
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

REVIEWS Drug Discovery Today �Volume 13, Numbers 15/16 �August 2008

Increasing the reliability of protein
interactomes
Hon Nian Chua1 and Limsoon Wong2

1 Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613, Singapore
2National University of Singapore, School of Computing, Singapore 117590, Singapore

Protein interactions are crucial components of all cellular processes. An in-depth knowledge of the full

complement of protein interactions in a cell, therefore, provides insight into the structure, properties

and functions of the cell and its components. An accurate and comprehensive protein interaction

network is, thus, an invaluable framework to study protein regulation in disease. Although the amount

of protein–protein interaction data has grown significantly because of advances in high-throughput

experimental techniques, these high-throughput methods are highly susceptible to noise. Therefore,

computational techniques for assessing the reliability of a protein–protein interaction are highly

desirable. We review here computational techniques for assessing and improving the reliability of

protein–protein interaction data from these high-throughput experiments.

Introduction
Progress in the development of mass spectrometry, two-hybrid

methods, genetic studies and other technologies has resulted in a

rapid accumulation of data that provide a global description of the

whole network of protein interactions – the interactome – for a

given organism [1–4]. Protein interactions are crucial components

of all cellular processes. Therefore, analysis on the interactome is

expected to produce several types of useful information. For

example, recent works have explored the use of protein interac-

tome information to infer protein function [5–9]. Similarly, some

recent work has attempted using protein interactome information

to derive protein complexes and functional modules [10–15].

There are also many papers that propose using protein interactome

information to analyze and predict drug targets [16–18]. These and

other works provide insight into the structure, properties and

functions of the cell and its components. Thus, an accurate and

comprehensive protein interactome is an invaluable framework to

study protein regulation in disease.

Although data on the protein interactome are being accumu-

lated rapidly, several surveys and analyses [4,8,19–22] have

revealed that interaction data obtained by high-throughput pro-

tein interaction assays, such as yeast two-hybrid experiments,

contain a significant proportion of false positives and false nega-

tives. There is, thus, a need to prioritize the protein–protein

interactions reported in such assays for further validation by

carefully focused small-scale experiments. Computational analysis

techniques for assessing and ranking the reliability of protein–

protein interactions are, hence, highly desirable. Many such tech-

niques have emerged [23–38].

In this paper, we review some of these studies on increasing the

reliability of protein interactome information. Specifically, the

paper is organized as follows. The second section describes the idea

of rankingthe reliabilityofprotein interactionsbasedonthe sharing

of a common cellular localization or a common cellular role

[20,32,39]. The following section describes the idea of ranking

the reliability of protein interactions based on the reproducibility

and nonrandomness of the observation of an interaction [8,39,40].

Related to the ideas of functional homogeneity, localization

coherence and observational reproducibility are a large number of

other approaches for estimating the reliability of protein interac-

tions [23–29] based on the use of additional information, such as

protein annotation, or the use of information from multiple

assays. The fourth section describes the most general among them

[38]. As the additional information required by these approaches

may be unavailable, in the fifth section we describe some inter-

esting and straightforward-to-use reliability indices that are based
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solely on the topology of the neighborhood of an interacting pair

of proteins in the interactome [30–34].

Methods for ranking the reliability of reported protein interac-

tions are, basically, the methods for detecting false positives from

protein interaction assays. The detection of false negatives is

considerably more difficult and is equivalent to the problem of

predicting new protein interactions. The final section provides a

review of approaches to this problem, including ideas such as

gene-fusion events [41–43], interacting domains [44–47], interact-

ing motifs [48–50], coevolution of proteins or residues [51–54] and

the topology of protein–protein interaction networks [33,55,56].

Functional homogeneity and localization coherence
An early idea for assessing the reliability of an interacting protein

pair reported by a high-throughput experiment is to use support-

ing evidence from the biological perspective. In particular, a pair of

interacting proteins is generally expected to be localized to the

same cellular component or to have a common cellular role

[20,32]. Therefore, interacting protein pairs can be categorized

into four groups. Those having both a common cellular localiza-

tion and a common cellular role are considered most reliable.

Those having no common cellular role and no common cellular

localization are considered least reliable. Those having a common

cellular localization or a common cellular role but not both are

considered intermediate in reliability.

This rough grouping can be fine-tuned by a global estimate of

the reliability of the entire protein interaction assay based on

known annotation information. In particular, the reliability of

an interacting pair of proteins that are both localized to a cellular

compartment c can be estimated as the ratio of the number of

interacting protein pairs in the assay that are both localized to c to

the number of interacting protein pairs in the assay where at least

one of the proteins in the pair is localized to c [8,39].

Naturally, we can set c above to be the union of all cellular

compartments or the union of all cellular roles to obtain an

estimate of the overall reliability of a protein interaction assay

based on common cellular localization or common cellular role.

Table 1 contains such an estimate for various protein interaction

assays, computed based on common cellular role [8].

There are several shortcomings of using common cellular loca-

lization and common cellular role for assessing protein interaction

reliability. Firstly, there may not be sufficient pairs of proteins

having subcellular localization (or cellular role) c for a good

estimate that is statistically reliable, if the granularity of c is too

fine. Secondly, protein functional annotations and subcellular

localization annotations are often incomplete. Thirdly, even if a

pair of proteins localizes to the same cellular compartment or

participate in the same cellular process, they may not interact in

real life. In fact, there is a limit to the resolution of common

cellular localization and common functional role. For example, if

20% of the proteins in an organism are localized to a common

cellular compartment on average, then two proteins may have a

non-negligible, though <20%, chance of not interacting even

when they have a common cellular localization.

In addition to the idea of common cellular roles and common

cellular localization, proteins having coexpressed genes are also

more likely to interact with each other than with random proteins

[57,58]. However, coexpression of genes usually does not corre-

late directly with physical interaction; genes are often coex-

pressed simply because they are activated during a similar

phase of the cell cycle, or because they belong to similar pathways,

or they participate in the regulation of one another through

transcription factor interactions. Indeed, it has been observed

that, without the use of additional information such as conserved

coexpression in a second genome, a mere 18–28% of the most

highly coexpressed human gene pairs correlate with protein

interactions [36].

Observational reproducibility
An early idea to overcome the shortcomings of using common

cellular localization and common cellular role for assessing pro-

tein interaction reliability is that of reproducibility. The idea of

reproducibility is based on the reasonable assumption that an

interaction that is observed in two or more separate experiments

is more reliable than one that is observed in just one experiment.

Suppose the reliability, ri, of each protein interaction assay, i, is

known, or has already been estimated, as in the previous section.

Assume also that a set Eu;v of protein interaction assays that report

an interacting pair of proteins (u; v) are independent. Then the

reliability, ru;v, of the interaction of (u; v) can be optimistically

taken as the probability that at least one of the assays involved is

reliable [8,39]. More formally:

ru;v ¼ 1�
Y

i2 Eu;v

ð1� riÞni;u;v ;

where ni;u;v is the number of times the pair (u; v) is observed to

interact in assay i.

Another technique for assessing the reliability of an interacting

pair from multiple assays is to compute a P-value based on the

hypergeometric distribution [40]. Let there be a total of h inter-

actions reported by various assays. Suppose proteins u and v are

reported to participate in m and n interactions, respectively. Then

the probability for u and v being reported to interact in k experi-

ments at random is

Pðkjn;m;hÞ ¼

h
k

� �
h� k
n� k

� �
h� n
m� k

� �

h
n

� �
h
m

� � :
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TABLE 1

Estimated reliability for each protein interaction assay in the
GRID dataset [78], computed based on common cellular role [8]

Assay Reliability

Affinity chromatography 0.82

Affinity precipitation 0.46

Biochemical assay 0.67

Dosage lethality 0.50

Purified complex 0.89

Reconstituted complex 0.50

Synthetic lethality 0.37

Synthetic rescue 1.00

Two hybrid 0.27
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Then the P-value for u and v being reported to interact in k0

experiments isX
k> k0

Pðkjn;m; hÞ:

Two proteins that are reported to have interactions with a lot of

proteins in a protein interaction assay have a naturally higher

random chance to be reported to interact with each other. The P-

value also serves as an estimate of this random chance.

The main shortcoming of using repeatability to assess the

reliability of protein interactions is that multiple experiments

must have been performed on the proteins. This shortcoming is

a significant issue. For example, Sprinzak et al. [20] have shown

that out of the 9347 interactions reported from a large number of

experiments, a mere 570 are in the intersection of 4 different

experiments, 1212 are in 3 different experiments, and 2360 are

in 2 different experiments. Thus, using repeatability to assess

reliability may cause a very large proportion of true positives to

be mistakenly declared as false positives.

Fusion of multiple information types
There are a large number of other approaches for estimating error

rates of protein interaction assays [23–25] and for ranking indivi-

dual protein interacting pairs [26–29]. These approaches generally

require the use of additional information, such as annotations on

proteins or the use of information from multiple assays. The

simplest among these approaches is the log-likelihood ratio

[38]. Let D denote the event that a pair of proteins is ‘linked’

based on the chosen additional information. Then the log-like-

lihood ratio is defined as

LLR ¼ ln
PðDjIÞ

PðDj � I

� �
;

where P(DjI) and P(Dj�I) are the probability of observing the event

D conditioned on protein pairs that are known to interact and

known not to interact, respectively. As an example, D may be the

event that the pair of proteins contains a pair of known interacting

domains. As another example, D may be the event that the pair of

proteins has gene expression profiles that are highly correlated.

As these approaches require the use of additional information,

they inherit the basic weaknesses of using common cellular locali-

zation, common cellular role and/or the reproducibility of observa-

tions. Nevertheless, it is possible to overcome these weaknesses by a

more effective fusion of additional information, especially informa-

tion derived from multiple organisms based on evolutionary con-

servation principle [36,37]. A recent study by Ramani et al. [36] is an

excellent illustration. They show that a significantly higher log-

likelihood ratio can be obtained by considering coexpression that is

conserved in a second genome. In particular, 49–59% of the 7000

most highly coexpressed human gene pairs that have coexpressed

orthologs in a second organism correlates with protein interactions,

while only 18–28% of the 7000 most coexpressed human gene pairs

correlates with protein interactions when information on the coex-

pression of orthologs is ignored [36].

Topology of interactions
The family of methods from Saito et al. [30,31], Chen et al. [32–34]

and Albert and Albert [35] avoid the weaknesses of using coherence

of annotations and repeatability of observations by taking an

entirely different approach that is more thought-provoking and,

yet, more easily applied. They do not use annotations on proteins

or information from multiple assays. Instead, they rank the relia-

bility of an interaction between a pair of proteins primarily using

the topology of the interactions between that pair of proteins and

their neighbors within a short ‘radius’.

The ‘interaction generality index’ (IG) of Saito et al. [31] is

perhaps the earliest proposal of using the topology of interactions

in the immediate neighborhood of a pair of interacting proteins to

assess the reliability of that pair of proteins. It is based on the

property of two-hybrid assays that a large number of false positives

in two-hybrid assays are because of selfactivators and ‘sticky’

proteins that transactivate the reporter gene without actually

interacting with their partners [1]. A characteristic of these self-

activators and sticky proteins is that they usually appear to have a

large number of interaction partners in the experiment; but these

partners generally do not interact with each other. So Saito et al.

[31] define the IG on a pair of reported interacting proteins (u; v) to

be the number of isolated interaction partners that (u; v) have in

the experiment. The larger this count is, the more unlikely that

(u; v) is interacting.

In contrast to IG, which is based on a defect of two-hybrid

assays, the ‘interaction pathway reliability index’ (IPR) of Chen

et al. [33] relies on a set of assumptions on biological networks.

They hypothesize that a biological function is generally performed

by a highly interconnected network of interactions and that

evolution favors adding interactions that shorten the pathways

of the function. Therefore, a pair of proteins that is connected by a

short alternate path of reliable interactions is likely to interact

directly. Thus, Chen et al. [33] define the IPR on a pair of candidate

interacting proteins (u; v) as the maximum reliability of the short-

est nonreducible indirect path connecting (u; v). By assuming

independence, the reliability of a nonreducible indirect path

can be computed as a product of the rough estimates of the

reliability of individual interactions in the path. Chen et al. [33]

use IG as the rough estimate of the reliability of an individual

interaction. IPR is applicable to a wider range of protein interac-

tion assays, as its underlying assumption is based on a more

general theory than IG.

Newer examples are indices that exploit a topological conse-

quence of the functional homogeneity expected of true interacting

protein pairs. As we have mentioned earlier, a pair of real interacting

proteins is generally expected to have a common cellular role. It has

been proposed that a pair of proteins having many common inter-

action partners has a high chance of sharing a common cellular role

[8], because these two proteins must share some physical or bio-

chemical characteristics that allow them to bind to these common

interaction partners. The more proteins that they interact with in

common, the higher is the chance that they belong to the same

protein complex. Therefore, a reliability index for a pair of reported

interacting proteins can be formulated in terms of the proportion of

interaction partners that two proteins have in common.

A simple and direct formulation of such an index is the Czeka-

nowski–Dice distance [7]. Czekanowski–Dice distance is defined as

CD-Distu;v ¼
2jNu;vj
jNuj þ jNv j

;
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where Nu;v is the set of interaction partners shared by u and v, and

Nu and Nv are, respectively, the set of interaction partners of u and

v. Another example is the ‘functional similarity weight’ measure

[8]. Functional similarity weight is defined as

FSWeightu;v ¼
2jNu;vj

jNu �Nvj þ 2jNu;vj þ lu;v

� �

� 2jNu;vj
jNv �Nuj þ 2jNu;vj þ lv;u

� �
;

where lu;v is a pseudocount to penalize similarity weights between

protein pairs when any of the proteins has too few interacting

partners. FSWeightu;v essentially refines CD-Distu;v by giving the

neighborhood of u and v equal weight.

Although these indices do not make use of either annotation or

repeatability information, they are surprisingly effective [31–33].

The effectiveness of these indices can be gauged by their correla-

tion with functional homogeneity and localization coherence. For

example, as shown by Chen et al. [32], in Fig. 1, over 80% (70%) of

the top 10% of protein interactions ranked by FSWeight (CD-Dist)

have a common cellular role and over 90% (80%) of them have a

common subcellular localization. Similar strong correlations are

observed [32] between these indices and the gene expression

correlation of highly ranked candidate interacting proteins, as

well as between these indices and the number of times highly

ranked candidate pairs are observed in multiple protein interac-

tion assays.

Although IPR, CD-Dist, and FSWeight are defined purely in

terms of the topology of the neighborhood of the protein pairs, it

is possible to incorporate additional information, such as func-

tional annotations and multiple experiments, if such additional

information is available. For example, let ru;v be a rough estimate

of the reliability of an interaction (u; v). We can interpret ru;v as

the probability that u and v actually interact. Assuming inde-

pendence, the probability of u and v having a common inter-

action partner w is thus ru;wrw;v. Then CD-Dist incorporating this

information is

CD-Distu;v ¼ 2

P
w2Nu \Nv

ru;wrw;vP
w2Nu

ru;w þ
P

w2Nv
rv;w

:

IPR and FSWeight incorporating similar information can be simi-

larly derived [8].

The main shortcoming of using indices like IG, IPR, CD-Dist and

FSWeight to assess the reliability of protein interactions is that

their performance edge becomes less significant when the input

interaction network is sparse. This is because the number of direct

and indirect interactions is much lower for sparser networks due to

limited connectivity. Given the rapid growth of protein interac-

tion data, these indices are expected to become increasingly more

effective.

Predicting new protein interactions
The methods for ranking the reliability of protein interactions

reported by high-throughput assays described in the previous

sections are essential methods for detecting false positives in these

assays. However, these assays are also known to produce a large

number of false negatives. The identification of false negatives is

equivalent to the problem of predicting new protein interactions.

Many computational approaches have also been proposed to

predict new protein interactions [59]. Various information have

been used for this purpose, including protein primary structures

and associated physicochemical properties [60], interacting

domains [44–47], interacting motifs [48–50], gene-fusion events

[41–43], coevolution of proteins or residues [51–54] and the topol-

ogy of protein–protein interaction networks [33,55,56].

Drug Discovery Today � Volume 13, Numbers 15/16 �August 2008 REVIEWS

FIGURE 1

Comparison of IG [31], IPR [33], CD-Dist [7] and FSWeight [8] indices on their correlation with (a) function homogeneity and (b) localization coherence. The

horizontal axis indicates the proportion of reported interacting protein pairs that satisfy a given IG, IPR, CD-Dist or FSWeight threshold. The vertical axis indicates

the proportion of reported interacting protein pairs that share a common function or a common cellular localization at that threshold. This comparison was
performed in [32] using data on 19,452 interactions in yeast from the GRID database [78]. We can see, for example, over 80% of the top 10% of interacting protein

pairs ranked by FSWeight have a common cellular role and over 90% of them have a common subcellular localization.
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A gene-fusion event refers to an observation of two genes that

are separate in one species, but are fused as a single gene in a

second species. Such a fusion event is hypothesized as an indica-

tion that the products of the two genes interact. Several studies

have used this approach to predict interactions between proteins

[41–43] with some degree of success. A major limitation of this

gene-fusion approach is its poor sensitivity, because not many

pairs of interacting proteins have fused homologs.

Approaches based on interacting domains [44–47] or interacting

motifs [48–50] are more direct. The central idea of these

approaches is a lock-and-key model [61] whereby a pair of proteins

interacts through their complementary binding domains. Inter-

actions of the complementary binding domains are in turn

mediated by short sequences of residues that form the contact

interfaces between the two complementary binding domains

[62,63]. Furthermore, there are only a limited number of interac-

tion types, such that two proteins are likely to interact whenever

an interaction type occurs in the protein pair [64]. For example, Li

et al. [50] first use frequent pattern mining technique to enumerate

bicliques in a protein interaction network. They then use PRO-

TOMAP to extract a pair of motifs from sequences in the two vertex

sets of each biclique. If a pair of such motifs is statistically over-

represented in known interacting protein pairs, it is then proposed

as a binding motif pair for identifying additional interacting

proteins.

Another major family of approaches for predicting interacting

protein pairs is that of coevolution [51–53]. The coevolution of an

interacting protein pair is based on the hypothesis that the inter-

action sites of these proteins are under pressure to coevolve [65].

That is, the mutations in one protein must be compensated by the

mutations in the other protein [66]. Therefore, the corresponding

phylogenetic trees of the interacting proteins should show a

greater degree of similarity than noninteracting proteins are

expected to show. Typically, the similarity of the phylogenetic

trees of two candidate interacting proteins is quantified based on

the correlation between the distance matrices used to construct

the trees [51–53]. To obtain a good distance matrix, a high-quality

multiple alignment of the orthologs of the protein is necessary.

Hence, a shortcoming of these approaches is the need for such a

high-quality multiple alignment of orthologs from the same spe-

cies for the two proteins under consideration.

Furthermore, a given protein may interact with many others.

Then it must coevolve with all of them. Consequently, its phylo-

genetic tree is a composite of the influence of all of its interaction

partners. This issue further limits the performance of methods [51–

53] that rely on the similarity of the phylogenetic trees of the two

proteins. Juan et al. [54] outline an exciting recent refinement,

addressing this weakness of approaches based on the coevolution

principle. For each protein u, Juan et al. compute a vector Su of the

pairwise similarities of the phylogenetic tree of u with all other

proteins. Then for each pair of proteins (u; v), they determine the

correlation of Su to Sv. If the correlation is significant, the pair (u; v)

is predicted to interact. This refined coevolution approach pro-

vides drastically better accuracy and coverage than earlier coevo-

lution approaches [54].

Another interesting group of approaches rely on the topology of

protein–protein interaction networks [33,55,56]. The simplest

methods from this group are those that identify a subgraph in

the network that is basically a clique with a small number of

missing edges and propose those missing edges to be the new

interactions [55]. The basis for these methods is the assumption

that, when two proteins have a lot of partners in common, they

should participate in the same complex with these partners. The

more sophisticated methods from this group are those that realize

that the topology-based reliability measures mentioned in Topol-

ogy of Interactions section – viz., IPR, CD-Dist and FSWeight – can

be applied to a pair of proteins (u; v), even when (u; v) are not

reported by a protein interaction assay. For example, Pei and

Zhang [56] and Chen et al. [33] apply two variations of the IPR

index on every pair of proteins (u; v) and declare those that score

well to be interacting.

Concluding remarks
The quantity and variety of protein interaction data have

increased rapidly since the publication of two yeast interactome

maps based on the yeast two-hybrid technology eight years ago

[2,67]. In particular, two-hybrid-based interactome maps have

been generated for model organisms such as C. elegans [68],

Drosophila [26], bacteria [69–71] and human [72,73]; and pro-

teome-scale interactome maps have also been generated for yeast

by TAP-MS experiments [74–76]. Nevertheless, their quality has

much to be improved [4,8,19–22].

We have discussed, in depth, several approaches – based on

principles, such as functional homogeneity; localization coher-

ence; observational repeatability and topology of interactions – for

assessing the reliability of protein–protein interactions and thus

detecting false positives reported by various high-throughput

experiments. In particular, we have highlighted that it is possible

to rank the reliability of a protein interaction pair by the local

topology around the pair in the protein interaction network [30–

34].

We have also surveyed several approaches for predicting new

protein interactions and, thus, detecting false negatives in protein

interaction assays. The approaches reviewed include those that are

based on principles, such as interacting domains [44–47], inter-

acting motifs [48–50], gene-fusion events [41–43], coevolution of

proteins or residues [51–54] and the topology protein–protein

interaction networks [33,55,56].

The ability of these computational approaches to identify false-

positive and false-negative protein interactions is quite remark-

able. For example, as shown in Table 1, a good experimental assay

such as affinity chromatography has a reliability of 82% – and thus

an estimated false-positive rate of 18% – using common cellular

role as the yardstick. As shown in Fig. 1, this is matched by the

FSWeight index [32] that is based solely on the topology of the

local neighborhood of interacting proteins. Similarly, with respect

to false negatives, Juan et al. [54] has reported impressive results

that the top 100 interacting protein pairs predicted by their

coevolution method are completely correct and up to 40% of their

top 500 predictions are correct.

It is also interesting to mention the outcome of the protein–

protein subnetwork challenge under the DREAM2 Project held in

late 2007 [77]. In this challenge, the participants were asked to

predict the protein–protein interaction network involving 47 yeast

genes. In parallel, a very stringent series of yeast two-hybrid

experiments were repeated three times to obtain a gold standard
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positive and negative sets of interactions involving these 47 genes.

The gold standard positive set comprises interactions that were

observed in all three repetitions. The gold standard negative set

comprises interactions that were observed in none of the three

repetitions. The top team – relying on an integration of many of

the techniques described in this paper – achieved a performance of

0.63 area under the ROC curve, which is a very competitive

performance compared to popular experimental techniques.

Although these computational approaches to identify false

positives and false negatives protein interactions are competi-

tive, there is still room for improvement. For example,

the availability of large-scale interactome information on

multiple model organisms and a variety of corollary events that

accompany in vivo protein interactions have not been exploited

fully. Also, most of the resulting interactome maps are still

essentially an in vitro scaffold. Further progress in computa-

tional analyses techniques and experimental methods is needed

to reliably deduce in vivo protein interactions, to distinguish

between permanent and transient interactions, to distinguish

between direct protein binding from membership in the same

protein complex and to distinguish protein complexes from

functional modules.
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