible. This is because

such a transition corresponds to a change from a β-strand, to an α-helix.

This can significantly affect a protein’s overall structure, and therefore,

biological function. Such critical information would be lost if edges with

small transition probabilities are pruned before analysis. Therefore, in order

to study larger proteins, we need to scale up our modeling approach.
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Chapter 4

Hierarchical Model of

Protein Motion Dynamics

We model a protein’s dynamics to better understand how it achieves its

biological function. With the HMM MDMs, we are able to abstract away

unnecessary details, and model a protein’s motion as transitions among

energetically stable conformations. In addition, the graphical nature of the

MDM allows biologically significant events to be analyzed intuitively.

However, as we scale up to larger proteins, the dynamics becomes

significantly more complex. For example, since secondary structures involve

mainly local interactions, they can be formed within a shorter, and different

timescale than the overall folding process. Even in the native conformation,

different parts of a protein can move at different frequencies depending on

the extent individual parts are constrained. Therefore, to thoroughly study

a larger protein, it is necessary to have a collective understanding of its

different types of motion, over a range of timescales. Instead of constructing

multiple models at different timescales, we want to build a single model for

a combined analysis of a protein’s complex dynamics.
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4.1 Complex Dynamics of Large Proteins

Our goal in modeling protein dynamics is to provide a way to better

understand how a protein achieves its biological function. Ideally, we would

like to intuitively identify a protein’s different types of motion, and the

corresponding timescales, without prior knowledge of the protein. This is a

significant challenge for larger proteins with complex dynamics.

For a large protein, the additional degrees of rotational freedom in a

longer polypeptide permit a greater range and variety of motion. Multiple

polypeptides can also come together to form the quaternary structure of

the final functional protein. The structural organization into primary,

secondary, tertiary and quaternary levels creates many opportunities for

different parts of the molecule to interact and interlock with each other.

As a result, the folding of a large protein is much more complicated.

Even in the native conformation, different parts of the same protein

molecule can exhibit different dynamics. For example, an unconstrained

loop on the exterior of a protein is likely to exhibit a wider range of motion

at a higher frequency, as compared to a tightly packed portion in the interior

of a folded molecule. At the same time, the sliding or shearing of different

parts of a protein against each other, or the concerted opening and closing

of the native conformation influence how a protein will interact or bind with

other molecules [18, 32, 41].

More importantly, it is the collective contribution of different types of

motion, over the whole range of timescales, that will determine how a protein

can interact with its surrounding, and therefore, perform its function.

Consequently, identifying the different structural changes (spatial), and

the corresponding timescales at which they occur (temporal), is crucial for

gaining biological understanding.
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4.1.1 Dynamics over a range of timescales

Ideally, we would like to have a single model for analysis. In addition,

we would like this model to be able to characterize the fastest biologically

interesting phenomenon. More importantly, this model has to intuitively

reveal how the fast conformational changes are related to longer timescale

dynamics, e.g. the overall folding process. Characterizing the relationship

between dynamics across different timescales is crucial to understanding

because it is the accumulation of the high frequency motions that will

ultimately determine the long term biological function.

In particular, we want to characterize dynamics according to these timescales:

a) 4t timescale of fastest biological phenomenon, e.g. α-helix formation.

b) time after stationary distribution is attained, e.g. protein has folded.

c) the intermediate time frame between (a) and (b).

a) Fastest 4t timescale. This is the timescale at which the fastest

biologically interesting events occur, e.g. the formation of α-helices and

β-strands. Compared to the femtosecond time step of MD simulation,

4t is already long-timescale. 4t is also the timescale at which MD trajectories

should be sub-sampled to construct MDMs. Since the conformational change

over 4t time is already explicitly represented as probabilistic transitions in

an HMM MDM, dynamics at this timescale can be directly analyzed.

b) Stationary distribution . The dynamics beyond the stationary

distribution is also relatively straightforward to analyze. The stationary

distribution Πs is a probability distribution of occupancy over the states

that is invariant with time, i.e. Πs = ΠsA, where A is the transition matrix.

Consequently, the importance of stationary distribution is the relative

occupancy of the states in Πs. In particular, a state with a high stationary
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probability will remain dominant indefinitely. As a result, the associated

conformations will persist over time, and contribute substantially to a

protein’s biological function. Since Πs can be obtained by calculating the

eigenvector of A associated with the eigenvalue of 1, the dynamics beyond

stationary distribution can also be directly analyzed in an HMM MDM.

c) Intermediate time frame. Most interesting is the change of

conformation beyond the4t time of a single transition, but before stationary

distribution has been reached. This intermediate time frame is particularly

interesting because this is the time in which we can observe how a protein

actually folds into the native conformation, i.e. the equilibrating process.

Unfortunately, the intermediate time frame is also the most difficult

to investigate because biologically interesting events can occur anywhere

within the broad range of timescales. Although it is possible to simulate

the dynamics, this is not necessarily helpful in explaining the process of

conformational change. For example, knowing the folded conformation does

not explain how the protein actually folds, nor the constraints that limit the

rate of folding. Similarly, even though it is possible to calculate the state

occupancies Πt after t time-steps by multiplying the transition matrix A,

i.e. Πt = Π0A
t. However, knowing Πt does not explain how Πt is reached.

Therefore, with dynamics varying over a range of timescales, it is

impractical to attempt constructing multiple models at different timescales.

Even if all the interesting timescales are known a priori, combining the

analysis of multiple models will be difficult because different models may not

be directly and easily comparable. This makes the complex dynamics

of large proteins difficult to investigate, and there is a need to better

characterize a protein’s conformational change, over a range of timescales,

all within a single model.
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4.2 Hierarchical Model of Markovian Dynamics

For a large protein, due to the complexity of its dynamics, there can

be a huge number of states in a single MDM, let alone multiple MDMs.

Some of these states will be biologically important because they represent

the protein’s native conformation and will persist over time. On the other

hand, some states may only be transient in nature and represent structural

hurdles that a protein will eventually overcome, e.g. temporary misfolds.

Furthermore, it is also possible for some states to be transient, yet crucial to

biology because they represent a necessary stage along a critical pathway.

However, recognizing the biological significance of individual states

is difficult because a protein molecule can follow a myriad of motion

pathways. For example, although individual helices can form independently

and simultaneously, their formation is also influenced by environmental

conditions. As a result, helices of different molecules of the same protein may

be formed at different times, following different pathways, corresponding to

different order of formation. On the other hand, secondary structures tend

to form earlier than the overall tertiary or quaternary structures. Therefore,

there can be a global order of events embedded within a complex network

of short-timescale transitions.

Consequently, identifying the biologically interesting dynamics requires

a simultaneous analysis of multiple pathways, over multiple time steps

of a MDM. Although graphical algorithms exist, identifying the best or

top few pathways is insufficient for understanding because it is the collective

contribution of all possible pathways that will determine a protein’s function.

Without an intuitive way to analyze the myriad pathways over a huge

number of states, it is very difficult to identify limitations of a protein’s

structural transformation, and pinpoint interesting aspects of its dynamics.
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4.2.1 Hierarchical clustering of dynamically similar states

a) Data

b) 2-state HMM MDM K2. c) 3-state HMM MDM K3.

Figure 4.1: 2-state vs 3-state HMM MDMs of alanine dipeptide. a) is the
original data from MD simulation. b) and c) show conformations generated
by HMM MDMs.

Earlier in Section 3.4.2, we investigated alanine dipeptide and have

determined the 3-state model K3 as the most suitable HMM MDM.

Fig. 4.1 shows the distribution of conformations generated by K3, and

the 2-state model K2. The difference between these two models is in how

the two energy basins in the β/C5 region are modeled (Fig. 4.1a). In K3,

these energy basins are modeled as individual states and transitions between

them occur with high probability. While K2 models these as a single state.
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The difference between K2 and K3 highlights an interesting opportunity

for an abstraction that will allow us to analyze the complex dynamics of

a large protein. In particular, although K3 has a higher likelihood score

(Fig. 3.5 on page 73) and better fits the original data, the simpler K2 does

intuitively capture the dynamical similarity between the two energy basins

in the β/C5 region. More specifically, due to the ease of transition between

the two energy basins in β/C5, trajectories initiated in either basin are

likely to equilibrate rapidly in β/C5, before transitioning to the αR region.

In other words, molecules with β/C5 conformations are likely to change

similarly over time, i.e. dynamically similar. Therefore, although K2 is less

precise within β/C5, it does provide a simpler abstraction for an intuitive

understanding of the longer timescale dynamics between β/C5 and αR.

Ideally, we want to use similar clustering to simplify the analysis of

multiple pathways over numerous states, but without the loss of accuracy in

predicting data. Fortunately, the accuracy of K2 is mainly affected by the

merging of states in β/C5, and is not an inherent consequence of clustering.

Since only a single distribution of conformations is used, K2 is naturally less

able to distinguish which energy basin a trajectory is traversing.

There is a better way to capture the dynamical similarity between states.

In many domains, there is a natural multiplicity of lengths or timescales,

including handwriting [42], robot navigation [107], and surveillance [21].

In these applications, multi-level hierarchical models have been successful

in learning the dependencies across different timescales. For example, the

length of a sequence of characters is dependent on the word or phrase.

Therefore, a hierarchical model that is more precise at the shorter timescale

of phonemes, while generalizing over the longer timescale of phrases, can

often provide a better recognition of the actual words spoken.
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Similarly, a protein’s motion trajectory is also a temporal sequence.

Instead of characters, a protein has conformations. Instead of words,

a protein has short sequences of similar conformations as a trajectory

traverses through each energy basin. The rapid transitions within an

individual energy basin results in the equilibration of a protein’s motion

before it escapes, and is the Markovian property we relied upon in Chapter 3.

More importantly, the dynamics of a cluster of energy basins can be

modeled hierarchically. Conceptually, the dynamics of a cluster is similar to

the rapid equilibration inside a single energy basin, but on a broader scale.

In particular, when a trajectory eventually escapes the cluster, its future is

likely to be independent of the initial energy basin it was in, and is therefore

also Markov at the timescale it takes to escape the cluster. Satisfying

the Markovian assumption will be crucial in allowing tools applicable to

analyzing HMM MDMs to be applied to hierarchical MDMs.

This suggests that we can make use of the clustering of energy basins to

provide a multi-level hierarchical abstraction of dynamics. At the bottom of

the hierarchy, we can preserve individual states and accurate short-timescale

dynamics of individual energy basins. While higher up the hierarchy,

we model the longer timescale dynamics of transitions between clusters

of energy basins. In this way, a hierarchical model can provide a simpler

abstraction of the long-timescale dynamics, without sacrificing the accuracy

of short-timescale transitions.
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4.2.2 Hierarchical Hidden Markov Model (HHMM)

We propose to use the clustering of dynamically similar energy basins to

construct a hierarchical model of protein dynamics. We use the hierarchy to

recursively define protein dynamics according to parent-child relationships.

In particular, given a cluster of energy basins, the cluster is represented as

a subtree in the hierarchy, with the energy basins as the children, and a

parent node to represent the whole cluster. Intuitively, energy basins in the

same subtree are dynamically more similar to each other, as compared to

energy basins in a different branch of the hierarchy, see Fig. 4.2.

More specifically, the hierarchy in an HHMM MDM is a tree where the

leaf nodes are basin-states corresponding to energy basins. Basin-states

are equivalent to the hidden states in an HMM MDM, and have emission

probabilities E that predict the observation of conformations. Nodes with

children are macro-states that represent a (possibly nested) clustering of

its descendants. A macro-state does not directly predict conformations,

but is capable of generating a sequence of conformations by recursively

activating its descendants. As such, the root s1
1 at the top of hierarchy in

Fig. 4.2a represents a nested clustering of all basins in the energy landscape.

More importantly, the multi-level structure of the hierarchy represents

a multi-level separation of dynamics according to timescales. The states

at the bottom of hierarchy capture transitions between energy basins at

the 4t timescale of the fastest biological phenomenon. While slower

conformational changes are represented as transitions between parents at the

top of hierarchy. As such, the explicit organization of transitions according

to the hierarchy intuitively identifies the difficulty of a protein’s various

conformational changes, and relate its dynamics across different timescales.
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a) Hierarchical organization of energy basins.

b) Nested clustering of energy basins.

Figure 4.2: An HHMM MDM with general hierarchy. Each subtree in a)
corresponds to a clustering of children nodes shown in b). Shaded nodes
are basin-states representing energy basins. Unshaded nodes, and ellipses
in b), are macro-states representing a clustering of its descendants.
For state sdi , d is its level in the hierarchy, and i is its index number. Edges
are different between sub-figures. Edges in a) are downward transitions
representing parent-child dependencies. Edges in b) are horizontal
transitions capturing dynamics within a cluster. The multi-level hierarchy
represents a multi-level separation of dynamics according to timescales.
Fast equilibration within a cluster occurs at the bottom of hierarchy, while
slower conformational changes across clusters occur near the top.
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Model parameters

We define an HHMM MDM by the tuple Θ = (C,S,H,Π, B,A,E).

� The conformation space C of a protein.

� The set of states S = {sdi | d ∈ {1, 2, . . . , D}, i = 1, 2, . . . , |S|}, where

d is the level of a state in the hierarchy, D is the maximum depth of

the hierarchy, and i is the state index (subscript may be omitted for

clarity). A state sdi can be one of three types:

– Basin-state loosely corresponds to an energy basin. Basin-states

are the leaves of the hierarchy and are the only states that directly

predict conformations.

– Macro-state represents the clustering of its children. Macro-states

do not directly predict conformations, and cannot be the leaves

of the hierarchy.

– Exit-state represents termination of transitions within the

cluster represented by its parent. To avoid clutter, exit-states

may not be shown (e.g. Fig. 4.2a), or explicitly shown (e.g. Fig. 4.3).

� The hierarchy H is a tree represented by a set of parent-child

dependencies between states in S. Each subtree in H represents a

(possibly nested) clustering of energy basins. A parent can have many

children, but a child can only have one parent. At the top of the

hierarchy H is the singleton root s1
1 that encompasses all states of

the hierarchy. Each path in the hierarchy H from the root to a leaf

node represents the activation of a basin-state, i.e. (s1
1, s

2
i , . . . s

D
k ), from

root s1
1 to a leaf sDk . In general, H needs not be a full tree and leaf

nodes are allowed at d < D.
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Transitions in an HHMM MDM capture the change in a protein’s

conformation. However, transitions occur in a particular order. Downward

transitions occur before the conformation qt at time t has been predicted.

While horizontal transitions occur after the conformation qt at time t

has been predicted. The termination of transitions within a cluster only

occurs via a horizontal transition to an exit-state, after the conformation qt

at time t has been predicted. The parameters Π, B and A are as follows:

� For each macro-state sd (subscript omitted), the prior probability

over its L children at time t = 0 is the vector Πsd = {πsdi | i = 1, 2, . . . , L},

where πs
d

i = p(sd+1
i |sd) is the probability of a downward transition

from the parent sd to its child sd+1
i . (Here, L children exclude exit-state.)

� For each macro-state sd, the downward transitions to its L children

for time t > 0 is the vector Bsd = {bsdi | i = 1, 2, . . . , L}, where

bs
d

i = p(sd+1
i |sd) is the probability of transiting from the parent sd

to its child sd+1
i . (Here, L children also exclude exit-state.)

� For each macro-state sd, the probability to transit among its L children

for all time t is the matrix As
d

= {asdij | i, j = 1, 2, . . . , L}, where

as
d

ij = p(sd+1
j |sd+1

i ) is the probability of a horizontal transition from

child sd+1
i to child sd+1

j . For the exit-state in L, instead of transiting

to its siblings, it transfers control to the parent sd with probability of 1.

Finally, the emission probabilities E:

� For the basin-states at the leaves, the emission probabilities are

denoted by E = {edi (q) | d ∈ {1, 2, . . . , D}, i ∈ {1, 2, . . . , |S|}, q ∈ C},

where edi (q) = p(q|sdi ) is the probability of observing conformation q

when in basin-state sdi ∈ S. Each edi (q) is defined over the entire

conformation space C.
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More importantly, each subtree of anHHMM MDM is itself a probabilistic

model capable of generating a sequence of conformations by recursively

activating its descendants. If a macro-state is activated, it activates one

of its children. The recursive activation continues down the hierarchy

until a basin-state is activated. Then the activated basin-state predicts

(or generates) a conformation through its emission probabilities. This is

followed by the return of control to the top of the hierarchy via exit-states

from the bottom up. The return of control up the hierarchy occurs until a

horizontal transition to a macro or basin-state is made, at which point, the

cycle of recursive activation continues.

Consequently, the state of the whole HHMM MDM that predicts a

conformation at each4t time step is encoded by the vector st = (s1
1, s

2
i , . . . , s

D
k )

of states from the root s1
1 to a leaf node sDk at level D in the hierarchy.

More specifically, (s1
1, s

2
i , . . . , s

D−1
j ) are macro-states, sDk is the only basin-state,

and exit-states are excluded from st because they do not result in a

conformation. Therefore, an HHMM MDM simulates the dynamics by

changing from one branch of the hierarchy to another. In general, the

hierarchy H needs not be a full tree and leaf nodes are allowed at d < D,

where D is the maximum depth of the hierarchy.
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4.2.3 HHMM versus HMM MDMs

The key distinction between an HHMM and an HMM is that an HHMM

models dynamics according to a separation of timescales, while an HMM

sticks to one particular timescale. However, despite the different treatment

of timescales, there is a correspondence between the two types of MDMs.

In particular, an HHMM is a more general version of an HMM, and a

K-state HMM is equivalent to a “flat” HHMM with K basin-states and a

“dummy” root macro-state.

More importantly, we can transform between an HHMM and an HMM

and speed up our model construction algorithm (Section 4.3). To better

understand why this is possible, we need to first discuss the similarity in

how the dynamics within a cluster of energy basins is modeled. Then, we

will discuss the different modeling of dynamics between clusters of energy

basins. Finally, we will show how the transformation can be accomplished.

Similarity: dynamics within a cluster

Fig. 4.3 shows how an HHMM models the dynamics within a cluster of

energy basins. Since the change from state s3
4 at time t×4t, to state s3

5 at

time (t+ 1)×4t only involves changes in the leaf nodes of the hierarchy,

a direct transition between basin-states is taken. Consequently, both

an HHMM and an HMM model the dynamics within a cluster explicitly

as one-to-one transitions between states representing energy basins.

This is beneficial because the dynamics within a cluster involves frequent

transitions that quickly equilibrate among the energy basins within several

4t time steps. By modeling this dynamics directly as individual transitions,

both HHMM and HMM can precisely capture the process of equilibration

within the cluster, before a transition exiting the cluster occurs.
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Figure 4.3: An HHMM MDM illustrating transitions within a cluster.
The transition shown is from state st = (s1

1, s
2
2, s

3
4) at time t × 4t,

to state st+1 = (s1
1, s

2
2, s

3
5) at time (t + 1) × 4t. Since the transition only

involves a change in the leaf node of the hierarchy, only the solid edge
numbered 1 is taken. Dashed edges also numbered 1 are other possible
transitions from basin-state s3

4. Transitions of all edges numbered 1 sum
up to a probability of 1. Additionally, due to the Markovian dynamics of
an energy basin, the self-transition probability of a basin-state is usually
significantly higher than the probability to transit to a different basin-state.
Shaded nodes at the leaves are basin-states that emit conformations.
Conformations are not shown in the diagram. Unshaded nodes are
macro-states that represent a clustering of its children. Unshaded nodes
labeled e are exit-states. A transition to an exit-state represents an exit
from the cluster represented by the parent. Exits involve further transitions
better explained in Fig. 4.4.
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Figure 4.4: An HHMM MDM illustrating transitions between clusters.
The transition shown is from state st = (s1

1, s
2
2, s

3
4) at time t × 4t,

to state st+1 = (s1
1, s

2
3, s

3
7, s

4
9) at time (t+ 1)×4t. This involves a sequence

of 5 internal changes via solid edges numbered accordingly. Dashed edges
that are also numbered indicate other possible transitions at each step.
All possible transitions at each step sum up to a probability of 1.
Shaded nodes at the leaves are basin-states that emit conformations.
Conformations are not shown in the diagram. Unshaded nodes are
macro-states that represent a clustering of its children. Unshaded nodes
labeled e are exit-states. A transition to an exit-state represents an exit
from the cluster represented by the parent. Since a MD trajectory can
be simulated infinitely, there is no exit-state at level 2 in the hierarchy
to terminate a trajectory. Additionally, since an HHMM MDM explicitly
simulates the dynamics within a cluster of energy basins, a macro-state
representing a cluster only models transitions to other clusters and does not
have a self-transition. A detailed discussion follows on page 94.
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Difference: dynamics between clusters

The dynamics between clusters of energy basins is modeled differently by

an HHMM and an HMM. Since an HMM does not distinguish which

cluster an energy basin is in, transitions between all energy basins are

directly modeled. More specifically, for a K-state HMM, a single K2 matrix

explicitly parameterized all the state-to-state transition probabilities.

However, anHHMM models the dynamics between clusters as collective

transitions between the energy basins. The assumption is that transitions

between clusters are likely to occur after multiple 4t time steps. When

a transition actually occurs, the trajectory is likely to have substantially

equilibrated within the original cluster, such that its future is independent of

its history in the original cluster, i.e. is Markov. Consequently, the dynamics

between clusters can be approximated by collective transitions involving a

sequence of internal changes.

Consider the example in Fig. 4.4, where the HHMM transits from

basin-state s3
4 in cluster A at time t×4t, to basin-state s4

9 in cluster C

at time (t+ 1)×4t. This involves a change of the whole HHMM from

st = (s1
1, s

2
2, s

3
4) to st+1 = (s1

1, s
2
3, s

3
7, s

4
9) via a sequence of 5 internal changes:

exit from cluster A (1 and 2), transit to cluster B (3), and descent into

an energy basin in cluster C (4 and 5).

� Exiting a cluster is equivalent to a transition to any energy basin

outside the cluster. Due to the difficulty of exiting the cluster, a

transition out of the cluster is relatively less likely, compared to

a transition within the cluster. In addition, the equilibrating dynamics

within the cluster means that when a trajectory actually exits the

cluster, its future can be estimated via Markovian cluster-to-cluster

transitions higher up the hierarchy.
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Consequently in Fig. 4.4, a single solid edge numbered 1 represents

the sum of all probabilities to exit cluster A. The upward edge

numbered 2 transfers the control back to the parent s2
2, which occurs

with probability of 1 by definition. The sole purpose of an exit-state

is to transfer control back to the parent so that a transition can be

made to switch to a different cluster.

� Transiting between clusters of energy basins is the distinguishing

feature of HHMM MDMs. The hierarchical structure enforces the

assumption that dynamics within a cluster has sufficiently equilibrated,

so that when a transition across clusters is actually taken, the future

of an exiting trajectory is independent of its history in the original

cluster, i.e. is Markov. Consequently, a transition across clusters is

estimated based on the collective transitions from all energy basins

in the source cluster, to all energy basins in the destination cluster.

In Fig. 4.4, the solid edge numbered 3 represents the transition from

cluster A to cluster B.

� Descending into basin-state s4
9 within cluster C is modeled by

downward transitions represented by the solid edges numbered 4 and 5

in Fig. 4.4. Due to the hierarchical dependencies, the descent relies

on the equilibration of dynamics outside the destination cluster,

in other clusters. Consequently, the downward transitions are estimated

based on all trajectories entering the destination cluster. Once inside

basin-state s4
9, the MDM can generate the conformation qt+1 at

time (t+ 1)×4t, and subsequently starts transiting among states

within the new cluster, or exit.
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Therefore, anHHMM MDM models the dynamics of a protein’s motion

via a sequence of transitions in the hierarchy over time. Although transitions

between clusters involve additional changes, they beneficially reduce model

complexity without losing accuracy in predicting dynamics (see Results later

in Section 4.4). More importantly, each descent into a subtree corresponds

to an entry into a cluster of energy basins. This results in a sequence of

conformations to be generated, with a multiplicity in lengths due to the

characteristics of the energy basins.

Although the clustering of states according to a hierarchy corresponds to

a partition of the state space S, it is not a partition of the conformation space C.

This is because the emission probabilities edi (q) = p(q|sdi ) are still defined

over the entire conformation space q ∈ C. This follows from our assumption

that the actual energy basins are not observed, and this uncertainty is

reflected in the “hidden” nature of not just the basin-states, but the whole

hierarchy.

Transformation between an HHMM and an HMM MDM

Despite the difference in how anHHMM and an HMM models the dynamics

between clusters, it is possible to transform from one MDM to another.

This is because both types of MDMs model protein dynamics as transitions

between energy basins, and predicts a conformation at every 4t time step.

The difference is in how the predictions are made, which affects the

information that can be preserved through the transformation.
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For anHHMM transition across clusters from st = (s1
1, . . . , s

d∗
i , . . . , s

D−1
j , sDk ),

to st+1 = (s1
1, . . . , s

d∗
l , . . . , s

D−1
m , sDn ), where sDk and sDn are basin-states, while

sd
∗
i and sd

∗
l share the same parent. This transition involves:

p̂(st+1|st) =
∏

{sdj , s
d+1
k }∈st, d≥d∗

p(sd+1
e |sd+1

k )p(sdj |sd+1
e ) × (4.1a)

p(sd
∗
l |sd

∗
i ) × (4.1b)∏

{sdm, s
d+1
n }∈st+1, d≥d∗

p(sd+1
n |sdm), (4.1c)

where p(sd+1
e |sd+1

k ) is a transition to a sibling exit-state, and p(sdj |sd+1
e ) = 1

is the transfer of control to parent. This corresponds to transitions

in Fig. 4.4, where Eq. 4.1a is the exit from st, Eq. 4.1b is the transit across

clusters, and Eq. 4.1c is the descent into st+1.

More importantly, p̂(st+1|st) is also a transition from one energy basin

to another, similar to a transition in an HMM MDM. This leads us to the

following possible transformations:

� From HHMM to HMM. Due to the hierarchical dependencies,

p̂(st+1|st) is a product of transitions across the HHMM. Therefore,

given an HHMM, it is possible to directly calculate p̂(st+1|st), and

use that to construct the K2 transition matrix of a K-state HMM.

In addition, if the basin-states from theHHMM are used as the hidden

states in the HMM, then both MDMs characterize the conformation

space via the same set of emission probabilities. Consequently,

although the resulting HMM loses the spatial and temporal organization

of dynamics in the original HHMM, both MDMs will propagate and

predict dynamics in the same way. No information is lost.
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� From HMM to HHMM. Given an HMM and a hierarchy H,

the transformation to an HHMM cannot be accomplished directly.

The reason is because in an HHMM, the transitions between clusters

of energy basins are collective transitions, and cannot be directly

calculated from the HMM’s transition matrix. The difficulty is

due to the need for an appropriate normalization. Intuitively, a

transition across clusters combines the transitions from multiple source

basin-states, to multiple destination basin-states (e.g. Eq. 4.1b).

Although it might seem natural to simply sum up the HMM probabilities

and average over the number of states, this is wrong because the

occupancy of the source states are unequal. Therefore, inference over

data is needed to obtain an appropriately weighted average, and direct

transformation from an HMM to an HHMM is impossible.

More importantly, due to dependencies introduced by the hierarchy,

the resultingHHMM may make different predictions of dynamics than

the original HMM. For example in Fig. 4.4 (page 93), the horizontal

cluster-to-cluster transition 3 is conditioned on the whole of cluster A.

Therefore, through 3, the transition from s3
4 to s4

9 becomes dependent

on the collective outcome of all trajectories exiting cluster A. This

effectively combines individual transitions between K2 basins into

a fewer number of cluster-to-cluster transitions. By modeling the

dynamics between clusters collectively, the transformation to anHHMM

can lose detailed information of individual transitions.

However, the error due to the collective transitions in predicting

MD trajectories should be minimal for a suitably constructed hierarchy,

and the benefit of anHHMM in providing a more intuitive representation

of complex dynamics is much more valuable to biological understanding.
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4.2.4 What is a good HHMM MDM?

The purpose of modeling the dynamics of protein motion is to better

understand their motion at the molecular level. Therefore, an ideal model

should reveal a protein’s change of conformation from the 4t timescale of

the fastest biologically significant phenomenon, till after equilibration in

a stationary distribution. Since an HHMM MDM relies on the Markov

property to propagate dynamics beyond the timescale it is trained at, a

good HHMM MDM should be constructed with data sub-sampled at the

4t timescale, while making use of the hierarchical structure to model

dynamics longer than the 4t timescale.

Additionally, a good model of protein motion dynamics should be able

to accurately predict the change of a protein’s conformation over time.

Therefore, we still compare models in terms of their ability to predict

MD trajectories and calculate the likelihood p(D|Θ), which is the probability

that a dataset D of MD trajectories will occur under the model Θ.

Specifically, given a set of MD trajectories D = {Di | i = 1, 2, . . .}, where

trajectory Di is a sequence of conformations Di = (q0, q1, . . . , qT ), and qt is

conformation at time t×4t. The likelihood of model Θ for trajectory Di is:

p(Di|Θ) =
∑
Q∈ST

(
p̂(s0)

T∏
t=1

p̂(st|st−1)
T∏
t=0

p̂(qt|st)
)
, (4.2)

where st = (s1
1, s

2
i , . . . , s

D
j ) is the state of the HHMM MDM at time t×4t,

this D is height of hierarchy, and
∑

Q is a sum over all possible sequences of

state assignments. Due to the hierarchical structure, p̂(s0), p̂(st|st−1), and

p̂(qt|st) now requires resolving dependencies from root s1
1 to basin-state sDj

using the parameters Π, B, A and E [42]. Especially state transitions

p̂(st|st−1), which now require O(D) internal changes (Eq. 4.1).
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The likelihood is a suitable measure of a model’s accuracy in predicting

dynamics because at any moment in time, an HHMM MDM has an

expectation of a protein’s conformation based on a probabilistic distribution

over states of the system. Furthermore, through emission probabilities E of

the basin-states, this expectation extends over the entire conformation space C.

The likelihood will only be high if a conformation is actually observed

where the model expects it to be observed. With each subsequent time

step, the model propagates its internal dynamics, updates the probability

distributions, and makes a new prediction. Consequently, if a model Θ

consistantly predicts the right conformation at the right time, its likelihood

over the the entire dataset D will be high:

p(D|Θ) =
∏
i p(Di|Θ). (4.3)

Conversely, if a model Θ persistently predicts the wrong conformation

at the wrong time, its likelihood score will be low. In order to demonstrate

the reliability of using likelihood for model selection, we will make use of the

example later in Section 4.4.1, which contrasts the difference in a model’s

likelihood in predicting true data, versus false data.
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4.2.5 Benefits of HHMM MDM

Our HHMM MDM offers a multi-level, nested clustering organization of a

protein’s motion dynamics. Each subtree in the hierarchy corresponds to

a separation of fast equilibration within a cluster of energy basins, versus

slower transitions with the outside. This allows scientists to intuitively

identify a protein’s major conformational changes. For example, a highly

nested cluster of energy basins is likely to be more stable and harder to

escape. Consequently, a conformational change out of the cluster is more

biologically significant than a change within the cluster. More interestingly,

by characterizing the conformation structure of the states before a difficult

transition, scientists can further understand the reasons that limit the

corresponding change, e.g. structural factors that prevent folding.

Furthermore, ourHHMM MDM identifies the timescale of conformational

change. More specifically, the expected number of 4t transitions to escape

from an energy basin, or a cluster of energy basins can be calculated as:

τi = 1
1−aii , where aii is self-transition probability of a macro or basin-state

(Eq. 4.5 on page 109). Therefore, by making use of the hierarchical structure,

it is also possible to estimate the timescale beyond which a particular

conformational change is expected to occur.

Also advantageous is the reduction in model parameters with minimal

loss in accuracy. This is possible because fast equilibration within clusters of

energy basins allow transitions between clusters to be collectively estimated.

As a result, the K2 transition matrix of K energy basins can potentially

be reduced to a much smaller k2 transitions between k clusters, and

a sub-matrix for each cluster. Therefore, for a good hierarchy with

suitably clustered energy basins, the impact on the accuracy in predicting

MD trajectories should be minimal.
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More importantly, transitions between clusters of energy basins correspond

to energetically difficult, but often necessary, conformational changes

a protein has to undergo. During MD simulation, these conformational

changes are only observable after long simulations. Consequently, there

is relatively less data to estimate transitions across clusters of energy

basins, as compared to transitions within clusters. Therefore, by combining

trajectories traversing across clusters into a collective transition probability

value, it is more likely to obtain a more reliable estimate.
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4.3 Model Construction

A model of protein dynamics needs to capture a protein’s change of

conformation over time. This requires a search for the most suitable model

across both space and time. In terms of space , not only are we interested

in identifying the number of biologically significant states, we also want

to discover the clustering relationship between them. In terms of time ,

we are interested in conformational changes from the 4t timescale of the

fastest biologically significant phenomenon, till after equilibration in the

stationary distribution. By combining the spatial and temporal organization

of a protein’s dynamics in a single HHMM MDM, we hope to provide a way

for scientists to intuitively understand how a protein achieves its function.

However, constructing anHHMM is complicated by the need to discover

the hierarchy. Given a particular timescale, we can identify the number

of biologically significant states by searching for the most suitable HMM.

However, it is impossible to simultaneously search both the number of

states and all possible hierarchies for the most suitable HHMM. It is also

uncertain how many different timescales should be sampled to construct

models. Too detailed, and numerous models will result. Too coarse, and

biologically interesting phenomenon may be missed.

More crucially, even if we construct multiple HMMs at different timescales,

it is insufficient because the value of an HHMM is in the collective

characterization of dynamics across different timescales. Since different

HMMs are constructed from data sub-sampled at different timescales, the

states in different HMMs may not be directly comparable, nor easily

combinable into a single MDM. Consequently, we need a different approach

to determine the hierarchical dependencies and construct anHHMM MDM.
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We propose a three stage process to construct the most suitableHHMM ΘH.

� HMM construction. We focus on characterizing the spatial

complexity of dynamics, and search for the most suitable K-state

HMM ΘK at the 4t timescale (Section 4.3.1).

� Hierarchy construction. We focus on the temporal organization

of dynamics, and attempt to identify hierarchical dependencies H

embedded within the K-state HMM ΘK (Section 4.3.2).

� HHMM construction. We construct the most suitableHHMM ΘH

using both HMM ΘK and the hierarchy H. This includes estimating

an initial HHMM (Section 4.3.3), optimization (Section 4.3.4), and

determining the most suitable HHMM ΘH (Section 4.3.5).

The reason we use the K-state HMM ΘK as the basis of hierarchical

construction is because ΘK is already a model of a protein’s dynamics.

As a MDM constructed at 4t timescale, ΘK has also abstracted away noisy

atomic vibrations at the femtosecond timescale. More crucially, ΘK has

already determined the suitable K number of energy basins, and as a result,

significantly reduced the search space. Under the Markovian property,

ΘK is also capable of simulating dynamics in place of raw MD data, and

will allow us to efficiently search for the hierarchy across different timescales.

Furthermore, ΘK beneficially allows us to take advantage of mathematical

techniques to further our analysis.

Before we begin construction, we divide the data into 3 separate sets.

The first is a training set Dtrain used to train multiple HMMs. The second

is a test set Dtest1 used to determine the most suitable K-state HMM ΘK .

Both Dtrain and Dtest1 are then used to train multipleHHMMs. The third is

also a test set Dtest2, and is used to determine the most suitableHHMM ΘH.
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4.3.1 Constructing the most suitable K-state HMM ΘK

We follow steps in Chapter 3 to construct the most suitableK-state HMM ΘK .

To recap, the 4t timescale of the fastest biological phenomenon is usually

obtainable from wet lab experiments. This is the timescale at which the

fastest biologically interesting events occur, e.g. the formation of α-helices

and β-strands. Therefore, by constructing the most suitable K-state

HMM ΘK at the 4t timescale, we abstract away noisy atomic vibrations,

while preserving the biologically interesting dynamics longer than 4t.

The steps to construct the most suitable K-state HMM ΘK are:

� Data preparation. MD trajectories are smoothed and sub-sampled

at the 4t timescale. In addition, due to the high dimensionality

of large proteins, a distance graph that better captures the kinetic

distance between conformations than RMSD is needed, see Section 4.4.2.

� K-medoids clustering. We use K-medoids algorithm to identify

compact clusters of conformations. Each cluster represents a potential

energy basin, and serves as the basis of a basin-state.

� HMM initialization. We use the clustering information to create

an initial HMM Θ0. Θ0 is already a model of dynamics, with

states representing energy basins, and transitions corresponding to a

protein’s change of conformation.

� HMM optimization. We initialize EM algorithm with Θ0 and

optimize for the model Θ with maximum p(Dtrain|Θ).

� HMM selection. We score each model Θ on the first test dataset

Dtest1, and choose the most suitable K-state HMM ΘK .
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4.3.2 Constructing the hierarchy H

The K-state HMM ΘK constructed earlier in Section 4.3.1 is already of

a model of a protein’s dynamics. However, with a complex network of

K2 transitions, it can be difficult to visually analyze ΘK , and gain an

intuitive understanding of how a protein achieves its function.

Despite the difficulty of directly using ΘK for biological understanding,

we constructed ΘK first because ΘK captures the protein’s dynamics from

the 4t timescale onwards. More importantly, ΘK allows us to apply

mathematical tools to analyze the dynamics, without relying on data.

In particular, we want to identify the equilibration timescales of a

protein’s dynamics using ΘK . Intuitively, if a clustering of energy basins

exists, a trajectory is likely to transition rapidly within the cluster, before

eventually transitioning out of the cluster. Consequently, there is likely

a separation of timescales between the dynamics within the cluster, and

between clusters. Therefore, the idea is this: if we can identify a separation

of equilibration timescales between different parts of ΘK , we can identify

the corresponding clustering of energy basins, and then build a hierarchical

model on top of it.

We use a combination of spectral clustering and hierarchical constraints

on timescales to construct the hierarchy. The reason is because traditionally,

spectral clustering only provides a bi-partition of the system, and the

equilibration timescale between the two partitions. Although informative,

this does not fully satisfy our need for a hierarchical clustering, which

requires a separation of timescales between various parts of the system.

In the following pages, we will first discuss the details of spectral

clustering and the hierarchical constraints separately. Then, we will combine

them into our hierarchy construction algorithm given on page 110.
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Spectral clustering

We use the eigen-decomposition of a transition matrix to guide us in

constructing a hierarchy. For ergodic systems where every state can be

reached from any other state, there exists a stationary distribution Πs

over states of the system. For protein dynamics, this corresponds to

the equilibration into a protein’s native conformation. More importantly,

the transition matrix of such a system can be decomposed into a set of

eigenvalues {λi} and eigenvectors {ui} that can be used to represent the

probability distribution of the system Πt at time t×4t:

Πt = Π0A
t =

∑
i

ciλ
t
iui, (4.4)

where Π0 is the initial distribution of the system at time t = 0, and ci are

coefficients determined with initial condition Π0, i.e. ci =
∑

j
ui,jΠ0,j

Πs,j
, where

the second subscript refers to a particular element in the vector [34, 67].

Therefore, the behavior of the system can be described as a sum of modes

decaying over time. In particular, the eigenvector u1 with an eigenvalue of 1

does not decay (λt1 = 1t), and corresponds to the stationary distribution Πs.

Other eigenvectors ui have eigenvalues λi < 1, and decays exponentially with

an implied timescale of −4tlnλi
[60]. More specifically, each eigenvector ui

with λi < 1, represents aggregate transitions between states with positive

values in ui, and those with negative values [34, 67].

The clustering is done by using each eigenvector to partition the system

into two. For each eigenvector ui with λi < 1, states with positive values in ui

are assigned to one partition, while those with negative values are assigned

to another. This creates a two-way partition with a timescale determined

by the corresponding eigenvalue λi. A multi -way partition can be done with
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the combined used of k eigenvectors to create possibly 2k partitions [35, 100].

Particularly interesting are the slow modes with eigenvalues nearly 1.

These eigenvectors represent rate limiting processes that takes relatively long

to equilibrate. By using only eigenvectors with λi nearly 1, clusters with slow

inter -cluster transitions can be identified. This has been successfully used to

identify meta-stable conformations of proteins that undergo relatively slow,

but biologically important conformational changes [29, 54, 101].

Hierarchical constraints on timescales

Although we will make use of spectral clustering, we have additional

requirements on the hierarchy. Namely, we want each level to correspond

to a particular timescale, and the number of levels to reflect the granularity

of temporal separation in a protein’s dynamics. This requires a measure of

timescale based on individual clusters after multiple partitioning, as opposed

to the eigenvalue λi timescale of a particular mode of the system.

In addition, since we measure the goodness of an HHMM according

to accuracy in predicting MD trajectories. This requires the hierarchy to

have significant separation of timescales for transitions within each cluster,

versus transitions between clusters, so that the collective transitions across

the hierarchy can be accurately approximated.

However, we do not have a proper HHMM at this stage to verify

the accuracy of a hierarchy in predicting MD trajectories. Calculating

transition times is also rather involved (see Chapter 5), and making pair-wise

comparisons between states will further complicate the construction.

Instead, we check the escape time of each cluster, and enforce the

additional constraint that a parent state has to have longer escape time than

any of its children. The idea is that for a cluster to have a significantly longer
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escape time compared to its internal energy basins, trajectories that exited

an internal energy basin has to go to somewhere else within the cluster.

Therefore, a cluster with a good separation of escape times between the

parent and child is likely to have fast equilibrating dynamics within it.

This is where the use of ΘK is beneficial because the escape time can be

calculated from the expected number of transitions τ needed to escape from

a state in ΘK . In particular, we condition on the probability of transiting

to the same state aii, or to a different state (1− aii) in one step:

τi = 1 + aiiτi + (1− aii)0

=
1

1− aii
, (4.5)

where aii is the self-transition probability of state i in ΘK . Escape time of

a cluster can be similarly defined based on the collective transitions within

a set of states in ΘK (Eq. 4.8 on page 113).

By combining spectral clustering with the hierarchical constraints

in Algo. 1, we can make use of ΘK to identify a hierarchical clustering

of the underlying energy basins. However, since the hierarchy has not been

verified against MD data, we still need to construct anHHMM MDM later.
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Algorithm 1 Constructing a hierarchy. Explanations are on page 111.

Require: ΘK ,E
1: G = {S,H} ← ΘK ; //initialization
2:

3: for gi ∈ G do
4:

5: Asub = matrix (gi,E); //sub-matrix construction
6: {{λi}, {ui}} = eigen (Asub); //eigen-decomposition
7:

8: gnew = gi; //creates a temporary copy
9:

10: //multi-way partition
11: for j = 2 . . . dim (Asub) do
12:

13: gtmp = partition (gi, {u2, u3, . . . , uj});
14: gtmp = constrain escape time (gtmp,E);
15:

16: if j == 2 then
17: threshold = set escape time threshold (gtmp);
18: end if
19:

20: if gnew == gtmp || min cluster escape time (gtmp) < threshold
then

21: go to line 28;
22: else
23: gnew = gtmp;
24: end if
25:

26: end for
27:

28: if gi! = gnew then
29: G ← replace (gi, gnew);
30: save G;
31: else
32: mark gi to be skipped in future iterations;
33: end if
34:

35: end for
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Hierarchy construction algorithm

We recursively construct the hierarchy from the top down, by identifying

clusters with the longest escape time first. We require expectations

ξt(m,n) = p(st = m, st+1 = n) from Eq. 3.13 (page 61), where m, n are

states in the K-state HMM ΘK , and are treated as basin-states in

an HHMM. More specifically, we require the expectations summed over

all training data Di ∈ Dtrain inferred using ΘK :

E(m,n) =
∑

Di∈Dtrain

T−1∑
t=0

ξt(m,n), (4.6)

Details of the construction algorithm Algo. 1 (page 110):

Line 1: Initialization. We create a simple tree G = {S,H} by putting

all states from the K-state HMM ΘK as children of the root in G.

This creates a “flat” hierarchy with one cluster of K basin-states.

Line 3− 35: Iteration. We iteratively partition G = {S,H} at the leaves to create

clusters deeper in the hierarchy, at increasingly shorter timescales.

Specifically, each candidate subtree gi ∈ G is a subtree with 2 levels,

with one parent on top, and all children are basin-states. At the end

of each iteration, either gi will be partitioned into sub-clusters and

subtrees will be created, or if unsuccessful, gi is marked and skipped.

Line 5: Sub-matrix construction. We assume gi is an enclosed system,

and create a transition matrix Asub among the basin-states in gi,

Asub = {asubmn | m,n ∈ basin(gi)}:

asubmn =
E(m,n)∑

n∈basin(gi)
E(m,n)

, (4.7)

where the normalization is over all basin-states in gi.
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Line 6: Eigen-decomposition. The eigenvalues {λi} and eigenvectors {ui}

of Asub provide the different modes of transitions within gi. We sort the

eigenvectors in descending values of the eigenvalues, i.e. λ1 > λ2 > λ3 . . . etc..

Specifically, the eigenvector u1 with λ1 = 1 corresponds to the

stationary distribution of the enclosed system gi. We are interested

in using the slower modes (ui with λi nearly 1) to create partitions

corresponding to clusters within the enclosed system gi.

Lines 11− 26: Multi-way partition. We attempt to create multiple subtrees

within gi by using the partition information provided by multiple

eigenvectors. Since each eigenvector ui indicates a mode of transitions

that decays over time, a two-way partition can be created by assigning

states with positive values in ui to one partition, and states with

negative values in ui to a second partition. More importantly, if we

overlap the partition information from a total of j eigenvectors, a

maximum of 2j partitions can be created simultaneously [34, 67].

However, due to the multi-way partitioning, the timescales of the

resulting partitions are different from the timescales indicated by the

eigenvalues {λi} of the two-way modes {ui}.

Lines 13: Partition. For each new partition within gi, a macro-state is inserted

into the hierarchy to create a new tree gtmp. gtmp has 1 root, a

maximum of 2j macro-states as children of the root, and basin-states

at the leaves. Since zero basin-state is added, the total number of

basin-states in G remains at K.

Lines 14: Constraint on escape time. We enforce the constraint that

each parent must have a higher self-transition probability (which

corresponds to escape time) than its children. The self-transition
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probability of a state sdi (which can represent a cluster) is:

adii =

∑
m∈basin(sdi )

∑
n∈basin(sdi ) E(m,n)∑

m∈basin(sdi )

∑
n∈basin(S) E(m,n)

, (4.8)

which is estimated from transitions originating from sdi . Since we

are interested in the timescale of individual clusters with respect to

the whole system, the normalization is with respect to all transitions

originating from sdi , to all basin-states in S.

If the constraint is not satisfied, the parent is eliminated, and its

children are re-attached to the grandparent. The function basin(·)

returns basin-states in the subtree rooted at state sdi , or in S.

Lines 16− 18: Threshold. The threshold affects the separation between different

levels in the hierarchy, i.e. separation in timescales. In signal

processing techniques such as wavelet transform, the frequency spectrum

is usually separated in equal halves with each iteration [22, 72].

However, interesting dynamics may be clustered within narrow range

of timescales, and a generic rule such as halving the bandwidth

may produce a hierarchy that fails to provide sufficient detail at the

crucial timescales. Therefore, we threshold each additional level of

the hierarchy on the escape time of the slowest dynamics within gi,

i.e. two-way partition of gi. Additional partitions with timescales too

different from the slowest dynamics within gi are reserved for future

levels deeper in the hierarchy.

Lines 20: Terminating multi-way partition. We terminate when an additional

eigenvector fails to increase the partitioning in gi (i.e. gnew == gtmp).

Or results in clusters with escapes times too fast compared to the

slowest dynamics in gi (i.e.min cluster escape time (gtmp) < threshold).
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In summary, each iteration through Algo. 1 creates a new level deeper in

the hierarchy, where transitions occur at an increasingly shorter timescale.

Although we used constraints to avoid creating hierarchies that deviate from

the Markovian dynamics of clusters of energy basins, we do not know at this

stage which hierarchy will lead to the most suitable MDM. Therefore, we

save the hierarchy at each iteration to construct a candidate HHMM in

the next stage (Lines 29 − 30). Lastly, for each macro-state sdi (except the

root s1
1), an exit state sd+1

e is added to its children to complete the hierarchy.
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4.3.3 Estimating HHMM parameters

With the K-state HMM ΘK and the hierarchy H, we are now ready to

construct an HHMM MDM. Constructing an HHMM is still necessary

because the hierarchy H has been derived from ΘK , and has not been

directly verified against MD data. Therefore, although a hierarchy with

multiple levels is more informative, it might violate the Markovian property

and fail to predict MD trajectories accurately enough. Consequently, despite

the care we have taken in constructingH, we do not yet know which iteration

of the hierarchy is the most suitable for biological understanding.

The tree G = {S,H} constructed in Section 4.3.2 is a hierarchy with

all necessary states S and parent-child dependencies H. In particular,

there are K basin-states at the leaves, and for each macro-state sdi (except

the root s1
1), there is one exit-state sd+1

e in its children. In order to

build a full HHMM MDM Θ = (C,S,H,Π, B,A,E), we need to estimate

the remaining parameters, namely, the vertical transitions {Π, B}, the

horizontal transitions A, and the emission probabilities E.

We estimate the parameters by combining each tree G = {S,H}

with the K-state HMM ΘK . We use HMM ΘK to infer the expectations

ξt(m,n) = p(st = m, st+1 = n) (Eq. 3.13 on page 61), and their sums

E(m,n) =
∑
Dtrain

∑
t ξt(m,n) (Eq. 4.6 on page 111). Based on these

expectations, we estimate parameters of an HHMM Θ based on the

normalization between sets of basin-states. This is possible because both

HHMM Θ and HMM ΘK model the same K number of energy basins, and

a branch in the hierarchy ofHHMM Θ corresponds to a state in HMM ΘK .

Therefore, by using HMM ΘK as initialization, we avoided the costly search

for both the number of energy basins, and their clustering at the same time.
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We use basin(sdi ) to indicate the set of basin-states under the subtree

rooted at sdi , and basin(S) indicates all basin-states in S. Subscripts of a

parent state sd will be omitted for clarity. Fig. 4.4 (page 93) will be a useful

reference for the rest of this section.

Vertical transitions {Π, B}

A vertical transition can be either upwards, or downwards. An upward

transition p(sd|sd+1
e ) = 1 is the transfer of control from an exit-state sd+1

e

back to its parent sd (subscript omitted), and is 1 by definition.

Downward transitions are distinguished according to the time at which

they occur. More specifically, the prior probabilities Π occur before the

conformation q0 is observed at time t = 0. While downward transitions B

occur after time t > 0.

A downward transition corresponds to an entry into one of the underlying

energy basins, before conformation qt at time t is observed. Consequently,

for each parent state sd, a downward transition probability p(sd+1
i |sd) is the

fraction of expected transitions into basin-states under the child state sd+1
i ,

over all basin-states under the parent sd.
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First, the prior Πsd = {πsdi | i = 1, 2, . . . , L}, where L is the number of

children under the parent sd, excluding the exit-state because a conformation

has yet to be generated. The prior πs
d

i = p(sd+1
i |sd) probability of transiting

from the parent sd to basin-states under its child sd+1
i is:

πs
d

i = p(sd+1
i |sd)

= p
(
basin(sd+1

i ), t = 0
)

=

∑
m∈basin(sd+1

i )

[∑
Di∈Dtrain

∑
K

n ξ0(m,n)
]

∑
m∈basin(sd)

[∑
Di∈Dtrain

∑
K

n ξ0(m,n)
]

=

∑
m∈basin(sd+1

i ) π
′
m∑

m∈basin(sd) π
′
m

, (4.9)

where the normalization
∑

m∈basin(sd) is over all basin-states in the subtree

rooted at the parent sd. In addition, π′m is the prior probability to be in

state m in HMM ΘK , and the last line is the result of multiplication by N
N ,

where N is the number of trajectories in Dtrain, see Eq. 3.7 on page 57.

Next, the downward transitions for time t > 0, Bsd = {bsdi | i = 1, 2, . . . , L},

where L is the number of children under the parent sd, and also excludes

the exit-state. The downward transition bs
d

i = p(sd+1
i |sd) is the probability

of transiting from the parent sd to basin-states under its child sd+1
i :

bs
d

i = p(sd+1
i |sd)

= p
(
basin(sd+1

i ) | basin(S)− basin(sd)
)

=

∑
m∈{basin(S)−basin(sd)}

∑
n∈basin(sd+1

i ) E(m,n)∑
m∈{basin(S)−basin(sd)}

∑
n∈basin(sd) E(m,n)

, (4.10)

which is the expected transitions from outside the subtree rooted at the parent

(m ∈ {basin(S)− basin(sd)}), into basin-states under its child (n ∈ basin(sd+1)),

normalized over all basin-states under the parent (n ∈ basin(sd)).
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Horizontal transitions A

Horizontal transitions A are more complicated because it can either be a

direct transition between energy basins within a cluster, or lead to further

transitions across the hierarchy. We need to consider 4 cases, differentiated

by the type of state (macro or basin), and the presence or absence of

an exit-state.

The type of state determines the presence of self-transitions. This is an

important distinction because the dynamics within a cluster of energy basins

involves rapid transitions between states inside the cluster. If we model

these transitions collectively as a repeating self-transition at the cluster level,

we lose the ability to distinguish the change of conformation at the fast

4t timescale. Consequently, we model the dynamics within a cluster as

direct transitions at the leaves of the hierarchy, and self-transitions are only

allowed for basin-states (which can only be at the leaves).

Exits correspond to the termination of a sequence of transitions. Since

we do not wish to predict the length of trajectories, there is no exit-state

at the top of the hierarchy to terminate the global sequence, i.e. d ≤ 2.

However, for d > 2, an exit-state exists among children of the same parent.

Horizontal transitions are also estimated based on sets of basin-states.

For each parent state sd, the horizontal transitions among its L children is

As
d

= {asdij | i, j = 1, 2, . . . , L}, where as
d

ij = p(sd+1
j |sd+1

i ) is the probability

of transiting from child sd+1
i to child sd+1

j . Consequently, for each source

child sd+1
i , a horizontal transition probability p(sd+1

j |sd+1
i ) is the fraction

of expected transitions into basin-states under the destination child sd+1
j ,

over basin-states under all possible destinations.
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Case 1: Macro-state without exit. We first consider a macro-state s2
i

at d = 2, directly under the parent root s1. Since there is no exit-state

among its siblings, there is only one kind of transition, which is a transition

to a different sibling, i.e. p(s2
j |s2

i ) where i 6= j:

as
1

ij = p(s2
j |s2

i )

= p
(
basin(s2

j ) | basin(s2
i )
)

=

∑
m∈basin(s2i )

∑
n∈basin(s2j ) E(m,n)∑

m∈basin(s2i )

∑
n∈{basin(S)−basin(s2i )} E(m,n)

, (4.11)

which is the expected transitions from within the source state (m ∈ basin(s2
i )),

into basins within the destination state (n ∈ basin(s2
j )). Since all children

of the root s1 are siblings of s2
i , and s2

i has no self-transition, the only

inaccessible basins are those within s2
i , i.e. basin(s2

i ). Therefore, the

normalization is over all basins outside the source child (n ∈ {basin(S)− basin(s2
i )}).
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Case 2: Macro-state with exit. When a macro-state is lower down

in the hierarchy, we need to consider the case of a transition to an exit-state.

More specifically, for a parent state sd at d > 1, the horizontal transitions

for its child macro-state sd+1
i is:

as
d

ij = p(sd+1
j |sd+1

i )

= p
(
basin(sd+1

j ) | basin(sd+1
i )

)
=

∑
m∈basin(sd+1

i )

∑
n∈basin(sd+1

j ) E(m,n)∑
m∈basin(sd+1

i )

∑
n∈{basin(S)−basin(sd+1

i )} E(m,n)
, (4.12a)

as
d

ie = p(sd+1
e |sd+1

i )

= p
(
basin(S)− basin(sd) | basin(sd+1

i )
)

=

∑
m∈basin(sd+1

i )

∑
n∈{basin(S)−basin(sd)} E(m,n)∑

m∈basin(sd+1
i )

∑
n∈{basin(S)−basin(sd+1

i )} E(m,n)
, (4.12b)

where i 6= j since there is no self-transition, and sd+1
e is the exit-state whose

parent is sd. Eq. 4.12a is similar to Case 1. The difference is in the

transition to the exit-state sd+1
e in Eq. 4.12b. A transition to an exit-state

terminates transitions within the subtree rooted at the parent sd, and lead

to the transfer of control back to sd with probability p(sd|sd+1
e ) = 1 by

definition. This will then be followed by further transitions to other parts

of the hierarchy (see Fig. 4.4 on page 93). Consequently, a transition to an

exit-state is equivalent to a transition to any basin-state outside the subtree

rooted at the parent (n ∈ {basin(S)− basin(sd)}).
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Case 3: Basin-state without exit. Basin-states can be at level

d = 2, directly under the parent root s1. For example, the K-state

HMM MDM ΘK is equivalent to a flat HHMM MDM with K basin-states

at d = 2, a “dummy” root, and no exit-states. The difference from Case 1

is that basin-states are allowed self-transitions, and all subtrees are now

accessible. Therefore, the normalization is over all basin-states in S.

More specifically, for a basin-state s2
i under the parent root s1, the

horizontal transition is:

as
1

ij = p(s2
j |s2

i )

= p
(
basin(s2

j ) | basin(s2
i )
)

=

∑
m∈basin(s2i )

∑
n∈basin(s2j ) E(m,n)∑

m∈basin(s2i )

∑
n∈basin(S) E(m,n)

, (4.13)

which is the expected transitions from within the source state (m ∈ basin(s2
i )),

into basins within the destination state (n ∈ basin(s2
j )), normalized over

transitions to all basin-states (n ∈ basin(S)). Self-transitions as
1

ii , for i = j,

are allowed.
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Case 4: Basin-state with exit. For basin-states lower down

in the hierarchy, the difference from Case 2 is that basin-states are

allowed self-transitions, and all subtrees are now accessible. Therefore, the

normalization is over all basin-states in S.

For a basin-state sd+1
i under the parent sd, the horizontal transitions:

as
d

ij = p(sd+1
j |sd+1

i )

= p
(
basin(sd+1

j ) | basin(sd+1
i )

)
=

∑
m∈basin(sd+1

i )

∑
n∈basin(sd+1

j ) E(m,n)∑
m∈basin(sd+1

i )

∑
n∈basin(S) E(m,n)

, (4.14)

as
d

ie = p(sd+1
e |sd+1

i )

= p
(
basin(S)− basin(sd) | basin(sd+1

i )
)

=

∑
m∈basin(sd+1

i )

∑
n∈{basin(S)−basin(sd)} E(m,n)∑

m∈basin(sd+1
i )

∑
n∈basin(S) E(m,n)

, (4.15)

where self-transitions as
d

ii , for i = j, are allowed, and sd+1
e is the exit-state

whose parent is sd. The transition to the exit-state sd+1
e is equivalent to

a transition to any basin-state outside the subtree rooted at the parent

(n ∈ {basin(S)− basin(sd)}).
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Emission probabilities E

Since each basin-state corresponds to an energy basin, the emission probabilities

of observing conformations for the basin-states are similar to those of

HMM MDMs in Chapter 3. Therefore, during the first initialization of

an HHMM MDM, the emission probabilities from the K-state HMM ΘK

can be directly used by mapping the energy basins. Subsequent optimizations

rely on the same estimation equations as Eq. 3.17 and Eq. 3.18 on page 62,

which are reproduced here for convenience:

µi = arg min
q

∑
Di∈Dtrain

T−1∑
t=0

γt(i) d(q, qt),

σ2
i =

∑
Di∈Dtrain

∑
T−1

t=0 γt(i) d
2(µi, qt)∑

Di∈Dtrain

∑
T−1

t=0 γt(i)
,

where the emission probability edi (q) = N (q|µi, σ2
i ) is a Gaussian distribution

of conformations q ∈ C for basin-state sdi , and γt(i) is the probability of being

in state sdi at time t (Eq. 3.14 on page 61).

In summary, by first constructing the K-state HMM MDM ΘK , we

avoided the costly search for both the number of energy basins, and

their clustering at the same time. More specifically, HMM ΘK allows

us to calculate inference on MD trajectories once, and initialize multiple

candidate HHMM MDMs with different hierarchies of K basin-states.

Although HHMM transitions involve additional internal changes, they

correspond to transitions among a set of smaller transition matrices, and

the use of fewer parameters. In addition, when there is a lack of long

trajectories, the collective transitions between clusters of energy basins can

potentially provide a more reliable estimate of longer timescale dynamics.

123



4.3.4 Optimizing HHMM parameters

The HHMM Θ we have constructed from the K-state HMM ΘK and

the hierarchy H can be further optimized. The reason is because the

hierarchy H enforces additional constraints on the HHMM Θ. Therefore,

even if the basin-states are exact, the averaging nature of cluster-to-cluster

dynamics can cause transitions inHHMM Θ to be different from the original

HMM ΘK . Consequently, HHMM Θ has yet to be directly optimized.

There are a few ways to further optimize the initial HHMM Θ.

The HHMM framework was originally proposed by Fine et al. in [42].

The inference algorithm and parameter estimations run in O(MDT 3) time,

where M is the maximum number of states at each level in the hierarchy,

and D is the depth of the hierarchy. This runtime is undesirable because

the temporal length T of MD trajectories is orders of magnitude larger than

the M number of states, and D tends to be small.

However, since HMMs is the basis of our construction, the most

direct approach for optimization is to resolve hierarchical dependencies in

Eq. 4.1 (page 97), and make use of the forward-backward algorithm for HMM

inference in O(K2T ) time, where K is the number of basin-states. With

the expectations, the HHMM parameters can be re-estimated according to

Section 4.3.3.

More specifically, since the HHMM is the more constrained model,

when we use Eq. 4.1 (page 97) to convert an HHMM to an HMM,

the resulting basin-to-basin transitions between the two MDMs are exact.

Consequently, if we also use the exact emission probabilities in the HMM,

the inferred expectations obtained by the two MDMs will be the same.

With these expectations, we can re-estimate the HHMM parameters

according to Section 4.3.3.
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Although we can also re-estimate the HMM, it is not the model we

are trying to optimize. In addition, due to the lack of hierarchy, the

re-estimated HMM may be different from the re-estimated HHMM.

More importantly, what we gain through this transformation and

re-estimation is speed. Instead of resolving the HHMM’s hierarchical

dependencies at every time step of every trajectory during inference, only

a single conversion costing O(K2D) is needed for each iteration of the

EM algorithm. This is because for each of the K basin-states in theHHMM,

it is necessary to propagate the dynamics up and down the hierarchy of

depth D, where at most K states is present at each level. However, since

each macro-state can have many children, the depth D of the hierarchy with

K leaf basin-states should be relatively small.

What we compromise is the use of more parameters in an HMM. In some

other applications, converting a hierarchy to an HMM may be unsuitable.

For example, in natural language processing, substructures for phonemes

may be shared in the hierarchy, and conversion will require the duplication

of shared substructures with a tremendous increase in number of parameters.

However, since there are no shared substructures in our hierarchy, and

we began the construction with the search for the most suitable K-state

HMM ΘK , space considerations do not constrain us.

There are also alternative ways to optimize an HHMM. Murphy et al.

has proposed an inference algorithm that also runs in linear time [74, 76].

They showed thatHHMMs are a type of dynamic Bayesian network (DBN),

and inference can be done in O(M2DT ) time by applying the junction tree

algorithm. Approximate DBN inference using factored frontier algorithm

can also be applied in O(MDT ) time [75].
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4.3.5 Determining the most suitable HHMM ΘH

Our motivation of building an HHMM MDM is to better characterize

dependencies in a protein’s motion dynamics, in order to identify major

conformational changes beyond the 4t timescale the model was trained in.

However, our recursive construction process leads us to a number of possible

hierarchical models, each enforcing different assumptions on transitions

based on different clustering of energy basins. Although we are interested

in the model with the most detailed separation of dynamics, we are also

concerned about the impact of the hierarchy on the accuracy in predicting a

protein’s motion. Therefore, we compare the likelihood of candidate models

on another dataset of MD trajectories Dtest2 (Eq. 4.3 on page 100).

In addition, we also wish to compare the likelihood of candidate models

with the K-state HMM ΘK . The reason is because the K-state ΘK is

the model from which all the hierarchical models have been initialized with.

Therefore, all candidate hierarchies have the same K number of basin-states.

Furthermore, the K-state ΘK corresponds to an HHMM with the simplest

“flat” hierarchy, where all basin-states are children of a “dummy” root.

Also, ΘK has the largest (K2), and least constrained transition matrix.

Therefore, comparison with ΘK will give us an indication of the impact of

hierarchical dependencies on the accuracy in predicting MD trajectories.

As we compare the likelihood on Dtest2, we expect these scenarios:

a) Comparable to HMM ΘK .

b) Better than HMM ΘK .

c) Worse than HMM ΘK .
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a) Comparable to HMM ΘK . We expect the most suitableHHMM ΘH

to predict MD trajectories as well as ΘK . This is because for hierarchical

dependencies to exist, there must be fast equilibration within the underlying

clusters of energy basins that allows transitions between clusters to be

accurately estimated collectively in an HHMM MDM. However, assuming

sufficient data, transitions can also be individually estimated. Consequently,

the most suitable HHMM MDM ΘH should score as well as ΘK .

Despite comparable likelihood, we favor an HHMM MDM because the

hierarchy offers potentially interesting biological insight, and is also easier to

comprehend than ΘK . In addition, an HHMM MDM with K basin-states

will likely have achieved the same accuracy with fewer parameters than ΘK .

b) Better than HMM ΘK . Although a better likelihood indicates better

accuracy in predicting dynamics, a noticeable improvement is undesirable.

A better likelihood indicates that transitions between energy basins in

different clusters are better estimated collectively via fewer parameters in

the hierarchy. This is a potential problem because it means the larger

K2 transition matrix of ΘK could have been further optimized if more data

is available. As a result, this raises doubts as to whether the reference

HMM MDM ΘK we relied upon to initialize hierarchical models is actually

the most suitable HMM MDM.

c) Worse than HMM ΘK . A worse likelihood is certainly bad.

This indicates hierarchical dependencies violated the fast internal equilibration

property and erroneously grouped energy basins with different dynamics

together. As a result, with insufficient equilibration within the enforced

clusters, the collective transitions between clusters fail to accurately predict

MD trajectories. Since our construction began with the simplest hierarchy,

this case indicates an over-complex hierarchy with too much dependencies.
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4.4 Results

We demonstrate the applicability of our approach by applying the full

modeling process in two experiments. In Section 4.4.1, we first make use

of a synthetic energy landscape to illustrate scenarios where our modeling

approach is beneficial for understanding motion dynamics. This is a crucial

demonstration because the long-timescale MD simulation of proteins with

complex motions is still difficult to obtain today. Additionally, a large

number of independent MD trajectories is required to capture the stochastic

nature of molecular motion. More importantly, the synthetic landscape

allows us to test our approach and construct interesting hierarchies where

the ground truth is known.

In Section 4.4.2, we apply our modeling approach on the 35 amino acids

villin headpiece protein (HP-35 NleNle). The villin headpiece trajectories

was simulated by the Folding@home project, and is one of the largest

MD datasets publicly available [14, 40]. The villin headpiece was a major

motivation behind our development of the hierarchical model, and our search

for hierarchical dependencies has beneficially allowed us to gain a better

understanding of its motion dynamics. Our results on villin headpiece

demonstrate the applicability of our approach on a practical scale.

We begin the modeling by first searching for the most suitable K-state

HMM MDM ΘK . This is a crucial phase of construction because ΘK

identifies the energy basins and predicts MD trajectories at the resolution

of the fastest 4t timescale of interest. With ΘK , we can then efficiently

search for dependencies at longer timescales by constructingHHMM MDMs

with different hierarchies of K energy basins. Finally, the most suitable

HHMM MDM ΘH will be chosen for analysis based on its accuracy in

predicting trajectories, with respect to model complexity.

128



4.4.1 Synthetic energy landscape

We created a 2-D synthetic energy landscape with 11 energy basins by

parameterizing the potential function in Eq. 3.20 (page 67). Each dimension

corresponds to a degree of freedom in an artificial molecule, and the

XY-space corresponds to its conformation space C. Langevin dynamics

is used to generate 1000 trajectories of 1000 time steps each [44, 66].

An equal number of trajectories were initiated from each energy basin, and

the distance measure used is the Euclidean distance in the plane.

The interesting aspect about this landscape is how the energy basins are

connected, see Fig. 4.5. In particular, there are 4 main clusters:

� Top Left: A, B, C, D. This cluster is the most interesting because

the energy basins are differently connected to each other. Although

basin A is the deepest in the landscape, it is not the most significant

state under stationary distribution. This is due to the steep energy

barriers surrounding A and B, which favor transitions towards C.

Consequently, trajectories eventually equilibrate among C and D,

which are akin to the native conformation of a protein.

� Top Right: E, F, G. This cluster has a cascade of energy basins,

with G at the shallow end, F is slightly deeper, and E is the deepest.

Connectivity between the basins means that the transition “downhill”

from G→F→E is relatively easy compared to the reverse direction.

As such, entry into any basin here will eventually lead to E.

� Bottom Right: H is a broad and shallow energy basin. This corresponds

to denatured conformations where the protein is relatively stretched out.

Although motion is relatively unhindered in this region, conformations

are unstable and transient in the long term.
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� Bottom Left: I, J, K. Each energy basin is narrow and deep.

The relatively high energy barrier between the basins results in a

clear separation between them. Consequently, transitions between

the basins here occur at longer timescales compared to those in

clusters {A, B, C, D} and {E, F, G}. These correspond to stable

conformations that a protein may temporarily get trapped in.

The combination of 11 energy basins with individual characteristics

means that trajectories transit across the landscape at different timescales.

For example, a trajectory traversing from basin H to basin D is a lot easier

and faster than a trajectory going in the opposite direction. This is because

although basins A, B, C and D are easy to escape individually, but collectively,

they are the most significant region of attraction in the entire landscape.

Therefore, the difficulty of traversing through the landscape is not only

due to the difference in the depth or width of individual energy basins,

but is also the result of the connectivity between basins. More importantly,

it is the indirect relationship between energy basins that will determine

the motion dynamics. Consequently, without actually seeing the energy

landscape, it is very difficult to figure out the reasons that cause different

trajectories to traverse distinctly over the landscape.
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a) Energy landscape

b) Data

Figure 4.5: A synthetic landscape with 11 energy basins in the XY-plane.
The four main clusters are {A, B, C, D}, {E, F, G}, {H}, and {I, J, K}.
The black line in b) traces a sample trajectory that started in basin H.
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Figure 4.6: Average log-likelihood scores of HMM MDMs on the first test
dataset Dtest1. We choose K = 11 as the most suitable HMM MDM ΘK .

Search for the most suitable number of states

In order to model the dynamics, we first search for the most suitable K-state

HMM MDM ΘK . We follow procedures outlined in Chapter 3 to construct

HMMs with different number of states. 50% of trajectories are used as

the training dataset Dtrain, at 4t = 10 simulation time steps. Another

25% of trajectories are used as the first test dataset Dtest1 to identify the

most suitable K-state HMM MDM ΘK . We save the remaining 25% of

trajectories as the second test dataset Dtest2 for the hierarchy.

Fig. 4.6 shows the likelihood scores of different HMM MDMs on Dtest1.

The plateauing of likelihood as K increases from 1 to K = 11 is just as we

expected. With each increase in the number of states, the energy basins

become increasingly better characterized, and the MDM is able to predict

MD trajectories with higher accuracy.
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a) 4-state HMM. b) 10-state HMM.

c) 11-state HMM. d) 12-state HMM.

Figure 4.7: Distribution of conformations generated by simulating
HMM MDMs. a) When the number of states is insufficient, only the major
clusters can be characterized. b) The 10-state HMM characterizes energy
basins A and B together as one, while the rest of the energy basins are
accurately identified. c) The 11-state HMM is the most suitable HMM.
d) When the number of states exceeds the actual number of energy basins,
the states start to overlap on top of each other. For the 12-state HMM, two
states overlap the energy basin H.
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Fig. 4.7 illustrates the distribution of conformations generated by

HMM MDMs with 4, 10, 11 and 12 states. When the number of

states is less than the actual number of energy basins, only the major

clusters can be characterized, i.e. 4-state HMM. This is due to the use of

K-medoids clustering for initialization, which favors the initial identification

of regions with a high-density of conformations. Only when the number of

states increases sufficiently, can energy basins be individually characterized.

This is beneficial because energy basins are not necessary distinct, and can

be difficult to distinguish.

More specifically, in the 10-state HMM, we can see that energy basins

A and B are modeled as a single state. Although these two energy basins can

be better distinguished, the distribution of conformations predicted by the

10-state HMM is still roughly accurate. Therefore, the dynamics modeled

by the 10-state HMM is mostly accurate, and the improvement in likelihood

score from 10 to 11 states is slight.

When the number of states increases further to 12, we see an overlapping

of two states over the energy basin H. This is similar to the over-complexity

scenario we encountered earlier in alanine dipeptide (Section 3.4.2 on

page 71), and is actually difficult to recognize without using the likelihood

score. Just as before, there is a compensatory trade-off between an increase

in spatial resolution and a decrease in the accuracy of predicted transitions.

The result is no further improvement in likelihood score for HMM MDMs

with more than 11 states. Consequently, it is reasonable to choose the

11-state HMM as the most suitable MDM ΘK .
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a) Distribution of conformations.

b) Transitions between states.

Figure 4.8: 11-state HMM MDM ΘK of the 11-basin synthetic landscape.
In a), the black line traces a generated trajectory that started in basin H.
In b), the size of a node corresponds to the stationary distribution, the
weight of an edge corresponds to the probability of transition. Self-transition
probabilities are not shown.
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Fig. 4.8 illustrates the parameters of the 11-state HMM MDM ΘK .

In Fig. 4.8a, we can see that ΘK accurately identifies the locations of the

11 energy basins. The dimensions of energy basins are also well characterized

by the variance σ2 of the emission probabilities. In terms of dynamics,

from the node sizes in Fig. 4.8b, we can see the dominance of energy basins

C and D under the stationary distribution. This is despite the fact that

A and B are actually the deeper energy basins. This also illustrates the

crucial difference between an analysis based on the energy landscape, versus

analysis based on predicting dynamics. More specifically, the dynamics

of a protein’s motion is also influenced by its momentum, and can be

accurately predicted if simulated. Consequently, even if the high-dimensional

energy surface of real proteins are explicitly available, an analysis without

simulation is not absolutely reliable.

Also in Fig. 4.8b, although we can identify the more important transitions

from the thickness of edges, there are also many thinner edges which can

be rather confusing. More importantly, so far our analysis is limited to the

two extreme timescales, the 4t timescale of individual transitions, and the

stationary distribution. The interesting dynamics during the intermediate

time frame is rather difficult to obtain from Fig. 4.8.

For example, although it is tempting to infer that the sequence of

transitions from H to {A, B, C, D} is via the intermediate clusters {E, F, G}

and {I, J, K}, we want to point out that the 2-D embedding plays a

crucial role in this interpretation. Without an accurate embedding and

prior knowledge of the energy landscape, it can be rather difficult to

distinguish the presence of two intermediate clusters from the network of

K2 connections. Additionally, understanding the intermediate dynamics

requires the analysis of the ensemble of pathways between states across
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multiple transitions. Due to the difficulty of escaping from basins, small

differences in transition probabilities can further complicate analysis.

The difficulty in gaining an understanding arises because it is necessary

to analyze a particular change at the timescale at which it occurs.

For example, the high probability transitions within {E, F, G} are easily

taken at each 4t time step (thick edges in Fig. 4.8b). However, over

a longer timescale, trajectories from {E, F, G} are more likely to have

transited to {A, B, C, D}. This information is hardly apparent in the edges

representing 4t time transitions. However, by checking the size of states

in Fig. 4.8b, we can clearly identify that transiting to {A, B, C, D} is much

more likely than any other alternatives. This is because the size of states

corresponds to the stationary distribution, which is the suitable timescale

for analyzing the longer timescale dynamics. The problem is, “What about

the intermediate time frame?”

Although it is possible to construct different models at different timescales,

we do not necessarily know all the interesting timescales of a protein’s

motion. Correlating between the different models will also be difficult.

Therefore, we need to better characterize the dynamics, and search for the

most suitable HHMM MDM.

Search for the most suitable HHMM MDM ΘH

We proceed by constructing HHMM MDMs with different hierarchies of

K energy basins. We make use of the 11-state HMM ΘK and start with

a simple hierarchy with 11 basin-states and 1 root. At each iteration,

we grow the hierarchy downwards by clustering sibling basin-states into

newly created subtrees deeper in hierarchy. We combine the hierarchy from

each iteration with ΘK to construct a candidate HHMM.
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Figure 4.9: Average log-likelihood scores of HHMM MDMs with different
hierarchies on the second test dataset Dtest2 (red solid line). As we
construct the hierarchy with each iteration, we create HHMM MDMs with
an increasing hierarchy, but a decreasing number of parameters. Since all
the candidate models have similar score as compared to ΘK , we choose
the model with the least number of parameters as the most suitable
HHMM MDM ΘH. The scores of HMM MDMs with different number of
parameters are also shown for reference (green dashed line). Due to the
relatively few 11 energy basins, the better scores of HHMM MDMs is less
visible here, as compared to results on villin headpiece in Fig. 4.17.

Trajectories from Dtrain and Dtest1 are used to optimize parameters of

the candidateHHMMs. Trajectories from the remaining 25% of trajectories

are used as the second test dataset Dtest2 to identify the most suitable

HHMM MDM ΘH.

Fig. 4.9 shows the likelihood scores ofHHMMs with different hierarchies

of 11 energy basins. Due to the constraints imposed on parents having longer

escape time than their children, all candidate HHMMs have clusters with

fast internal transitions. This allows them to accurately predict trajectories

despite the collective estimation of transitions across clusters. Consequently,

the candidate HHMMs score similarly well as compared to the 11-state

HMM ΘK . An unsuitable hierarchy will fail to predict MD trajectories and

lead to a deterioration in the likelihood scores with respect to ΘK .
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More importantly, although each HHMM models 11 energy basins with

11 basin-states, due to the different hierarchies, the number of parameters

is different. In addition, the HHMMs score better than HMMs with the

same number of parameters. This demonstrates the benefit of combining

the estimation of transitions between clusters of energy basins across the

hierarchy. Since the likelihood scores among candidateHHMMs are similar,

we choose the model with the least number of parameters as the most

suitable HHMM MDM ΘH.

Fig. 4.10 shows the most suitableHHMM MDM ΘH of 11 energy basins.

The interesting part of ΘH is the clustering of states previously unavailable.

At the top of Fig. 4.10a are 4 subtrees corresponding to clusters {A, B, C, D},

{E, F, G}, {H} and {I, J, K}. This corresponds to our understanding of

the energy landscape in Fig. 4.5 on page 131. More importantly, Fig. 4.10b

shows that in the long-timescale near the top of the hierarchy, transitions

out of {A, B, C, D} are significantly more difficult than transitions into it.

Consequently, {A, B, C, D} are the major states under stationary distribution.

In addition, to change from H to {A, B, C, D}, there are two dominant

pathways via intermediate clusters {E, F, G} and {I, J, K}.

Contrast this with Fig. 4.8b on page 135, which shows major transitions

at the fast 4t timescale are those within {A, B, C, D}. This is not wrong,

it is just that the change we are interested in, from H to {A, B, C, D},

hardly occurs at the fast 4t timescale. If pruning is applied to remove

smaller edges or nodes in Fig. 4.8b, it will likely result in a wrong

understanding of dynamics without intermediates, and separate models at

different timescales will be required for analysis. As such,HHMM MDM ΘH

is not only beneficial in clustering the states, it also identifies the crucial

timescales to interpret a protein’s dynamics.
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a) Hierarchical dependencies.

b) Transitions between clusters.

Figure 4.10: Hierarchy and inter-cluster transitions of the most suitable
HHMM MDM ΘH with 11 basin-states. In a), the x-axis is labeled
according to the basin-states (red dots). The green star at the top is the
root state representing the whole MDM. Directly connected to the root are
the 3 macro-states (green triangles) representing the clusters {A, B, C, D},
{E, F, G}, {I, J, K}, and the basin-state H. Clustering can be nested.
For example, {A, B, C, D} is in fact nested according to {{{A, B}, C}, D}.
Exit-states are not shown to avoid clutter. In b), the size of a node
corresponds to the stationary distribution, the weight of an edge corresponds
to the probability of transition. Self-transitions within each cluster, and H,
are not shown. H is a basin-state, and is shaded.
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More specifically, this is our interpretation of dynamics in each cluster:

� A, B, C, D. With the highest collective self-transition probability

nearly 1 (Fig. 4.10a), this is the most difficult to escape cluster.

The large separation in escape times between the cluster as a whole

and states within it indicates frequent transitions among energy basins.

From Fig. 4.11, if a trajectory exits from {A, B}, it is likely to first

go to C or D, because escaping the whole cluster occurs at a much

longer timescale. If a trajectory exits from C, it is likely to go to either

{A, B} or D. If transit is to {A, B}, then a subsequent return is rather

likely. Only D offers greater stability as an individual energy basin.

Interestingly, {A, B, C} collectively offers greater stability than D,

and is likely the reason that C has a high stationary probability.

� E, F, G. From Fig. 4.11, we can clearly recognize the favored sequence

of transitions from G to F, and then to E. This corresponds to our

intuition that the cascade of energy basins results in equilibration in E.

� H has a surprisingly high self-transition probability (Fig. 4.10a).

Due to its broadness, although a trajectory can cover large distances

across the region, it takes a long time to escape from the energy basin.

� I, J, K. Each basin is relatively difficult to escape, and is especially

interesting when compared to {E, F, G} in Fig. 4.10a. The separation

in escape times between the cluster as a whole and states within

is relatively small for {I, J, K}, as compared to {E, F, G}. This

suggests there is relatively less transitions between states in {I, J, K},

and corresponds intuitively to the isolated nature of each basin.

In addition, Fig. 4.11 shows there is no favored sequence of transitions

through {I, J, K}, as opposed to the cascade in {E, F, G}.

141



a) Cluster {A, B, C, D}. b) Cluster {E, F, G}.

c) Cluster {I, J, K}.

Figure 4.11: Intra-cluster transitions of the most suitableHHMM MDM ΘH
with 11 basin-states. Each graph shows the internal transitions within
each major cluster. The size of a node corresponds to the stationary
distribution, the weight of an edge corresponds to the probability of
transition. Self-transitions are not shown to avoid clutter.
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Equilibration within clusters of energy basins

Due to the connectivity within a cluster, rapid transitions between energy

basins result in the equilibration of trajectories before they exit. Upon exit,

the future of a trajectory is independent of how it entered the cluster in

the past, i.e. is Markov. Consequently, a good hierarchy corresponds to

a suitable clustering such that regardless of the initial state within the

same cluster, the system converges to a similar probability distribution

over the states quickly. Conversely, states in different clusters have distinct

probability distributions before the global stationary distribution is achieved.

Since the equilibration within a cluster occurs over multiple 4t time steps,

this process can be observed by simulating theHHMM MDM ΘH. Fig. 4.12

shows the probability distribution over states simulated with ΘH across

the equivalent 1000 time steps of the trajectories. The interesting thing to

note is that states within the same cluster converges to a certain ratio of

probabilities quickly, while different clusters exhibit different “profiles” of

probability distributions.

Additionally, the global equilibration to the stationary distribution

occurs over a timescale much longer than the 1000 simulated time steps.

In Fig. 4.12, this is reflected in the continued changing probability distributions

in {E, F, G}, {H} and {I, J, K}. Whereas the probabilities in {A, B, C, D}

has very much stabilized to the stationary distribution. In fact, for

all trajectories in our dataset, only 40% of trajectories initiated from H

managed to reach the native cluster {A, B, C, D}. Without the combined

use of trajectories initiated from different energy basins, significantly more

trajectory data will be required for model construction.
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a) Initialized with A in {A, B, C, D}. b) Initialized with G in {E, F, G}.

c) Initialized with J in {I, J, K}. d) Initialized with H.

Figure 4.12: Dynamics simulated using the most suitableHHMM MDM ΘH
with 11 basin-states. In each simulation, one branch in the hierarchy is
assigned an initial probability of 1, i.e. a particular basin-state. In each plot,
the red line indicates the probability of being in the initial basin-state, green
lines indicate those basin-states within the same cluster as the initial state,
while dashed black lines are basin-states in other clusters. The simulated
duration is 1000 time steps, similar to the length of trajectories in the
dataset.
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Specificity on false data

An interesting question that arose is the objectivity of using the likelihood

on MD trajectories when choosing the most suitable model. In particular,

we are concerned about the specificity of MDMs on false datasets.

We reverse the direction of acceleration by creating an “inverted”

landscape with 11 “hills”. Langevin dynamics is used to generate 1000

trajectories of 1000 time steps each. The resulting trajectories explore

regions of the energy landscape previously seldom visited, see Fig. 4.13.

We then score HMM MDMs previously constructed from the “original”

energy landscape in Fig. 4.5, on false data from this “inverted” landscape.

The likelihood scores in Fig. 4.14 show an interesting trend. When a

model is insufficiently complex (K = 1), the difference in scores on true

and false data is relatively small. This indicates the model has difficulty

distinguishing the different scenarios. However, as model complexity

increases, the difference in scores widens significantly. Particularly interesting

is the slight increase in score on false data beyond K > 9. This is when

the overlapping of emission probabilities E around basins in the “original”

energy landscape begins to show slight bias towards the “false” data.

Although we know the true value of K = 11, it suggests a slight preference

should be given to models with almost as good a score on true data.

In practice, although forces can be inverted in MD, it is still too expensive

to collect additional false data. However, if data of different molecules

are available, a suitable penalty term can be estimated, e.g. Bayesian

information criterion [16]. More importantly, this suggests the potential of

using MDMs to classify molecules based on motion dynamics. This is useful

because a single DNA mutation may seem minor, but can significantly

change a protein’s folding and cause diseases such as sickle cell anemia [55].
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Figure 4.13: False dataset from the “inverted” landscape with 11 “hills”.
Green dots are the conformations, while the black line traces a sample
trajectory.

Figure 4.14: Comparison of average log-likelihood scores on the true (red)
and false (green) test datasets. HMM MDMs with K = 1, 2, . . . , 13 states
are trained on the true dataset from the 11 “basins” landscape, and scored
on both the true and false test datasets. As the number of states increases,
the MDMs are better able to distinguish between the true and false datasets,
i.e. greater separation between the red and green lines.
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4.4.2 Villin headpiece

We model the dynamics of villin headpiece (HP-35 NleNle), a protein

with 35 amino acids. Due to the large dataset, data preparation is more

involved. Similarly, we will first search for the most suitable K-state

HMM MDM ΘK that models villin’s dynamics. Then, we will search

for the most suitable HHMM MDM ΘH and analyze villin’s dynamics.

In particular, we are interested in understanding villin’s motion during the

intermediate timescale, before it has attained the native conformation.

Data preparation

The data for the fast-folding variant of the villin headpiece (HP-35 NleNle)

was generated by the Folding@home project [14, 40]. It is one of the

largest MD datasets publicly available, consisting of 410 MD trajectories

initiated from 9 different unfolded conformations. Each trajectory is

1 µs (10−6s) in duration on the average, with conformations saved every

50 ps (50× 10−12s). As such, the dataset contains millions of conformations

in high-dimensional space.

For computational efficiency, we cluster the conformations to form

microstates in the conformation space C. These microstates are not states in

the MDM, and are usually created when the high-dimensional conformation

space C cannot be uniformly sampled. We create the microstates by

sampling 10, 000 conformations uniformly along the MD trajectories as the

microstate centers. The remaining conformations in the dataset are then

clustered to the nearest microstate centers according to the RMSD of all

heavy atoms in the protein. Earlier work indicates that we may assume the

protein transits directly between microstates that are close according to the

RMSD between microstate centers [17, 29].
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Furthermore, we construct a distance graph that approximates the

dynamics of the protein according to the microstates. The idea is similar

to the use of a nonlinear dimension reduction to preserve the relationship

between the microstates [84]. Each node of this graph is a microstate

and is connected to a small number of other nodes close by in RMSD.

An edge of the graph is assigned a weight equal to the RMSD between

the end nodes. The distance between two microstates is defined as the

length of the shortest path between them in the graph. For large proteins,

due to the sparsely sampled high-dimensional conformation space C, this

graph-based distance based on microstates better captures the dynamics

than direct RMSD between individual conformations.

Search for the most suitable number of states

We applied our model construction algorithm over the microstates, and built

HMM MDMs with increasing number of states, all at 4t = 5 ns timescale.

50% of trajectories is set aside for training Dtrain, and another 25% is used

for testing Dtest1. We save the remaining 25% of trajectories as the second

test dataset Dtest2 for the hierarchy.

Fig. 4.15 shows the average log-likelihood score on first test datasetDtest1.

It shows that the score improves significantly when the number of states

increases from 1 to 20. Improvement in the score is more gradual between

20 and 40 states. Beyond 40 states, the score remains approximately

constant. Therefore, we consider the HMM MDM with about 40 states

to be the most suitable HMM ΘK . (41 states to be specific.)
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Figure 4.15: Average log-likelihood scores for the villin headpiece
HMM MDMs on the first test dataset Dtest1. We choose K = 41 as the
most suitable HMM MDM ΘK .

Figure 4.16: 41-state HMM MDM ΘK of villin headpiece. The largest
node, state 41, is the most likely folded state. The size of the nodes
corresponds to the stationary distribution probabilities. The weight of
an edge corresponds to the transition probability. The complexity of
K2 transitions in a large protein is difficult to visually analyze. A common
way to ease analysis is to remove the smaller states and less significant
transitions. However, simplifying a model before analysis is undesirable
because it results in a less accurate model, and deviates from the model
actually constructed. Hence, constructing an HHMM MDM is crucial for
gaining biological understanding.
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Fig. 4.16 is the graphical representation of the 41-state HMM MDM ΘK .

Although we can identify state 41 as the most significant state, knowing its

3-D structure does not explain how it can be achieved, nor the difficulty

of achieving it. In addition, due to the complexity of villin’s motion, it is

difficult to visually examine its dynamics without first simplifying Fig. 4.16.

A common way to ease analysis is to remove states with smaller stationary

probabilities, and transitions with small probabilities. Another common

approach is compute the most probable path between the most likely

unfolded state, and the most likely folded state. However, simplifying a

model before analysis is undesirable because it results in a less accurate

model, and deviates from the model originally chosen. Knowing the most

probable path, or the best few pathways are also inadequate because it

is the collective contribution of all possible pathways that will determine

a protein’s function. Hence, constructing an HHMM MDM for a better

spatial and temporal separation of villin’s dynamics is crucial for gaining

biological understanding.

Search for the most suitable HHMM MDM ΘH

We search for interesting aspects of villin’s dynamics by using the most

suitable HMM ΘK to construct HHMM MDMs with different hierarchies

of 41 energy basins. We begin the construction by creating anHHMM with

41 basin-states, and 1 root state. At each iteration, we grow the hierarchy

downwards by clustering sibling basin-states into newly created subtrees

deeper in hierarchy. We combine the hierarchy from each iteration with ΘK

to construct a candidate HHMM. We then use both Dtrain and Dtest1 to

optimize parameters of the candidateHHMMs, before using the second test

dataset Dtest2 to identify the most suitable HHMM MDM ΘH.
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Figure 4.17: Average log-likelihood scores for the villin headpiece
HHMM MDMs with different hierarchies on the second test dataset Dtest2
(red solid line). As we construct the hierarchy with each iteration, we
create HHMMs with an increasing hierarchy, but a decreasing number of
parameters. Since all the candidate models have similar score as compared
to HMM ΘK , we choose the model with the least number of parameters as
the most suitable HHMM MDM ΘH. The scores of HMMs with different
number of parameters are also shown for reference (green dashed line).

Fig. 4.17 shows the average log-likelihood score on the second test

dataset Dtest2. As we construct the hierarchy with each iteration, we create

HHMM MDMs with an increasing hierarchy, but a decreasing number

of parameters. The most suitable HHMM MDM ΘH has a hierarchy of

41 basin-states corresponding to a nested clustering of 41 energy basins.

In addition, due to the collective estimation of transitions across clusters, ΘH

has reduced the number of parameters from 1762 to 860, while maintaining

the accuracy in predicting MD trajectories. ΘH also scores better than

HMMs with the same number of parameters. This gives us an assurance

that the hierarchical clustering of underlying energy basins is suitable for

analysis, and is a crucial difference compared to other alternatives that can

simplify a model, but without further verification against data.
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Figure 4.18: Hierarchy of the villin headpiece HHMM MDM ΘH with
41 basin-states. The root state R at the top represents the whole MDM
(green star). The folded cluster F and the unfolded cluster U are the
children of R, the dynamics between them is the slowest to equilibrate, and
corresponds to the folding process. Cluster Init is the initial cluster because
initial conformations have a probability of 0.674 to be in it. The misfolded
cluster M is also within U, and corresponds to the most significant misfold.
Green triangles represent macro-states, and the red dots are basin-states
corresponding to energy basins. Basin-states are numbered 1 to 41, while
macro-states are labeled R, F, U, Init and M. Exit-states are not shown to
avoid clutter. Representative conformations can be found in Fig. 4.19 and
Fig. 4.20.

Fig. 4.18 shows that there are two main clusters (U and F) near the top

of the hierarchy in ΘH, where equilibration occurs at the longest timescale.

We name these the unfolded cluster U, and the folded cluster F. This is

because under the stationary distribution, the native conformation has a

probability of 0.628 to be in cluster F (Fig. 4.19). From inference, the initial

conformations have a probability of 0.949 to be in cluster U, and basin-states

within U represent misfolded conformations (Fig. 4.20). Basin-states are

numbered 1 to 41, while macro-states are labeled R, F, U, Init and M.
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a) Transitions within the folded cluster F.

36 37 38

39 40 41 PDB: 2F4K
b) Example conformations.

Figure 4.19: The folded cluster F of the villin headpiece. The example
conformation from state 41 has a RMSD of only 3.05 Å to the native (2F4K)
conformation. Example conformation from state 37 has a RMSD of 5.31 Å
to the native. From inference, the native conformation has the probability of
0.563 to be in state 41. State 41 also has a stationary distribution probability
of 0.357.
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a) Transitions within the unfolded cluster U.

1 in Init 9 in M 14 21

22 23 24 28
b) Example conformations.

Figure 4.20: The unfolded cluster U of the villin headpiece. The unfolded
cluster U as a whole has a stationary distribution probability of 0.541, even
more than the folded cluster F. From inference, cluster Init is the most likely
initial cluster, with a probability of 0.674. Cluster M is the most significant
misfold, and has a stationary distribution probability of 0.173.
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This is our interpretation of villin protein’s dynamics:

� The folded cluster F consists of 6 basin-states, see Fig. 4.19.

From inference, the native conformation has the probability of 0.563

to be in state 41 alone. Structurally, state 41 is the closest to the native

conformation, with a RMSD of 3.05 Å (all heavy atoms). State 37 is

also very similar to the native conformation, with a RMSD of 5.31 Å.

Since transition from state 37 to state 41 is more likely than the reverse,

state 41 is the most dominant state under stationary distribution, with

probability of 0.357.

� The unfolded cluster U is surprisingly rather stable, and has a

stationary distribution probability of 0.541 (Fig. 4.20). However,

conformations represented by the states in cluster U either do not

have all 3 helices, or have helix 1 in the wrong orientation.

Additionally, there are two inner clusters. Cluster Init is

the most likely intial cluster, with a probability of 0.674 out of

cluster U’s probability of 0.949 based on inference on the initial

conformations. Cluster Init also has a relatively low self-transition

probability (Fig. 4.18), and is easier to escape compared to most

basin-states in ΘH. When a trajectory escapes from cluster Init,

it is most likely to transit to cluster M, which represents the

most significant misfolded conformation with helix 1 in the wrong

orientation (Fig. 4.20). The stability of the misfolded cluster M is

an important factor that limits the folding of villin protein. However,

cluster M only has a stationary distribution probability of 0.173 out

of cluster U’s probability of 0.541. Therefore, the other states within

cluster U collectively contribute significantly to the difficulty of folding.
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The clustering of states 14 to 35 within cluster U offers an important

clue about the folding of villin protein. Structurally, states 14 to 35

represent wrongly folded conformations. Although each of these states

has a small stationary distribution probability (0.0136 on average),

their collective probability (0.298) is comparable to the most folded

state, i.e. 41 in cluster F (0.357). Consequently, states 14 to 35

represent many opportunities where a villin protein can get trapped

as it tries to fold. Once a trajectory escapes from states 14 to 35, it is

likely to reach the misfolded cluster M (Fig. 4.20), while attempting to

fold again. Collectively, states 14 to 35 constitute a significant obstacle

to the folding of villin protein.

In summary, our model ΘH suggests that the folding of villin protein

follows a general progression from the initial cluster Init, to the misfolded

cluster M, before finally reaching the folded cluster F. However, as the

protein explores pathways to reach the energetically favorable native

conformation, there are also many wrongly folded conformations where it

can be temporarily trapped (states 14 to 35).

Since a “successful” transit to the native conformation can occur

quickly (Fig. 1.3 on page 22). Therefore, it is the presence of the many

“failed” attempts in cluster U that indicates the actual difficulty of folding.

Consequently, identifying states 14 to 35 in the unfolded cluster U is

crucial for understanding the actual difficulty of villin’s folding process.

This is especially so when compared to the folded cluster F. The much fewer

states in cluster F suggests that once the protein has made the difficult

transition to cluster F, it remains stable in just a few energetically favorable

conformations.
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Misfold M PDB: 2F4K

Figure 4.21: Phenylalanine residues of the villin headpiece. Phe6 and Phe10
are in helix 1, Phe17 is in helix 2. A fourth residue Phe35 is at amino
acid 35, but does not constitute the hydrophobic core. Helix 1 is in red,
and is orientated towards the left in M, but towards the right in 2F4K.
Hydrophobic residues tend to clump together in water.

Structurally, ΘH suggests that helix 1 of the villin headpiece protein

appears to be the reason that has limited its folding, see Fig. 4.21.

More specifically, ΘH suggests that it is both the helical structure and the

correct orientation of helix 1 that is difficult to achieve. This is agreeable

with earlier work suggesting that the presence of helix 1 is one of the possible

reasons that has allowed certain initial conformations to fold faster [40].

Since the phenylalanine residues have also been shown to be vital for

wild-type villin to achieve the native conformation [43], the packing of Phe6

and Phe10 in helix 1, in close contact with Phe17 in helix 2 in the native

conformation, is worth further investigation.

The hierarchy in ΘH has beneficially allowed us to analyze a more

complex model with better structural resolution. In our previous work

without a hierarchy [27], since only a simpler model could be analyzed, the

most folded state we could identify has a worse RMSD of 4.12 Å from the

native conformation, versus the better 3.05 Å in current analysis with ΘH.
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Figure 4.22: Transitions between the unfolded cluster U and the folded
cluster F of the villin headpiece. We constructed a 2-state MDM by merging
the basin-states within each cluster into one macro-state. The estimated
transition probabilities between U and F are p(F |U) = 0.00189 and
p(U |F ) = 0.00196. The stationary distribution probability of F is 0.459,
and is actually less than that of U.

In addition, an HHMM MDM identifies the suitable transitions and

timescale to analyze. For example, transitions between cluster U to cluster F

occur at the longest timescale and is explicitly represented in the hierarchy.

Without prior knowledge, identifying this without a hierarchy involves

searching for small probabilities from numerous more probable transitions.

Although it is possible to construct multiple models at different timescales,

it is unlikely that all the interesting timescales will be known prior to

construction. In particular, constructing villin models at even longer

timescales (e.g. 1 µs) will require much more data than currently available.

Consequently,HHMM MDM beneficially allows the construction of a single

model, and detailed analysis of dynamics occurring at multiple timescales.

More importantly, our analysis is a lot more informative than the RMSD

versus time plot in Fig. 1.3 (page 22). Our approach is also more intuitive

than earlier analysis by Ensign et al. [40], which compares specific atomic

distances based on prior knowledge of the protein:

� Separate RMSD of helix 1, helix 2, and helix 3 to native conformation.

� Pair-wise Cartesian distances between Phe6, Phe10, and Phe17.

We do not require such prior knowledge. Instead, we let data define the

important conformations, build an HHMM MDM to model the transitions,

and let the hierarchy identify the interesting dynamics.
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Simulating dynamics

We also simulated the dynamics of villin headpiece using the most suitable

HHMM MDM ΘH, see Fig. 4.23.

Fig. 4.23a shows the dynamics of the folding process, i.e. starting from

the most likely initial state (1 in cluster Init). We can see that the probability

of being in state 1 drops very rapidly. At the same time, the probability to

be in the rest of the initial cluster Init first increases, but then decreases.

This suggests that the initial conformations are highly unstable.

At about 0.3 µs, the most probable state is the most significant misfold

(9 in cluster M), which persists relatively well for the rest of the simulation.

This suggests that the misfolded conformation is actually rather stable.

From about 1 µs, the most likely folded state (41 in cluster F) begins

to dominate, but has yet to stabilize before the end of the 2 µs simulation,

indicating that the equilibration to native conformation is likely to be longer.

This is agreeable with analysis by Ensign et al. [40] that 5 out of the 9 initial

conformations generated trajectories that briefly visited conformations

deemed to be folded. While a 6th initial conformation did not generate

any trajectory able to achieve the native conformation at all.

More crucially, similar information can also be derived from the explicit

representation in the hierarchy of HHMM MDM ΘH, without simulation.

Additionally, without the earlier analysis using ΘH, we would not know

which are the important states to initialize the simulation. Lastly, since the

most likely folded state (41 in cluster F) is significantly more stable than

any other individual state (Fig. 4.23b), the collective contribution of the

unfolded cluster U to the actual difficulty of folding is hard to detect and

appreciate without HHMM MDM ΘH.
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a) Starting from the most likely initial state (1 in cluster Init).

b) Starting from the most likely folded state (41 in cluster F).

Figure 4.23: Dynamics of the villin headpiece simulated using
HHMM MDM ΘH. In each simulation, one branch in the hierarchy is
assigned an initial probability of 1. Since we are concerned with the
generation of conformations, only the basin-states are plotted. Red lines are
states in cluster Init, green lines are states in the rest of cluster U, blue lines
are states in cluster F. Solid lines correspond to the more important states,
1 in cluster Init, 9 in cluster M, and 41 in cluster F. The simulated duration
is 2 µs, similar to the length of trajectories shown in Fig. 1.3 on page 22.
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4.5 Discussions

Our HHMM MDM approach to modeling protein motion dynamics is also

applicable to other molecular motions, e.g. DNA, RNA. More specifically,

HHMM MDM will be especially useful when molecular motion involve

complex interactions across different timescales. By searching for the

most suitable HHMM MDM ΘH, the hierarchy will allows us to identify

the interesting transitions and the suitable timescales to analyze them.

A transition occurring near the top of the hierarchy indicates a difficult

conformational change that occurs over long-timescales. While a transition

near the bottom of the hierarchy corresponds to quick fluctuations among

closely related conformations. This provides an intuitive way to understand

how a molecule achieves its biological function through its motion.

More importantly, states within each cluster represent the variety

of conformations closely associated with each other. By examining the

structure of representative conformations within each cluster, it is possible

to understand the reasons that might have prevented a molecule from

undergoing further conformational change. More interesting is the comparison

between different clusters with similar timescales. A cluster with a

huge number of states indicates frequent transitions among a variety of

conformations. Whereas a cluster with a small number of states corresponds

to a few energetically favorable conformations. This is useful for biology

because understanding the structural characteristics within a cluster of

energy basins can reveal the reasons behind its stability, or instability, and

offer clues as to how a protein can be better designed.

Additionally, HHMM MDMs of different molecules can be used in

comparison studies. For example, a protein can be mutated in silico and

simulated with MD. By constructing differentHHMM MDMs on differently
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mutated molecules, comparison between their motion dynamics can be made

by examining the details of each model. A lowering in the longest timescale

will correspond to a favoring of the equilibration process, e.g. folding.

Whereas an increase in the number of underlying energy basins can indicate

greater instability. Therefore, it is possible to better understand the effect

of different mutations, before wet lab experiments are carried out.

Furthermore, each macro-state in the HHMM MDM can be simulated

individually to generate a sequence of conformations based on the underlying

cluster of energy basins. SinceHHMM MDM generalizes over the velocities

of molecular motion, simulation is useful when representative trajectories are

needed for study. Simulation is also useful when predictions have to be made.

For example, inference is based on the comparison between the simulated

dynamics and trajectories. When two molecules M1 and M2 are to be

compared to assess their compatibility, besides comparing the hierarchy of

their corresponding models, inference can be done with the model of M1 on

the trajectories of M2, and vice-versa. If the cross-comparison results in a

good likelihood score, it suggests the two molecules exhibit similar dynamics,

and might be able to interact similarly with other molecules if other factors

such as chemical compatibility are also satisfied.

A potential question is the approximation of transitions between different

parts of the hierarchy. For example, predicting a trajectory’s entry into

a cluster of energy basins relies on the equilibration of dynamics in the rest

of the hierarchy. Therefore, regardless of where a trajectory came from,

the descent into a new energy basin follows a common set of downward

transitions. This may seem strange because a trajectory’s proximity to the

energy basins may seem helpful in determining which basin is more likely

to be entered first. However, after descent, a trajectory quickly equilibrates
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among energy basins in the new cluster, compensating for any potential

difference in the first basin entered. Moreover, the collective estimation

of horizontal transitions between clusters allows a better prediction of the

correct cluster to transit to, and this is of greater importance.

Another question is the hierarchy explicitly represents dynamics at

timescales longer than the 4t timescale used to construct the model.

In fact, it is possible for the slowest conformational change near the

top of the hierarchy to have an expected timescale longer than the

longest MD trajectory used in training. A question that can arise is:

“How is that possible?” Our answer is it is due to the Markovian property,

which allows the model to concatenate short simulation trajectories into

much longer ones [29, 30]. Therefore, by constructing the HHMM MDM at

the 4t timescale, dynamics at longer timescales can be simulated under the

Markovian assumption. Consequently, it is crucial to only cluster energy

basins with fast equilibrating transitions between them.

Lastly, although a simple protein can fold directly and may not have

hierarchical dependencies in its dynamics, the interlocking between different

parts of a large protein will likely lead to many misfolded conformations.

As we have seen in the villin protein, having a huge number of states

can be especially problematic when trying to understand the sequence of

events occurring during the folding process. Consequently, although an

HHMM MDM may not be necessary for small proteins, HHMMs will be

especially crucial when the dynamics is substantially more complex, and

gaining an understanding is going to be difficult without an intuitive model.
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Chapter 5

Computation of Ensemble

Properties

An important purpose of modeling is to summarize salient features of the

underlying phenomenon. The choice of modeling approach predetermines

the properties that is to be preserved as well as the noise that is to

be discarded. The process of training a model with data in effect

distills desirable characteristics of the phenomenon down into a compact

representation in the form of model parameters.

Assessing the accuracy of MDMs by comparing likelihood scores on new

MD trajectories is one way of validation. However, it is an indirect validation

against reality because MD simulation itself relies on further assumptions

to justify its accuracy. Since nature is the golden benchmark against which

all models should be validated, the most direct validation is the comparison

of verifiable quantities against those obtained from wet lab experiments.

For this, the advantage of modeling protein dynamics with MDMs is

that they can be analyzed systematically to efficiently compute verifiable

ensemble properties of molecular motion.
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5.1 The Importance of Ensemble Properties

The computational modeling of biological phenomenon is only possible due

to the culmination of scientific advancements over the centuries. From

biology to biophysical theories, then from MD simulation to MDMs, when we

are so far from biology, the inevitable question is: “Are we still accurate?”

Science is based on the prediction of empirical observations. Due to the

molecular nature of proteins, they are difficult to isolate and their individual

motions are impossible to measure precisely [78, 79]. Observations made in

the wet lab are usually based on the collective behavior of an ensemble of

protein molecules, e.g. protein solution in a test-tube. Therefore, ensemble

properties that are quantifiable offer the golden benchmark against which

computational models can be directly validated against reality.

However, not all comparisons between computed and wet lab ensemble

properties are equal. For a particular ensemble property, it is also critical

for there to be a direct correspondence between how the property can be

obtained computationally, and the scientific explanation of the property.

It is only when such correspondence exists, that a validation can serve as a

further confirmation of the theory.

Such a correspondence exists between MDMs and molecular motion.

Despite variability in the motion pathway of individual molecules, molecules

of the same protein eventually fold into the same native conformation,

and perform the same biological function. Conceptually, each possible

motion trajectory can be translated into a sequence of MDM transitions.

In addition, if a MDM is successful in capturing the motion dynamics of the

protein, then the MDM should also have captured the characteristics along

myriad pathways. Consequently, it should be possible to compute ensemble

properties by averaging over all possible sequences of MDM transitions.
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5.2 Mean First Passage Time (MFPT)

A model of protein dynamics has to be able to predict the right conformation

at the right time. Computational techniques are able to model the

atomic details of molecular motion, and various quantities can be computed

based on molecular structures at a particular point in time. However,

many computable quantities are not easily comparable across different

modeling techniques, nor directly comparable against wet lab experiments.

For example, the extent of secondary structure formation in a particular

conformation can be calculated based on distances between atoms, but this

is difficult to measure precisely in the wet lab.

The time for a protein to fold is both measurable and comparable.

Measuring a protein’s folding time, or rate, is one of the main wet lab

experimental techniques used to study proteins [78, 79]. The reason is

because a protein’s folding time reflects the ease of achieving the native

conformation, and is an important way to understand how a protein folds.

For example, a mutation can cause a protein to fold more slowly because

of the structural hurdles it introduces. Hence, although laborious, by

measuring the folding times of similar proteins with slightly different

mutations, scientists can compare the structural factors influencing the

folding rate, and deduce how the protein folds.

The folding time corresponds to the Mean First Passage Time (MFPT).

More specifically, the MFPT of a conformation q to fold is the expected time

for a protein to reach a folded conformation, starting from q. By further

requiring conformation q to be unfolded, the MFPT is directly comparable

with protein folding times measurable in the wet lab. Consequently, the

comparison of the computed MFPT against wet lab folding time provides a

crucial experimental validation for MDMs.
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Although it is tempting to simulate many folding trajectories starting

from q, terminating them when a folded conformation is reached, and then

take the average length as an estimate for MFPT. This is impractical because

explicit simulation is computationally expensive. In addition, a reliable

estimate is not guaranteed because trajectories may not have reached a

folded conformation within the allocated simulation time. More importantly,

according to the definition, the expected time requires the averaging over

infinite trajectories that started from q, i.e. Di = (q, . . . , qt, . . . , qT ), where

{qt 6∈ CF | t = 1, . . . , T − 1}, {qT ∈ CF | T = 0, . . . ,∞}, and CF ⊂ C is the

set of folded conformations.

Here, we describe a practical algorithm to compute MFPT using MDM.

Our computation proceeds in two stages. First, we compute the MFPTs

for all states i ∈ S. The MFPT for a state i is the expected time for a

protein to reach a folded conformation, starting from state i. Note that this

is different from the MFPT of a conformation q that we require. Therefore,

in the second stage, we need to incorporate the initial conformation q into

the computation to complete the estimation of MFPT.

Although we will first discuss the computation based on transitions

between the K states of an HMM, the case for an HHMM can be

similarly derived by resolving the hierarchical dependencies, which we will

discuss later.
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MFPT of initial states

The idea of our approach is to weigh the measurement of time according

to the outcome at each step. However, instead of explicitly simulating

trajectories, we make use of first-step analysis [103] from Markov chain

theory to incorporate the infinite pathways, including cycles, in our

computation. This results in a much faster and reliable computation of MFPT.

Let us consider the first-passage time (FPT ) γi of a single trajectory

simulated by starting in state i at time t = 0. This is what can happen in

the very first time step, where CF ⊂ C is the set of folded conformations:

� If the conformation at t = 0 is folded , q0 ∈ CF, then the trajectory

is terminated, and γi = 0 by definition. This event happens with

probability ei(CF) =
∫
CF
ei(q) dq, where ei(q) = N (q|µi, σ2

i ) is the

emission probability of state i.

� If the conformation at t = 0 is unfolded , q0 6∈ CF, then the trajectory

continues, and γi will depend on the outcome in the next time step,

i.e. t = 1. This event happens with probability 1− ei(CF).

Let us now consider the case for all possible trajectories. More specifically,

the MFPT for state i is γ̄i = E(γi|s0 = i), where the expectation is taken

over all trajectories that started in state i and end in CF. By conditioning

on the events in the first time step, we obtain the following equation for γ̄i:

γ̄i = 0 · ei(CF) +
(

1 +
∑
j∈S

p(s1 = j|s0 = i)γ̄j

)
·
(
1− ei(CF)

)
, (5.1)

where 0 · ei(CF) is the case where a folded conformation has been reached,

and the contribution to γ̄i is 0. However, when an unfolded conformation

has been reached, we need to consider all possible transitions to the
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next time step,
∑

j∈S p(s1 = j|s0 = i), and the consequent outcome γ̄j .

The only unknowns in Eq. 5.1 are the MFPTs γ̄i for i = 1, 2, . . . ,K

states corresponding to K energy basins. Since there is one equation for

each γ̄i, we get a linear system of K equations with K unknowns, which can

be solved efficiently using standard numerical methods. More importantly,

the algebraic process of solving the linear system implicitly enumerates all

possible state sequences of the folding trajectories in an efficient way.

At this stage, we can optionally compute the MFPT of the MDM γ̄

by multiplying with the prior probability πi:

γ̄ =
∑
i∈S

E(γi|s0 = i)p(s0 = i)

=
∑
i∈S

γ̄iπi. (5.2)

Although γ̄ can be an estimate of folding time, we wish to be more specific

about the starting conformation. This is because the prior is dependent on

initial conformations in the training data, which may not be the same as

the initial conformations we wish to compare with.
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MFPT of conformations

Next, we compute the MFPT for a given conformation q0. Let γ be the

FPT of a single trajectory that starts at conformation q0. Conditioning on

the initial state s0 at t = 0, we see that the MFPT of q0 is given by:

E(γ|q0) =
∑
i∈S

E(γ|q0, s0 = i)p(s0 = i|q0). (5.3)

We first calculate p(s0 = i|q0) using the Bayes rule:

p(s0 = i|q0) =
p(q0|s0 = i)p(s0 = i)∑
i∈S p(q0|s0 = i)p(s0 = i)

, (5.4)

where p(s0 = i) and p(q0|s0 = i) can be obtained from the prior

probabilities Π and the emission probabilities E of the model, respectively.

Calculating E(γ|q0, s0 = i) is more subtle because it is tempting to think

that E(γ|q0, s0 = i) = γ̄i. This is incorrect, because γ̄i = E(γ|s0 = i) and

the additional information provided by q0 alters the expected value of γ.

To calculate E(γ|q0, s0 = i), we need to take an additional step and

condition once more on the state j at time t = 1:

E(γ|q0, s0 = i) =
∑
j∈S

E(γ|q0, s0 = i, s1 = j)p(s1 = j|q0, s0 = i) (5.5)

=
∑
j∈S

(
1 + E(γ|s1 = j)

)
p(s1 = j|s0 = i), (5.6)

where the last line follows because given the state s0 = i at time t = 0, the

state s1 = j at time t = 1 is independent of conformation q0. The values

of E(γ|s1 = j) can be obtained from the MFPT of the states γ̄i, for

i = 1, 2, . . .K (Eq. 5.1). Substituting Eq. 5.4 and Eq. 5.6 into Eq. 5.3 gives

us the MFPT of conformation q0.
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In summary, we compute of MFPT of a conformation q0 by conditioning

on the sequence of events. First, given q0, we estimate the state s0 at

time t = 0. Second, given s0, we estimate the state s1 at time t = 1.

From time t ≥ 1 onwards, we estimate the probability of reaching a folded

conformation qt ∈ CF at every step. This is because those trajectories

reaching qt ∈ CF will terminate without further contribution to MFPT.

Other ensemble properties can also be calculated by adjusting the cases

of consideration. For example, the probability of folding (p-fold) is a

measure of the kinetic distance between a conformation q and the native

conformation [38]. Specifically, p-fold of a conformation q is the probability

of reaching a folded conformation, before an unfolded conformation, starting

from q (Section 2.2.2 on page 37). Consider at time t:

� a folded conformation has been reached, qt ∈ CF.

� an unfolded conformation has been reached, qt ∈ CU.

� neither folded nor unfolded conformation has been reached.

Consequently, for example, we can replace Eq. 5.1 for state i with:

Pfoldi = 1 · ei(CF) + 0 · ei(CU) +(∑
j∈S

p(st+1 = j|st = i)Pfoldj

)
·
(
1− ei(CF)− ei(CU)

)
. (5.7)

Since we are not measuring time, the step count of 1 in the original Eq. 5.1

has been removed.

In practice, when we compare with experimental measures, we are

interested in the MFPT for a region C ′ of conformation space C rather

than a single conformation q0 ∈ C. To calculate E(γ|C ′), we need to modify

Eq. 5.3, Eq. 5.4, and Eq. 5.6 slightly by integrating q0 over C ′.
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Computational efficiency

Although the calculation of MFPT follows multiple steps, the actual

computation is very efficient. In the first stage, we compute the MFPT

of the initial states. This requires solving a system of K linear equations

for K energy basins, at the cost of O(K3). Although O(K3) may seem

significant, K is usually orders of magnitude smaller than the length T

of MD trajectories. In the second stage, we compute the MFPT of

the conformations. This requires a single transition from time t = 0, to

time t = 1, which takes O(K2) to multiply the transition matrix A once.

Since the inference on the unfolded and folded conformations only has to be

done once, the overall run time is limited by the O(K3) cost to solve the

system of K linear equations.

More importantly, the alternative, but impractical, approach to estimate

MFPT is simulation. Although we can calculate the average lengths of the

available MD trajectories that satisfy the MFPT criteria, doing so requires

checking every conformation. This incurs a cost of O(NT ) time, where N is

the number of trajectories. and the trajectory length T is substantially larger

than K. Furthermore, this requires a sufficient number of long trajectories

traversing both the unfolded conformations, and the folded conformations.

This is difficult to achieve, except for the smallest proteins.

Another alternative is to simulate the MDM over T time steps, checking

the probability of reaching folded conformations at every step, and taking

the probability weighted average of length as the MFPT. However, it is

impossible to simulate a MDM infinitely, and it is also doubtful that

convergence can be achieved. Therefore, not only are the alternative

approaches to estimate MFPT significantly more costly, they are only viable

for the smallest proteins where the dynamics can be well sampled via MD.
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MFPT for HHMM MDMs

The MFPT for an HHMM MDM can be similarly computed. Both HMMs

and HHMMs model protein dynamics as a probabilistic distribution of

conformations that changes over time. The difference is that an HMM

models this change via transitions between each of its K “hidden” states,

while anHHMM models this as transitions between each of the K branches

in its hierarchy. Therefore, to compute MFPT for an HHMM, we

need to resolve the hierarchical dependencies so that inference on the

unfolded and folded conformations can be carried out.

The key is Eq. 4.1 (page 97), which combines the horizontal and

vertical transitions across the hierarchy into transitions between states of the

whole HHMM (i.e. branches in the hierarchy). More specifically, we need

to calculate the probability to transit from (the whole) HHMM state st at

time t, to state st+1 at time t+ 1, i.e. p̂(st+1|st). Since each state st of the

whole HHMM corresponds to an HMM “hidden” state, therefore after the

conversion, the same MFPT equations can be used for calculations.

The cost of converting the HHMM transitions into equivalent K-state

HMM transitions is O(K2D). This is because for each of the K basin-states

in the HHMM, it is necessary to propagate the dynamics up and down

the hierarchy of depth D, where at most K states is present at each level.

However, since each macro-state can have many children, the depth D of the

hierarchy with K leaf basin-states should be relatively small. Consequently,

the run time of the MFPT computation is still limited by the O(K3) it takes

to solve a system of K linear equations.

173



5.3 Results

To demonstrate the accuracy of our algorithms, we computed MFPT for

alanine dipeptide and villin headpiece.

5.3.1 Alanine dipeptide

Table 5.1: Estimated MFPTs between αR and β/C5 regions of the alanine
dipeptide conformation space. See Fig. 3.4 for the conformations (page 72).

MFPT (ns)
K3 M6

αR → β/C5 5.75 5.91
β/C5 → αR 76.34 27.35

To further validate our models, we used models K3 and M6 from

Fig. 3.7 to compute MFPTs between the αR and β/C5 regions of the

conformation space. We designate conformations with (φ = −70 ± 1,

ψ = −40±1, ω = 180±1) to be within the αR region, and conformations with

(φ = −140± 1, ψ = 160± 1, ω = 180± 1) to be within the β/C5 region.

The transition αR → β/C5 is in the nanosecond timescale similar to results

by Smith using NMR observed coupling constant [7]. Although results

for K3 and M6 differ somewhat in details, both indicate the transition

αR → β/C5 is roughly an order of magnitude faster than the reverse

transition. This is agreeable with analysis by Chekmarev et al. [24].

To assess the efficiency of our algorithm for MFPT computation, we also

computed the MFPTs by explicitly generating simulation trajectories from

our constructed models. It took our algorithm less than 1 s to compute one

MFPT. In comparison, it took 120 s to generate a sufficiently large number

of simulation trajectories from the same HMM in order to bring the standard

deviation of the MFPT estimate down to 1% of its value.
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5.3.2 Villin headpiece

Table 5.2: Estimated MFPTs for nine initial conformations of the villin
headpiece (HP-35 NleNle).

MFPT (µs)
I0 I1 I2 I3 I4 I5 I6 I7 I8

6.41 6.41 6.35 6.39 6.29 6.40 6.43 6.26 6.32

We also computed the MFPTs for the nine initial conformations of villin

headpiece, I0 to I8 (see Fig. 5.1). Table 5.2 shows the result using the

most suitableHHMM MDM ΘH with 41 basin-states. The results lie in the

same microsecond range as the experimental measurements of 4.3 µs from

laser temperature jump [63] and 10 µs from NMR line-shape analysis [111].

In addition, the MFPTs for I4 and I7 are slightly smaller, which is consistent

with the computational analysis of Ensign et al. in [40].

For comparison, we also tried to compute the MFPTs by explicitly

generating trajectories from the constructed models. However, after 30

minutes of computation, the estimated MFPTs are still two orders of

magnitude below the microsecond range. In comparison, the results in

Table 5.2 were obtained in less than 1 minute of computation.
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I0 I1 I2

I3 I4 I5

I6 I7 I8

Figure 5.1: Initial conformations of the villin headpiece [40].
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Chapter 6

Conclusion

The past decade has witnessed an increasing interest in graphical models of

protein motion dynamics at long-timescales. Most recently, the focus has

been on cell-based MDMs constructed from MD simulation data. However,

existing methods suffer from two main shortcomings. First, defining states

by partitioning the protein conformation space into disjoint cells causes

violation of the Markovian property. Second, there is no systematic criterion

for evaluating the model quality.

Chapter 3 addresses these two shortcomings by defining states as

probability distributions of conformations. This reflects the view that a

single conformation does not contain enough information to be assigned to

a unique state. The resulting HMM-based modeling framework evaluates the

model quality by the likelihood of a model given a test dataset of simulation

trajectories. In contrast with the cell-based MDMs, our approach enables

us to compare models with different number of states and choose the most

suitable model according to the likelihood criterion. The results on synthetic

energy landscapes and alanine dipeptide illustrate this benefit.
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Chapter 4 scales up the modeling approach by searching across timescales.

This is crucial because for large proteins with complex motions, biologically

interesting dynamics can occur over a range of timescales. Without prior

knowledge, it is necessary to construct different models at different timescales.

Instead, we construct a single hierarchical model by searching for clusters of

energy basins with fast internal equilibration. The resulting HHMM MDM

beneficially identifies the interesting dynamics and the suitable timescales

for analysis. This allows us to scale up for larger proteins, yet with

a lower cost in the number of parameters. Results on the 11-basins

synthetic landscape illustrate scenarios whereHHMM MDMs will be useful.

Results on the villin headpiece allowed us to appreciate the collective

contribution of misfolded conformations to the actual difficulty of folding.

This demonstrates the benefits of HHMM MDMs in practical use.

In general, MDMs have several advantages over direct data analysis of

MD trajectories. MDMs generalize over the data used to construct them.

This allows MDMs to identify states that correspond to biologically

significant conformations, and assemble them to provide a global view of

the underlying stochastic dynamics. More importantly, MDMs accomplish

this without relying on prior knowledge of the protein. Instead, data define

the important states to capture. This is in contrast with traditional, and

often laborious, structural comparisons with reference conformations.

Chapter 5 shows how to exploit MDMs to compute ensemble properties

by implicitly simulating infinite trajectories. The computation of ensemble

quantities such as Mean First Passage Time (MFPT) provides the crucial

validation of computational models against wet lab experiments. Such tasks

are usually difficult or impossible with direct data analysis. Our results on

the MFPTs of alanine dipeptide and villin headpiece validate the MDMs.
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More importantly, the equations for calculating ensemble quantities can also

be easily adapted to estimate other properties. In addition, MDMs are

generative, and as we have shown, can too be used for explicit simulation.

In the broader context of modeling biological macromolecules. Although

MD simulation is still computationally expensive, advances in computer

technology are making it more affordable than before. Large simulation

data repositories will also become readily available over time. Increasingly,

the future challenge will be to gain biological insights from this data by

building simple and yet powerful models. The results on the “inverted”

synthetic landscape with 11 “hills” indicate MDMs can also be useful in the

cross-comparison of different molecules based on motion dynamics. This can

allow scientists to investigate biology at greater details, and gain a better

understanding of molecular interactions for the design of novel drugs.

For the more immediate future, it will be interesting to apply our

approach to model the dynamics of folded proteins. The conformational

flexibility of a folded protein is critical to some of its functions [47].

Here, our approach is likely to scale up well to larger molecules, because

transitions between the folded states are often fast and more easily captured

by short MD simulations.

In short, this thesis has presented an efficient approach to model a

protein’s motion dynamics. The resulting Markov Dynamic Model is

both accurate in predicting MD trajectories, and intuitive for gaining

a biological understanding of the protein. The exploitation to compute

ensemble properties crucially allows a MDM to be validated against wet lab

experiments. It is hoped that these will serve as the basis of future research,

and further our understanding of the wondrous nature.
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