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Summary

Most biological processes within the cell are carried out by proteins that physically

interact to form stoichiometrically stable complexes. Even in the relatively simple

model organism Saccharomyces cerevisiae (budding yeast), these complexes are com-

prised of many subunits that work in a coherent fashion. These complexes interact

with individual proteins or other complexes to form functional modules and path-

ways that drive the cellular machinery. Therefore, a faithful reconstruction of the

entire set of complexes (the ‘complexosome’) from the physical interactions among

proteins (the ‘interactome’) is essential to not only understand complex formations,

but also the higher level cellular organization.

This thesis is about devising and developing computational methods for accurate

reconstruction of complexes from the interactome of eukaryotes, particularly yeast.

The methods developed in this thesis integrate biological knowledge from auxiliary

sources (like biological ontologies, literature on experimental findings, etc.) with the

rich topological properties of the network of protein interactions (for short, PPI net-

work) for accurate reconstruction of complexes. However, complex reconstruction

is a very challenging problem, mainly due to the ‘imperfectness’ of data: scarcity

of credible interaction data (current estimates put the coverage even in the well-

studied organism yeast to only ∼70%), presence of high levels of noise (between

15% and 50% false positive interactions), and incompleteness of auxiliary sources.

To counter these challenges, this thesis addresses the problem in progressive

stages. In the first stage, it proposes a refinement over a general density-based

graph clustering method called Markov Clustering (MCL) by incorporating “core-

attachment” structure (inspired from findings by Gavin and colleagues, 2006) to

reconstruct complexes from the yeast PPI network. This improved method (called



ii

MCL-CAw) refines the raw MCL clusters by selecting only the “core” and “attach-

ment” proteins into complexes, thereby “trimming” the raw clusters. This refine-

ment capitalizes on reliability scores assigned to the interactions. Consequently,

MCL-CAw reconstructs significantly higher number of ‘gold standard’ complexes

(∼30% higher) and with better accuracies compared to plain MCL. Comparisons

with several ‘state-of-the-art’ methods show that MCL-CAw performs better or at

least comparable to these methods across a variety of reliability scoring schemes.

In spite of this promising improvement, being primarily based on density, MCL-

CAw fails to recover many complexes that are “sparse” (and not “dense”) in the PPI

network, mainly due to the lack to sufficient credible PPI data. In the second stage,

the thesis presents a novel method (called SPARC) to selectively employ functional

interactions (which are conceptual and not necessarily physical) to non-randomly

‘fill topological gaps’ in the PPI network, to enable the detection of sparse com-

plexes. Essentially, SPARC employs functional interactions to enhance the “incom-

plete” clusters derived by MCL-CAw from sparse regions of the network. SPARC

achieves this through a novel Component-Edge (CE) score that evaluates the topo-

logical characteristics of clusters so that they are carefully enhanced to reconstruct

real complexes with high accuracies. Through this enhancement, MCL-CAw and

other existing methods are capable of reconstructing many sparse complexes that

were missed previously (an overall improvement of ∼47%).

As an extension to these methods, in the third stage, the thesis incorporates

temporal information to study the dynamic assembly and disassembly of complexes.

By incorporating the yeast cell cycle phases in which proteins in cell-cycle complexes

show peak expression, the thesis reveals an interesting biological design principle

driving complex formation: a potential relationship between ‘staticness’ of proteins

(constitutive expression across all phases) and their “reusability” across temporal

complexes.

This thesis contributes towards the ultimate goal of deciphering the eukaryotic

cellular machinery by developing computational methods to identify a substantial

complement of complexes from the yeast interactome and by revealing interesting

insights into complex formations. Therefore, this thesis is a valuable contribution

in the areas of computational molecular and systems biology.
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CHAPTER 1

Introduction

Unfortunately, the proteome is much more complicated than the genome.

The Scientific American, April 2002

- Carol Ezzel [1]

Bruce Alberts in a survey [2] (1998) termed large assemblies of proteins as protein

machines of the cell. This was precisely because, like machines invented by humans,

these protein assemblies comprise of highly specialized parts, and perform functions

of the cell in a highly coherent manner. It is not hard to see why protein machines

are advantageous to the cell than individual proteins working in an uncoordinated

manner. Compare, for example, the speed and elegance of the machine that si-

multaneously replicates both strands of the DNA double helix with what could be

achieved if each of the individual components (DNA polymerase, DNA helicase,

DNA primase, sliding clamp) acted in an uncoordinated manner [2, 3].

But the devil is in the details. Though they might seem like individual parts

assembled to perform arbitrary functions, these machines can be overly specific and

enormously complicated. For example, consider the spliceosome. Composed of 5

small nuclear RNAs (snRNAs or “snurps”) and more than 50 proteins, this machine

is thought to catalyze an ordered sequence of more than 10 RNA rearrangements

as it removes an intron from an RNA transcript [2]. In fact the discovery of this

intron splicing process won Phillip A. Sharp and Richard J. Roberts the 1993 Nobel

Prize in Physiology and Medicine1.
1http://nobelprize.org/nobel_prizes/medicine/laureates/1993/illpres/index.html
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When one examines these protein assemblies, now known to be in the order of

hundreds even in the simplest of eukaryotic cells, and the kind of cellular activities

they are involved in, one is reminded of the baffling paintings in an art exhibit

composed of an intricate interplay of form, color, light and shade. But perhaps this

is because we do not fully understand what the cell needs to accomplish with each

of its protein assemblies just like how an amateur art appreciator does not fully

understand the deeper expressions the artist is trying to convey through each of her

strokes.

Given this intricacy and ubiquity of protein assemblies, a serious attempt to-

wards identification, classification and comparative analysis of all such assemblies

is essential not only to understand them in more depth, but also to decipher the

higher level organization of the cell.

To proceed on such a vast exploration, the quest is to first crack the proteome

- a concept so novel that the word proteome did not even exist a decade ago. The

proteome is the entire library of proteins expressed in an organism [6]. With the

dawn of the 21st century and the introduction of “high-throughput” techniques in

molecular biology, cataloging this library of proteins has become feasible. Though

the cataloging of information about human proteins has still a long way to go, no-

table progress has been done for simpler organisms like Escherichia coli (bacteria)

and Saccharomyces cerevisiae (yeast), which can give us enlightening insights into

the cellular machinery. After all, considering the 3.8 billion years of the history of

evolution, we humans appearing 200,000 years ago are mere increments, and there-

fore what is fundamentally true of these smaller organisms should be fundamentally

true of us. As the late French geneticist Jacques Monod put it, only half in jest,

‘Anything that is true of E. coli must be true of elephants, except more so’ [6].

Naturally, the same must be true of humans!

Just like how organizing our home libraries can involve a lot of time and effort,

and school libraries even more so, where books need to be carefully chosen, cate-

gorized, ordered and arranged so that they can be of effective use, the categorizing

and organizing of the large-scale data churned out from these high-throughput tech-

niques can also involve significant time and effort so that we make the right sense

out of them. Once this task is reasonably done, this data can be effectively and
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efficiently mined and analysed to decipher new insights into cellular mechanisms.

Towards this end, the major research questions being pursued are: “How to or-

ganize and store the large quantities of data?”, “How to interpret and categorize

or classify this data?”, “How to differentiate between useful and erroneous (noisy)

data?”, “How to analyze this data and interpret the findings to fill the gaps in

our present knowledge?”, etc. The task of answering these questions certainly calls

for enormous computational analyses (by computer scientists) that can effectively

complement experimental techniques (by molecular biologists).

1.1 Research scope

One of the important areas where large-scale data has been employed is to identify

and map the entire complement of protein assemblies from organisms. Depending on

the functional, spatial and temporal context, protein assemblies can be categorized

broadly into a number of types, and one way to do so is [4],

1. Complexes: These are stoichiometrically stable structures formed by physical

interactions among proteins at specific time and space, and are responsible

for distinct functions within the cell. Complexes can be both permanent

(example, proteasomes) or transient (example, a kinase and its substrate).

2. Functional modules: These are typically formed when two or more complexes

interact with each other or individual proteins in a ‘time-dependent’ manner

to perform a particular function and dissociate after that (for example, the

complexes and proteins forming the DNA replication machinery).

3. Signaling pathways: These comprise of ordered succession of ‘time-dependent’

interactions among proteins, but does not require all components to co-localize

in time and space (for example, the MAPK pathway controlling mating re-

sponse).

In summary, there are distinct types of assemblies and we can derive a variety of

criteria to categorize them; many of these criteria can overlap, and any one criteria

in isolation will fail to encompass all types of assemblies [4, 5]. But, among all

the types defined above, complexes are the most clearly defined assemblies. They

can be considered the fundamental functional units formed by physical interactions
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among proteins in time and space. Here, the focus is primarily on the detection and

analysis of complexes, however, occassionally in the presence of ‘timing information’

we attempt to understand functional modules as well.

Large-scale experimental identification of complexes can be done by in vitro “pull

down” of cohesively interacting groups of proteins. Very broadly, this procedure

comprises of a ‘bait’ protein introduced into a solution of cell lysate, and purified

together with its physically binding ‘preys’. The individual component proteins in

this complex can then be identified by Mass Spectrometry analysis. However, the

exhaustiveness of this procedure depends on the baits used. There is no way to

identify all possible complexes unless all possible baits are tried. Further, a chosen

bait may not physically interact with all components in its complex, and hence

multiple baits need to be tried to identify the complete complex. Additionally, a

protein might be involved in more than one distinct complexes, which means each

protein has to be verified for both as a bait and as a prey, and that too in multiple

purifications. In these ‘combinatorial trials’ there can also occur “errors” due to

in vitro experimental conditions, which can either result in contaminants within

the complexes or washing out of weakly associated proteins. Of course, there is a

monetary cost factor also involved in performing these experiments.

One way to overcome these difficulties is to use the “pull-down” complexes to

first infer the physical interactions among the constituent proteins. This is done

either as interactions between the bait and its preys in a complex (like the “spokes”

of a wheel), or as interactions among all proteins in a complex (like a “matrix”),

or a suitable combination of both. If a significant number of such physical interac-

tions can be inferred and catalogued, distinct groups of proteins forming complexes

can be isolated from them: proteins within a complex form many interactions with

each other than with proteins not in the complex. Quite naturally, such an pro-

cedure cannot be done manually, and therefore calls for specialized computational

techniques that can decipher the complexes from the set of interactions.

The scope of this thesis is to design and develop effective computational tech-

niques for identifying protein complexes from physical interactions catalogued from

such high-throughput experiments.
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1.2 Research methodology

In computational analysis, protein interactions from an organism are typically as-

sembled in the form of a network with the proteins as nodes and the interactions

among them as edges, commonly called protein-protein interaction network or PPI

network. Such a network provides a ‘global picture’ of the entire set of interactions.

This network is rich in topological properties that can give vital evidences or insights

into cellular organization. For example, it was found that the degree distribution

of proteins in the network is not random, but instead roughly follows a power law

indicating the presence of a few high-degree proteins (called “hubs”) which when

disrupted can cause the network to breakdown (this is commonly referred to as the

“scale-free” property) [7, 8]. Similarly, the ‘betweenness centrality’ for a protein is

the total number of shortest paths in the network that pass through that protein,

and corresponds to the topological ‘centrality’ of the protein [9]. These “hubs” and

‘central’ proteins in the network likely correspond to essential or lethal proteins

within the cell [10, 11].

In this thesis, we design and develop computational methods for identifying

protein complexes from PPI networks (see Figure 1.1). Typically, the approaches

proposed for identifying complexes from PPI networks fall within the purview of

the following steps:

1. Constructing the PPI network from the individual physical interactions;

2. Identifying candidate complexes from the network; and

3. Evaluating the identified complexes against bona fide complexes, and validat-

ing the novel complexes.

Although promising, complex identification from PPI networks still requires careful

attention in handling errors and noise and reconstructing complexes with high accu-

racies. The specific techniques and algorithms developed in this thesis are motivated

by the following desirable properties for the results in this thesis:

1. Detecting possibly all complexes and with high accuracies;

2. Effective countering of noise observed in experimental datasets; and
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Figure 1.1: Research objective: Reconstructing protein complexes from the network
of protein interactions.

3. In-depth analyses of detected complexes to gain deeper and possibly novel

insights into biological phenomena.

To achieve the aforesaid desired results, we devise novel methods to integrate a

variety of known biological information and insights with the rich topological prop-

erties of the PPI network. This auxiliary biological knowledge can be in the form

of organizational, structural, functional or evolutionary information gathered about

proteins, interactions and complexes from experimental and other studies, and cat-

alogued in literature and databases. The broad methodology followed is to “encode”

this auxiliary biological knowledge as topological structures in the PPI network. By

implementing this methodology, we capitalize on both the biological knowledge as

well as the topological properties of the PPI network for detecting complexes.

1.3 Contributions of the thesis

This thesis contributes several new principles and procedures of inquiry into the

computational analysis of PPI networks in general, and complex detection in par-

ticular. The main constributions are listed below:
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1. A ‘foresightful’ survey and taxonomy of existing computational

methods:

From the time high-throughput experimental techniques were first introduced

for inferring protein interactions (by Uetz et al. in 2000 [12] and Ito et al.

in 2001 [13]), computational techniques began parallely gaining popularity to

analyse the large amounts of data being continuously catalogued (one of the

first attempts in computational complex prediction was by Bader and Hogue

in 2003 [14]). It is almost a decade now, and newer and more reliable experi-

mental techniques have been introduced that have in turn inspired many new

computational methods making use of these improved datasets. While surveys

and comparative assessments have periodically come out on these computa-

tional methods, an extensive taxonomy that gives us a “sense of time” when

the methods were developed and relates them to experimental improvements,

has not been presented till date.

In this thesis (Chapter 3), we present a comprehensive taxonomy of com-

putational methods (we identify close to 20 methods) developed for com-

plex detection over the years. We present this taxonomy as two snapshots

- a chronology-based “bin-and-stack” and an algorithmic methodology-based

‘tree’. This taxonomy condenses the history of complex detection, and has a

capability, what we believe, to show directions for future research in this area.

2. An improved complex detection method using core-attachment in-

sights:

In 2006, Gavin and colleagues [15], for the first time, studied the organiza-

tional structure within yeast complexes on a genome-wide scale. Their findings

revealed an inherent modularity among proteins within complexes, organized

as two distinct sets - “cores” and “attachments”. This revelation inspired sev-

eral computational methods to reconstruct complexes, ours being one of the

earliest, by identifying“core”and“attachment”proteins from their topological

properties within the PPI network.

In Chapter 4 of this thesis, we present this new method to reconstruct yeast

complexes. Our method provides two levels of “controls” to be stringent or
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lenient while identifying the “core” and “attachment” complex proteins from

“dense” regions. This helps us to “trim” our predictions instead of considering

whole “dense” regions as complexes. The initial “dense” regions are identified

using a popular but general graph clustering method called Markov Cluster-

ing (MCL) [16], and therefore we consider our method (called MCL-CAw)

as a ‘customization’ of MCL to detect complexes by incorporating “Core-

Attachment” structure. We demonstrate that MCL-CAw reconstructs on av-

erage ∼30% higher number of complexes than MCL.

A reliability weight or score is typically assigned to interactions in the PPI

network to account for the biological variability and technical limitations of

experimental conditions. The ‘w’ in MCL-CAw refers to the ability of our

method to capitalize on such weights, and therefore handle noise in biolog-

ical datasets. We demonstrate through extensive analysis that such scoring

aids to significantly improve complex prediction, and that MCL-CAw shows

consistent performance across a variety of scoring schemes.

A significant portion of these results were published first as a preliminary

version in the proceedings of the 20th International Conference on Genome

Informatics (GIW) 2009 [17], and later as a substantially extented version in

BMC Bioinformatics (2010) [18].

3. A quantitative definition to the notion of complex “derivability”:

In this thesis (Chapter 5), we test the credibility of the key assumption under-

lying all existing computational methods that complexes form “dense” regions

within the PPI network. We define the notion of complex “derivability”, that

is, whether a complex is derivable or not from a given PPI network, and if

yes to what extent. We present a measure (called the Component-Edge or

CE score) to quantitatively capture this notion effectively. We show that this

measure strongly correlates with the actual complex derivation capability of

computational methods, and use it to demonstrate that overly relying on the

‘denseness’ assumption in the wake of insufficient PPI data can cause “sparse”

complexes to be missed.

A significant portion of these results were published in the International Jour-
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nal of Bioinformatics Research and Applications (2012) [19], invited from the

10th Asia Pacific Bioinformatics Conference (APBC) 2012.

4. A novel improvement to detect “sparse” complexes by employing

functional interactions:

Our experiments reveal that many complexes are “sparse” (and not “dense”)

in the PPI network, rendering methods that over rely on the ‘denseness’ as-

sumption of complexes ineffective in detecting these “sparse” complexes. In

Chapter 5, we characterize these “sparse” complexes using our proposed CE

score. Going further, we present a novel method called SPARC which employs

functional interactions to elevate some of the “sparse” complexes to “dense”,

enabling existing methods to detect these complexes satisfactorily. Functional

interactions are logical associations inferred from a variety of biological infor-

mation to “encode” affinity beyond just physical interactivity. This is, to our

knowledge, the first such work that combines functional with physical inter-

actions to detect complexes, particularly the “sparse” ones. Our experiments

show that SPARC aids existing methods to reconstruct on average ∼47%

higher number of complexes.

A significant portion of these results were published in the International Jour-

nal of Bioinformatics Research and Applications (2012) [19], invited from the

10th Asia Pacific Bioinformatics Conference (APBC) 2012.

5. Novel biological insights deciphered from detected complexes:

Finally, to demonstrate the impact of the developed computational methods,

in Chapter 6 we employ the detected complexes to understand some of the

phenomena driving complex formations in yeast. We incorporate auxiliary bi-

ological information in the form of protein essentiality and the yeast cell-cycle

phase in which the proteins are transcribed to reveal two interesting insights:

(i) Essential proteins have a higher tendency to function in groups, many of

which are complexes; (ii) The relatively higher enrichment of ‘staticness’ (con-

stitutive expression) in proteins shared among ‘time-based’ complexes, hinting

towards the biological design principle of temporal “reusability”of ‘static’ pro-

teins for temporal complex formations.
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Some portions of these results were published in BMC Bioinformatics

(2010) [18] and as a poster in the 10th International Conference on Bioin-

formatics (InCoB) 2011 [20].

1.4 Organization of the thesis

Chapter 2 presents background on protein interaction networks required for un-

derstanding the details of this thesis. The chapter provides concise information

on some of the experimental and computational techniques used to infer the inter-

actions, and the limitations and challenges in these techniques, particularly those

leading to inherent noise in experimental datasets. Chapter 3 surveys existing

computational methods developed for reconstructing complexes from protein inter-

action networks. It dwelves into their merits and demerits, and identifies challenges

and limitations to motivate the subsequent chapters. Chapter 4 proposes a new

computational method (MCL-CAw) for reconstructing complexes. Chapter 5 iden-

tifies some of the overlooked loopholes in MCL-CAw, and proposes an improvement

(called SPARC) to address these loopholes. Chapter 6 analyses the reconstructed

complexes to gain deeper and novel biological insights into complex organization,

and thereby provides a fitting sign off to the methods developed in this thesis.

Chapter 7 draws the final curtain by summarizing the main contributions of the

thesis, discussing the significance of the results, identifying some of the limitations,

and thereby recommending directions for future research.



CHAPTER 2

Techniques for inferring protein

interactions

All mass is interaction.

- Richard Feynman

statement titled “Principles” (c. 1950), as quoted in [21]

Proteins interact with each other in a highly specific manner, and protein interac-

tions play a key role in many cellular processes. In order to get a global picture

of these interactions, especially for system level studies, these interactions are typ-

ically assembled in the form of a protein interaction network (PPI network). Over

the past decade or so, several high-throughput studies have been developed for

screening interactions on a genome-wide scale resulting in the cataloging of vast

amounts of interaction data from several organisms, in turn leading to larger and

more complete PPI networks that can be systematically studied and analyzed to

extend our knowledge about cellular processes. But, in order to study and analyse

PPI networks, we need to first understand the major promises and limitations of

these high-throughput techniques, and the approaches used to verify, validate and

complement the diverse experimental data produced from these techniques, which

is the subject of this chapter. A reader familiar with the domain may skip this

chapter and refer back to relevant sections if required.
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2.1 High-throughput experimental techniques for inferring in-

teractions

Protein interactions can be analyzed by different genetic, biochemical and biophys-

ical high-throughput techniques, some of which are listed in Table 2.1 and dia-

grammatically shown in Figure 2.1. Some techniques such as yeast two-hybrid

(Y2H) [12,13,22] and protein-fragment complement assay (PCA) [23] enable identi-

fication of binary physical interactions between proteins, while other techniques like

affinity purification (AP) [24] enable “pull down” of whole complexes from which

the binary interactions can be inferred, and still others like synthetic lethality [25]

enable detection of functional (indirect) associations among proteins apart from

physical (direct) interactions.

Technique Living cell assay Interaction type

Yeast two-hybrid [12,13,22] In vivo Physical binary
Protein-fragment complement assay [23] In vivo Physical binary
Affinity purification-MS [24] In vitro Physical complex
Synthetic lethality [25] In vitro Functional association

Table 2.1: Some high-throughput experimental techniques for screening protein
interactions.

2.1.1 Yeast two-hybrid

Yeast two-hybrid or Y2H is an in vivo technique based on the fact that many eu-

karyotic transcription activators have at least two distinct domains, one that directs

binding to a promoter DNA sequence (BD) and other that activates transcription

(AD). It was demonstrated that splitting BD and AD inactivates transcription, but

the transcription can be restored if a DNA-binding domain is physically associated

with an activating domain [26]. Accordingly, a protein of interest is fused to BD.

This chimeric protein is cloned in an expression plasmid, which is then transfected

into a yeast cell. A similar procedure creates a chimeric sequence of another protein

fused to AD. If the two proteins physically interact, the reporter gene is activated.

Numerous variants of Y2H have been developed for detecting interactions in higher

eukaryotic cells like mammalian cells.
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Figure 2.1: Some of the high-throughput experimental techniques developed for
screening protein interactions: yeast two-hybrid, tandem affinity purification, pro-
tein fragment complementation and synthetic lethality.



2.1 High-throughput experimental techniques for inferring interactions 14

One of the first genome-wide Y2H screens from yeast by Uetz et al. [12] and

Ito et al. [13] inferred 692 and 841 putative interactions, respectively. The over-

lap between the two screens was only about 20%. Investigations into the small

overlap revealed several limitations in the Y2H technique: bias towards nonspecific

interactions and bias against membrane proteins, proteins initiating transcription

by themselves cannot be targeted in Y2H experiments, and the use of sequence

chimeras can affect the structure of target protein [26].

2.1.2 Affinity purification followed by mass spectrometry

Complementing the in vivo Y2H technique are the in vitro Affinity Purification

followed by Mass Spectrometery (AP-MS) techniques for high-throughput screen-

ing of interactions. These comprise of two steps - affinity purification and mass

spectrometery. The most common technique uses the tandem affinity purification

(TAP) tag. In the TAP approach, the protein of interest (bait) is TAP-tagged and

purified from a cell lysate together with its binding partners (preys) after washing

out the contaminants. The components of each such purified complex are screened

by gel electrophoresis, and identified by MS.

The first two large TAP-MS screens of yeast by two seperate groups, Gavin et

al. (2002, 2006) [15, 27] and Krogan et al. (2006) [28], showed 7592 and 7123 pro-

tein interactions identified with high confidence, respectively. Subsequently, several

other groups improved on these AP-MS techniques to identify significantly many

more interactions (for a survey, see [26]).

Comparing with the Y2H technique, AP-MS can report whole complexes and

can therefore report on higher-order interactions beyond binary. However, Y2H has

the advantage of being an in vivo technique and of detecting transient interactions.

2.1.3 Protein-fragment complementation assay

Protein-fragment complementation assay or PCA is another in vivo technique based

on the principle of splitting a protein into two fragments, each of which cannot

function alone [23]. These fragments are fused to potentially interacting protein

partners, and if complementation upon interaction leads to restored function, then

the interaction between the partners in inferred.
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Although PCA is similar to Y2H, it requires the reconstitution of a separate

(third) protein to detect the interaction between two partners. But, PCAs have

advantage over Y2H because they can be employed to identify interactions between

membrane proteins, and also between membrane and membrane associated pro-

teins [26].

2.1.4 Synthetic lethality

Synthetic lethality is a genetic interaction method which produces mutations or

deletions of two separate genes which are viable alone but cause lethality when

combined together in a cell under certain conditions [25]. Since these mutations

are lethal, they cannot be isolated directly and should be synthetically constructed.

Synthetic interaction can point to possible physical interaction between two gene

products, their participation in a single pathway, or a similar function (functional

associations) [25,26].

2.2 Constructing PPI networks from interaction datasets

The pairwise (binary) physical interactions inferred among proteins using different

experimental techniques are assembled into a PPI network with the proteins as

nodes and the interactions among them as edges in the network. However, some

techniques like TAP-MS offer only whole complexes comprising of preys showing

high affinities to baits instead of pairwise binary interactions. To infer the binary

interactions from TAP-MS complexes, their topologies are represented as collec-

tions of hypothetical pairwise interactions, for which there are two kinds of models:

“spoke” and “matrix” [15,28–31].

The spoke model assumes that the protein bait interacts directly with each of

the prey proteins, like spokes of a wheel. The spoke model is useful to reduce

complexity of data visualization, but necessarily misses out on several prey-prey

interactions that may be true. The matrix model assumes that all proteins within a

complex have pairwise interactions with each other. The matrix model contains all

possible true interactions, but necessarily has a large number of false interactions

as well. The empirical evaluations [29, 32, 33] of pull-down data from Gavin et

al. (2006) [15] showed about 19.8% true interactions and 39% false interactions in
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Figure 2.2: Deriving scored PPI network from TAP/MS purifications [31]: The
“pulled-down” complexes from TAP/MS experiments are assembled as ‘spoke’ and
‘matrix’ models to infer the interactions among the constituent proteins.

the spoke model, and 68.8% true interactions and 308.7% false interactions in the

matrix model. Therefore, typically a balance is struck between the two models that

covers most of the true interactions without accepting in too many false interactions.

Several groups including Gavin et al. [15] have used such a combination of spoke and

matrix models. The complete picture for the network construction is summarized

in Figure 2.2.

2.3 Gaining confidence in high-throughput datasets

Although high-throughput techniques have been successful in large-scale screening

of protein interactions, several recent analyses and reviews [32–35] have highlight-

ened the prevalence of spurious interactions in high-throughput data. Consequently,

a crucial challenge in adopting such data is separating the subset of credible inter-

actions from the background noise.
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2.3.1 False positives and true negatives in interaction

datasets

The spurious interactions (false positives) in high-throughput screens may arise from

technical limitations in the underlying experimental techniques. The Y2H system,

in spite of being in vivo, does not consider the localization, time and cell context

in different cell types while testing for binding partners. On the other hand, in

vitro “pull downs” are carried out using cell lysates in an environment where every

protein is present in the same“uncompartmentalized soup”. Therefore, even though

two proteins interact, it is not certain that they will interact under real conditions.

Opportunities are high for proteins to interact promiscuously with partners that

they never normally come across in an intact cell and for ‘sticky’ molecules to

function as bridges between two other proteins [35]. Recent analysis [26] have

shown that only 30-50% of high-throughput interactions are biologically relevant.

In addition to spurious interactions, another challenge is to be able to cover the

whole complement of interactions (the ‘interactome’). The comparisons [26, 32–34]

between datasets from different techniques have shown striking lack of correlation,

each technique producing a unique distribution of interactions suggesting that the

techniques have specific strengths and weaknesses. A major drawback of most tech-

niques is that many interactions may depend on certain post-translational modifica-

tions such as disulfide bridge formation, glycosylation and phosphorylation, which

may not occur properly in the adopted system. Many of these techniques also show

bias towards abundant proteins and against certain kind of proteins like membrane

proteins. For example, AP-MS techniques predict relatively few interactions for

proteins involved in transport and sensing (transmembrane proteins), while Y2H

being targeted in the nucleus fail to cover extracellular proteins [26].

2.3.2 Estimating the reliabilities of interactions

The integration of high-throughput datasets from multiple experimental sources

can certainly help in enriching true interactions and covering a sizeable fraction

of the interactome. However, the prevalence of spurious interactions continues to

remain a challenge, which magnifies further upon integration of datasets. In order to



2.3 Gaining confidence in high-throughput datasets 18

separate credible interactions from background noise, the reliabilities of individual

interactions are estimated so that less reliable interactions can be selectively filtered.

Reliability scoring schemes offer a score (weight) to each interaction in the PPI

network, which typically encodes the reliability (confidence) of the physical interac-

tion between the protein pair. The score accounts for the biological variability and

technical limitations in the experiments. For example, Gavin et al. [15] combined

the spoke and matrix models using a ‘socio-affinity’ scheme which quantized the

log-ratio of the number of times two proteins were observed together as a bait and a

prey, or a prey and a prey, relative to what would be expected from their frequency

in the dataset. On the other hand, Krogan et al. (2006) [28] used machine learning

techniques (Bayesian networks and C4.5-decision trees) trained using diverse evi-

dences to define the confidence scores between proteins in their spoke modeled PPI

dataset.

Subsequent to these two scoring schemes, several other schemes [29,36,38–41,43,

45–47] have been developed to score PPI networks (see a survey, see [42]). Collins

et al. [36] developed a Purification Enrichment (PE) scoring system to generate

the ‘Consolidated network’ from the matrix modeled relationships of the Gavin et

al. and Krogan et al. datasets. Collins et al. used a Bayes classifier to gener-

ate the PE scores in the Consolidated network by incorporating training data from

hand-curated co-complexed protein pairs, Gene Ontology (GO) [37] annotations,

mRNA expression patterns, and cellular co-localization and co-expression profiles.

This new network was shown to be of high quality - comparable to that of PPIs

derived from small-scale experiments stored at the Munich Information Center for

Protein Sequences (MIPS). Hart et al. [38] generated a Probabilistic Integrated

Co-complex (PICO) network by integrating matrix modeled relationships of the

Gavin et al., Krogan et al. and Ho et al. datasets using a measure similar to

socio-affinity scores. Zhang et al. [29] used Dice coefficient (DC) to assign affini-

ties to protein pairs, and evaluated their affinity measure against socio-affinity and

PE measures. They concluded that DC and PE offered the best representation for

protein affinity among the three schemes. Chua et al. [39] and Liu et al. [40] devel-

oped network topology-based scoring systems called Functional Similarity Weight

(FS Weight) and Iterative-Czekanowski-Dice (Iterative-CD), respectively, to assign
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reliability scores to the interactions in networks. Friedel et al. [41] developed a boot-

strapped scoring system based on random sampling to score TAP-MS interactions

from Gavin et al. and Krogan et al. Kuchaiev et al. [43] embedded PPI networks

into Euclidean spaces and modeled them as geometric random graphs to de-noise

the networks based on geometric distances (the same group showed earlier that ge-

ometric random graphs are the best models for PPI networks [44]). Voevodski et

al. [45] used PageRank, a random walk-based method used in context-sensitive web

search, to define the affinities between proteins within PPI networks. More recently,

Jain et al. [46] (2010) developed Topological Clustering Similarity Scheme (TCSS)

that used the knowledge captured in Gene Ontology [37] to assess the reliabilities

of interactions. Breitkreutz et al. [47] (2010) developed the Significance Analysis of

Interactome (SAINT) scoring to detect non-specifically binding proteins based on

peptide counts, an additional type of experimental data generated using a peptide

identification phase in their screens. SAINT employs a mixture of Poisson distribu-

tions to heuristically compute posterior probabilities of specific interactions based

on the peptide counts.

We classified these scoring schemes into three broad categories (Table 2.2): (i)

Sampling or counting-based, (ii) Evidence-based, and (iii) Solely topology-based.

Sampling or counting Evidence based Solely topology

Dice coefficient [29] Bayesian networks [28] FS Weight [39]
Socio-affinity [15] Purification enrichment [36] Iterative CD [40]
Hart sampling [38] Gene Ontology-based [46] Geometric embedding [43]

Bootstrap sampling [41] SAINT [47] PageRank affinity [45]

Table 2.2: Broad classification of affinity scoring schemes for reliability estimation
of protein interactions.

2.4 Computational techniques for inferring interactions

Although high-throughput techniques produce large amounts of data, the covered

fraction of the interactomes from many organisms are far from complete. The low

interaction coverage and the need for verification of high-throughput data calls for

the development of computational techniques to predict protein interactions. How-

ever, these techniques can have two kinds of limitations: (i) many of these techniques

use experimental data to infer new interactions leading to an inherent bias in their
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predictions; (ii) many of these techniques do not predict physical interactions di-

rectly but rather infer the functional associations between potentially interacting

proteins. Despite these limitations, computational techniques have proved an ef-

fective complement to experimental techniques for analyzing interactions. These

techniques can be useful for choosing potential targets for experimental screening

or for independently validating experimental data [26].

Protein physical or functional interactions are predicted computationally using

various kinds of genome inference methods that use genomic or proteomic context

to infer interactions. We discuss a few of them here.

Genes with closely related functions encoding potentially interacting proteins

are often transcribed as a single unit, an operon, in bacteria and are co-regulated in

eukaryotes. Different methods have been developed to predict operons in bacterial

genomes based on intergenic distances [48]. Analysis of gene order conservation

within three bacterial and archaeal genomes found that 63%-75% of co-regulated

genes interact physically [49]. Similar results were found for eukaryotes like yeast

and worm [50].

The phylogenetic profile method is based on the hypothesis that functionally

linked and potentially interacting nonhomologous proteins co-evolve and have or-

thologs in the same subset of fully sequenced organisms. Indeed, components of

complexes and pathways should be present simultaneously in order to perform their

functions [26]. A phylogenetic profile is constructed for each protein, as a vector

of N elements, where N is the number of genomes. The presence or absence of a

given protein in a given genome is indicated as ‘1’ or ‘0’ at each position of a profile.

Proteins or their profiles can then be clustered using a bit-distance measure, and

those proteins from the same cluster are considered functionally related.

The Rosetta Stone approach infers protein interactions from protein sequences

in different genomes. It is based on the observation that some interacting proteins

or domains have homologs in other genomes that are fused into one protein chain,

a so-called Rosetta Stone protein [51]. Gene fusion apparently occurs to optimize

co-expression of genes encoding for interacting proteins. In Escherichia coli, the

Rosetta Stone method found 6,809 potentially interacting pairs of nonhomologous

proteins; both proteins from each pair had significant sequence similarity to a single
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protein from some other genome. Analysis of pairs found by this approach revealed

that for more than half of the pairs both members were functionally related [51].

2.5 Protein interaction databases

As a result of the large variety of experimental and computational methods devel-

oped for detecting and characterizing protein interactions, several databases have

been set up to catalogue, study and analyze these interactions. Some publicly avail-

able databases and their Web sources are listed in Table 2.3.

The Database of Interacting Proteins (DIP) [52] contains experimentally de-

termined (Y2H and TAP-MS) protein interactions and includes a core subset of

interactions that have passed a quality assessment (for example, literature-based

verification).

The Biomolecular Interaction Network Database (BIND) [53], now called

Biomolecular Object Network Database (BOND), includes high-throughput ex-

perimental protein interactions, and also protein-small molecule interactions and

protein-nucleic acid interactions.

The BioGrid [54] is a database of protein and genetic interactions gathered from

several high-throughput experiments, while STRING [55] is a database of physical

(direct) and functional (indirect) interactions gathered from several experimental

as well as computational techniques.

The MIPS Comprehensive Yeast Genome Database (CYGD) [56] and the MIPS

Mammalian Protein-Protein Interaction Database (MPPI) [57] is a comprehensive

catalogue of yeast and mammalian protein interactions and hand-curated complexes,

while the Human Protein Reference Database (HPRD) [58] stores interactions spe-

cific to human.

Apart from these, the Interlogous Interaction Database (I2D) [59] and Predic-

tome [60] database integrate interactions from multiple sources, and also interactions

between orthologous proteins inferred across species (“interlogs”).
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Database Interaction type URL/FTP

DIP [52] P http://dip.doe-mbi.ucla.edu

BIND [53] P,M http://bind.ca

BioGrid [54] P,G,M http://thebiogrid.org

STRING [55] E,M,F http://string-db.org/

CYGD [56] P,M http://mips.helmholtz-muenchen.de/genre/proj/yeast/

MPPI [57] P,M http://mips.helmholtz-muenchen.de/proj/ppi/

HPRD [58] E,M http://www.hprd.org/

I2D [59] E,M,F http://ophid.utoronto.ca/

Predictome [60] E,M,F http://predictome.bu.edu/

Table 2.3: Protein interaction databases and their Web sources. The inter-
action types are: high-throughput experimental-protein (P), high-throughput
experimental-genetic (G), manual (M) and functional/predicted (F).

2.6 Outlook

In this chapter, we summarized some of the experimental and computational tech-

niques developed to infer interactions among proteins, and the strengths and limi-

tations of these techniques. Yeast is the most widely mapped eukaryote with more

than two million experimentally and computationally inferred interactions cata-

logued in public databases. However, a significant fraction of these interactions

is spurious and unvalidated making the credibility of these datasets difficult to be

accurately estimated. Considering only the subset of multi-validated interactions,

recent estimates put the covered fraction of the yeast interactome between 60% and

70% [26, 32–34], leaving significant room for new interactions to be still discovered

and validated. For other organisms like mammals, this gap is even more appalling.

However, with the recent advancements in experimental and computational tech-

niques for inferring, verifying and analyzing protein interactions, faster progress is

being done to catalogue credible interactions from several organisms. As constantly

new data is being generated, the analyses and surveys on these datasets are also

being constantly updated to give us a sense as to where we currently stand. The

picture is not as bleak as it seems.

As new data is being generated, newer ways are being devised to study and an-

alyze this data to decipher unknown cellular principles. The detection and analysis

of protein complexes from this large-scale interaction data is one such focused study

that has emerged, and significant progress has been done over the last few years, as

we shall see in the next chapter.



CHAPTER 3

Methods for complex detection from

protein interaction networks

Dante can be understood only within the context of Italian thought, and Faust would

be unthinkable if divorced from its German background; but both are part of our

common cultural heritage.

Nobel Lecture, 29th June 1927

- Gustav Stresemann

The complexes of proteins working together to achieve modular biological functions

through a series of physical interactions constitute the fundamental (functional)

units within the cell. From a biological perspective, this modularity is a result divi-

sion of labor and of evolution to provide robustness against mutation and chemical

attack [4]. From a topological perspective, this modularity is a result of proteins

within complexes being densely connected to each other than to the rest of the PPI

network [29].

Typically, the process of identifying complexes from high-throughput interaction

data involves the following steps: (i) Integrating high-throughput datasets from

multiples sources and assessing the reliabilities of interactions; (ii) Constructing the

PPI network; (iii) Identifying the modular subnetworks from the network to generate

a candidate list of complexes; (iv) Evaluating the identified complexes against bona

fide complexes, and validating and assigning roles to the novel complexes.
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3.1 Review of existing methods for complex detection

In this section, we review, classify, compare and evaluate some representative works

done till date on the computational prediction of protein complexes from PPI net-

works. We begin describing these methods by first mentioning some definitions and

terminologies widely adopted across these works.

3.1.1 Definitions and terminologies

A PPI network is modeled as an undirected graph G = (V,E), where V is the set

of proteins and E = {(u, v) : u, v ∈ V } is the set of interactions among protein

pairs. For any protein v ∈ V , N(v) is the set of direct neighbors of v, while

deg(v) = |N(v)| is the degree of v. The interaction density of G is defined as

density(G) =
2.|E|

|V |.(|V | − 1)
. This is a real number between 0 and 1, and typically

quantifies the “richness of interactions” within G: 0 for a network without any

interactions and 1 for a fully connected network. The clustering coefficient CC(v)

measures the“cliquishness”of the neighborhood of v: CC(v) =
2.|E(v)|

|N(v)|.(|N(v)| − 1)
,

where E(v) is the set of edges in the neighborhood of v. If the interactions of

the network are reliability scored (weighted), these definitions can be extended to

their corresponding weighted versions: degw(v) =
∑

u∈N(v)

w(u, v), densityw(G) =

∑
e∈E

w(e)

|V |.(|V | − 1)
, and CCw(v) =

∑
e∈E(v)

w(e)

|N(v)|.(|N(v)| − 1)
, where w : E → R is a scoring

function on the interactions in E. There are several interesting variants proposed

for weighted clustering coefficient CCw; for a survey see [61].

3.1.2 Taxonomy of existing methods

Although at a very generic level most existing methods make the key assumption

that complexes are embedded among densely-interacting groups of proteins within

PPI networks, these methods vary considerably either in the algorithmic method-

ologies or the kind of biological insights employed to detect complexes. Accordingly,

we classified some popular complex detection methods into two broad categories (a

soft classification): (i) methods based solely on graph clustering; (ii) methods based
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on graph clustering and some additional biological insights. These biological in-

sights may be in the form of functional, structural, organizational or evolutionary

information known about complexes or their constituent proteins from experimental

or other biological studies.

We present this classification in two snapshots. The first snapshot, shown in

Figure 3.1, gives a chronology-based “bin-and-stack” classification, while the second

snapshot, shown in Figure 3.2 gives a methodology-based “tree” classification of the

methods.

In the chronology-based classification, we binned methods based on the years

in which they were developed, and stacked them based on the kind of biological

insights used. It is interesting to note from this classification that, over the years, as

researchers tried to improve the basic graph clustering ideas, they also incorporated

a variety of biological information into their methods. Note that we will keep

returning back to this “bin-and-stack” chronology-based classification in subsequent

chapters of this thesis, and adding new “data points” and/or “layers” to it.

In the methodology-based classification, we distributed the methods to different

branches of a classification tree based on the kind of computational strategy used.

At the first level from the root, we grouped these methods into those based solely

on graph clustering, and those employing additional biological insights. At subse-

quent levels, we further divided these methods based on the kind of algorithmic

strategies used, into: (i) methods employing merging or growing of clusters; (ii)

methods employing repeated partitioning of networks; and (iii) methods employ-

ing network alignment. The methods employing merging or growing clusters go

“bottom-up”, that is, typically start with small “seeds” (for example, triangles or

cliques), and repeatedly add or remove proteins or merge clusters based on some

similarity measures to arrive at the final set of complexes. On the other hand, the

methods based on network partitioning go “top-down”, that is, repeatedly partition

or break the network into multiple subnetworks based on certain divisive criteria.

The methods based on network alignment use multiple networks (typically from dif-

ferent species) to arrive at isomorphic regions that likely correspond to complexes,

the inituition being that proteins belonging to real complexes should generally be

conserved through the evolution process to act as an integrated functional unit [29].
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3.1.3 Methods based solely on graph clustering

Most methods that cluster the PPI network into multiple dense subnetworks make

use of solely the topology of the network.

Molecular COmplex DEtection (MCODE)

MCODE, proposed by Bader and Hogue (2003) [14], is one of the first computational

methods (and therefore, seminal) developed for complex detection from PPI net-

works. The MCODE algorithm operates in mainly in two stages, vertex weighting

and complex prediction, and an optional third stage for post-processing.

In the first stage, each vertex v in the network G = (V,E) is weighted based on its

neighborbood density. Instead of directly using clustering coefficient, MCODE uses

core-clustering coefficient which measures the density of the highest k-core in the

neighborhood of v. This amplifies the weighting of densely connected regions in G.

In the second stage, the vertex v with the highest weight is used to seed a complex.

MCODE then recursively moves outwards from the seed vertex, including vertices

into the complex whose weight is a given percentage (vertex weight parameter -

VWP) away from the seed vertex. A vertex once added to a complex is not checked

subsequently. The process stops when there are no more vertices to be added

to the complex, and is repeated using the next unseeded vertex. At the end of

this process multiple non-overlapping complexes are generated. The optional third

stage performs a post-processing on the complexes generated from the second stage.

Complexes without 2-cores are filtered out, and new vertices in the neighborhood

with weights higher than a given ‘fluff’ parameter are added to existing complexes.

The resultant complexes are scored and ranked based on their densities. The time

complexity of the algorithm is O(|V |.|E|.h3), where h is the vertex size of the average

vertex neighbourhood in the network G.

Markov CLustering (MCL)

The Markov Clustering (MCL) algorithm, proposed by Stijn van Dongen (2000) [16],

is a general graph clustering algorithm that simulates random walks (called flow) to

extract out relatively dense regions within networks. In biological applications, it

was first applied to cluster protein families and ortholog groups [62] before it proved
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to be effective in detecting complexes from protein interaction networks [31,41,63].

Figure 3.3: How MCL works [16]: Repeated expansion and inflation in MCL sepa-
rates the network into multiple non-overlapping regions.

MCL manipulates the adjacency matrix of networks with two operators called

expansion and inflation to control the random walks (flow). Expansion models the

spreading out of the flow, while inflation models the contraction of the flow, making

it thicker in dense regions and thinner in sparse regions. These parameters boost the

probabilities of intra-cluster walks and demote those of inter-cluster walks. Mathe-

matically, expansion coincides with normal matrix multiplication, while inflation is a

Hadamard power followed by a diagonal scaling (see the pseudocode in Algorithm 1).

Therefore, MCL is highly efficient and scalable. The iterative expansion and infla-

tion separates the network into multiple non-overlapping regions, depicted in Fig-

ure 3.3 (one can view an animated example from http://www.micans.org/mcl/).

Algorithm 1 Markov Clustering (Graph G)
Add loops to G;
Inflation I to some value;
Set M1 to be a matrix of random walks on G;

while (change) do
M2 := M1*M1; /* Expansion */
M1 := Inflate(M2, I) /* Inflation */
change := difference (M1, M2);

end while
Clusters := Compontents of M1;

Clustering based on merging Maximal Cliques (CMC)

CMC was proposed by Liu et al. (2009) [64] to detect complexes from PPI net-

works based on repeated merging of maximal cliques. Some earlier algorithms like

CFinder [65] and Local Clique Merging Algorithm (LCMA) [66] also adopted clique

merging to find dense neighborhoods, but the distinct advantage of CMC over these

algorithms is its ability to work on weighted networks and to find relatively low den-

sity regions (in subsequent improved versions of CMC).
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CMC begins by enumerating all maximal cliques in the PPI network using the

Cliques algorithm proposed by Tomita et al. [67]. Although enumerating all maxi-

mal cliques is NP-hard, this does not pose a problem in PPI networks because these

networks are usually sparse. CMC then assigns a score to each clique C based on

its weighted density, which considers the reliabilities (weights) of the interactions

within the clique:

Score(C) =

∑
u,v∈C w(u, v)
|C|.(|C| − 1)

. (3.1)

CMC then ranks these cliques in decreasing order of their scores and itera-

tively merges or removes highly overlapping cliques based on their inter-connectivity

scores. The inter-connectivity score of two cliques Ci and Cj is based on the non-

overlapping regions of the two cliques and is defined as:

Inter score(Ci, Cj) =

√∑
u∈(Ci−Cj)

∑
v∈Cj

w(u, v)

|Ci − Cj |.|Cj | .

∑
u∈(Cj−Ci)

∑
v∈Ci

w(u, v)

|Cj − Ci|.|Ci|
(3.2)

CMC determines whether two cliques Ci and Cj sufficiently overlap: |Ci ∩
Cj |/|Cj | ≥ overlap thresh. If so, Cj is either removed or merged with Ci based

on the inter score: if the inter score(Ci, Cj) ≥ merge thresh, then Ci and Cj are

merged, else Cj is removed. Finally, all the resultant merged clusters are output as

the predicted complexes.

Some other methods based on graph clustering

Apart from these discussed methods, three other methods worth mentioning here

are LCMA (2005) [66], PCP (2007) [68] and HACO (2009) [69]. The LCMA algo-

rithm first locates cliques within local neighborhoods using vertex degrees and then

merges them based on overlaps to produce complexes. Protein Complex Prediction

(PCP) uses FS Weight scoring to remove unreliable interactions and add indirect

interactions, and then merges cliques to produce the final list of complexes. On the

other hand, HACO uses hierarchical agglomerative clustering to produce the intial

set of (non-overlapping) clusters. Proteins are then assigned to multiple clusters

based on their interactions to produce the final list of overlapping clusters.
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A few other recently proposed (2010 - 2011) methods include those by Zhang et

al. [70], Ma et al. [71], Wang et al. [72] and Chin et al. [73]. These use the property

of “bridgeness” of cross-edges among clusters along with the internal connectivities

to detect complexes.

3.1.4 Methods incorporating core-attachment structure

Gavin and colleagues (2006) [15] performed large-scale analysis of yeast complexes

and found that the proteins with complexes were divided into two distinct groups,

“cores” and “attachments”. The cores formed central functional units of complexes,

while the attachment proteins aided these cores in performing their functions. Sev-

eral computational methods were proposed to reconstruct complexes from PPI new-

torks by capitalizing on this structural organization.

Wu Min et al. (2009) [75] proposed the COACH method which reconstructs

complexes in two stages - it identifies dense core regions, and subsequently includes

proteins as attachments to these cores. Figure 3.4 summarizes how COACH iden-

tifies core and attachment proteins to build complexes.

Leung et al. (2009) [76] proposed the CORE method to identify protein cores

within the PPI network. They defined the probability of two proteins p1 and p2 (of

degrees d1 and d2, respectively) to belong to the same core using two main factors:

whether the two proteins interact or not and the number of common neighbors m

between them. The probability that p1 and p2 have ≥ i interactions and ≥ m

common neighbors is calculated under the null hypothesis that d1 edges connecting

p1 and d2 edges connecting p2 are randomly assigned in the PPI network according

to a uniform distribution. This probability is used to arrive at a p-value for whether

p1 and p2 belong to the same core. Subsequently, CORE merges sets of core proteins

of sizes two, three, etc. until further increase in size is not possible, to produce the

final set of cores. CORE then scores and ranks the predicted cores based on the

number of internal and external interactions in them. The attachments are added

to these cores in a manner similar to COACH to produce the final set of complexes.
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Figure 3.4: The identification of core and attachment proteins in COACH [75]:
The cores are first identified based on vertex degrees in the neighborhood graphs.
Attachment proteins are then appended to these cores to build the final complexes.
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3.1.5 Methods incorporating functional information

Proteins within complexes are generally enriched with same or similar func-

tions [15,29]. If the functional information for proteins from an organism are avail-

able, then this information can be combined with topological information from PPI

networks for the reconstruction of complexes from the organism. One possible way

to incorporate functional information is to score the interactions based on the func-

tional similarity between the interacting pairs of proteins. Alternately, functional

annotations (for example, from Gene Ontology [37]) can be used to aid decisions

where including or excluding a protein into complexes purely based on topological

information might be difficult.

Restricted Neighborhood Search Clustering (RNSC)

King et al. (2004) [77] proposed the RNSC algorithm that combines topological

and Gene Ontology information to detect complexes. The algorithm operates in

two steps - it begins by clustering the PPI network and then filters the clusters

based on cluster properties and functional homogeneity.

The network G = (V,E) is first randomly partitioned into multiple subnet-

works, which is essentially a partitioning of the node set V . The algorithm then

iteratively moves nodes from one cluster to another in a randomized fashion till an

integer-valued cost function is optimized. A common problem among such cluster-

ing algorithms is the tendency to settle in poor local minima. To avoid this, the

RNSC algorithm adopts diversification moves, which shuffle the clustering by occa-

sionally dispersing the contents of a cluster at random. Once the clustering process

is completed, clusters of small sizes or densities (the lower bound on cluster sizes

and densities are experimentally determined) are discarded. Finally, a p-value is

calculated using functional annotations (from GO) for each cluster that measures

the functional homogeneity of the clusters. All clusters above a certain p-value are

discarded to produce the final list of predicted complexes. Based on experiments,

King et al. recommend cluster density cut-off of 0.70 and p-value cut-off of 10−3.
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Dense neighborhood Extraction using Connectivity and conFidence Fea-

tures (DECAFF)

Li et al. (2007) [78] proposed the DECAFF algorithm which essentially is an ex-

tention of the LCMA algorithm [66] proposed earlier by the same group. DECAFF

identifies dense subgraphs in a neighborhood graph using a hub-removal algorithm.

Local cliques are identified in these dense subgraphs and merged based on overlaps

to produce clusters. Each cluster is assigned a functional reliability score, which is

the average of the reliabilities of the edges within the cluster. All clusters with low

reliabilities are discarded to produce the final set of predicted complexes.

The PCP algorithm [68] described earlier can also be categorized into this set

of methods because PCP uses a weighting scheme based on functional similarity

(though the similarity is inferred from topology) to assign reliability scores to in-

teractions, and then uses a clique merging strategy to detect complexes.

3.1.6 Methods incorporating evolutionary information

The increasing availability of PPI data from multiple species like yeast, fly, worm

and some mammals has made it feasible to use insights from cross-species analysis

for detection of (conserved) complexes. The assumption is that proteins belonging

to real complexes should generally be conserved through the evolution process to

act as an integrated functional unit [29].

Sharan et al. proposed methods (2005-2007) [79, 80] for detection of conserved

complexes across species based on the evolution of PPI networks. In these meth-

ods, an orthology network (network alignment graph) is constructed from the PPI

networks of different species, which essentially represents the orthologous proteins

and their conserved interactions across the species. For a protein pair {u1, v1} in

network G1 of species S1 and (u2, v2) in G2 of species S2, the orthology network

G12 contains the pair {u, v} if u1 is orthologous to u2, and v1 is orthologous to v2.

The edge (u, v) is weighted by the sequence similarities between the pairs {u1, v1},
and {u2, v2}. Any subgraph in G12 is therefore a conserved subnetwork of G1 and

G2. Such candidate subgraphs are then evaluated for parts of conserved complexes.

Based on this idea, a tool QNet [81] was developed which returns conserved com-

plexes from different species when queried using known complexes from yeast.
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3.1.7 Methods based on co-operative and exclusive interac-

tions

The overlapping binding interfaces in a protein may prevent multiple interactions

involving these interfaces from occurring simultaneously [82]. In other words, the

set of interactions in which a protein participates may be either co-operative or

mutually exclusive. The information about the co-occurrence or exclusiveness of

interactions can therefore be useful for predicting complexes with higher accuracy.

This information can be gathered from the interacting domains of protein pairs or

the three-dimensional structures of the interacting surfaces.

Ozawa et al. (2010) [83] proposed a refinement method over MCODE and MCL

to filter predicted complexes based on exclusive and co-operative interactions. They

used domain-domain interactions to identify conflicting pairs of protein interactions

in order to include or exclude proteins within candidate complexes. Based on their

results, the accuracies of predicted complexes from MCODE and MCL improved by

two-fold.

On the other hand, Jung et al. (2010) [84] used structural interface data to

construct a simultaneous PPI network (SPIN) containing only co-operative inter-

actions and excluding competition from mutually exclusive interactions. MCODE

and LCMA algorithms tested on this SPIN displayed a sizeable improvement in

correctly predicted complexes.

Even though incorporating information about co-operative and exclusive inter-

actions shows promising improvement in complex detection algorithms, there are

still several practical problems related to this approach. Gathering more data on

conflicting interactions, especially based on three-dimensional structures of inter-

faces, needs to be addressed before this approach can be more easily adopted.

3.1.8 Incorporating other possible kinds of information

In a recent foresightful survey by Przytycka et al. [85], the application of network dy-

namics (temporal information) into current computational analysis is discussed at

good lengths, especially with respect to detection of complexes and pathways from

protein interaction networks. The authors suggest that if sufficient information
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about the ‘timing activities’ of proteins can be obtained, the dynamical nature of

the underlying organizational principles in interaction networks can be better under-

stood. This shift from static to dynamic network analysis is vital to understanding

several cellular processes, some of which may have been wrongly understood due to

ignoring dynamic information.

3.1.9 Comparative assessment of existing methods

Considering the wide variety of proposed methods for complex detection, one can

gauge the seriousness in the research effort towards computational identification and

categorization of complexes. Several surveys and experiments [86–88] have focused

on the comparative analyses of these proposed methods for complex detection. Each

new work on complex detection also comes with detailed comparative analyses of

the new method with some earlier methods. However, due to the differences in PPI

and benchmark datasets, evaluation criteria, thresholds and parameters used, and

the subset of methods considered for these comparative assessments, different works

arrive at different conclusions about the performance of methods. Here, we present

a summary of some widely accepted surveys dealing with comparative assessments

of complex detection methods.

One of the first comprehensive assessments of algorithms was performed by Bro-

hee and van Helden (2006) [86]. They performed a detailed empirical comparison

between MCODE [14], MCL [16], RNSC [77] and Super-paramagnetic Clustering

(SPC) [89]. These algorithms were tested on PPI datasets from high-throughput

experiments, and the resultant complexes were evaluated against benchmark com-

plexes from MIPS [90]. Additionally, the PPI datasets were introduced with artifi-

cial noise (random edge addition and deletion) to test the robustness of these algo-

rithms. They concluded that MCL and RNSC outperformed MCODE and SPC in

terms of precision (the proportion of correctly predicted complexes) and recall (the

proportion of correctly derived benchmarks). RNSC was robust to variation in its

input parameter settings, while the performance of the other three varied widely for

parameter changes. MCL was remarkably robust even upon introducing 80%-100%

random noise. Overall, the experiments confirmed the general superiority of MCL

over the other three algorithms.
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Vlasblom et al. (2009) [87] compared MCL with another clustering algorithm,

Affinity Propagation (AP) [91] on unweighted as well as weighted PPI networks.

The initial unweighted network was built from a set of 408 hand-curated complexes

from Wodak lab [92] followed by random addition and removal of edges to mimic

real PPI networks. The weighted network was obtained from the Collins et al.’s

work [36], generated from Gavin and Krogan datasets [15,28]. They concluded that

MCL performed considerably better than AP in terms of accuracy and separation

of predicted clusters, and robustness to random noise. In particular, MCL was able

to achieve about 90% accuracy and 80% separation compared to only 70% accuracy

and 50% separation of AP on unweighted PPI networks with introduced random

noise. MCL was able to discover benchmark complexes even at high (40%) noise

levels.

More recently (2010), Li et al. [88] performed a detailed comparative evaluation

of several algorithms: MCODE [14], MCL [16], CORE [76], COACH [75], RNSC [77]

and DECAFF [78]. These algorithms were tested on PPI datasets from DIP [52]

and Krogan et al. [28]. The DIP network consisted of 17203 interactions among

4930 proteins, while the Krogan dataset consisted of 14077 interactions among 3581

proteins. They used a total of 428 benchmark complexes from MIPS [90], Aloy et

al. [93] and SGD [94]. A cluster P from a method was considered a correct match

to a benchmark complex B using the Bader score |VP ∩ VB |2/(|VP |.|VB |) ≥ 0.20,

where VP denotes the number of proteins in P , and VB denotes the number of

proteins in B. Based on this criteria, the precision (the proportion of correctly

matched clusters), recall (the proportion of benchmark complexes matched) and

F1-measure (the harmonic mean of precision and recall) values were calculated. The

comparisons between precision, recall and F1-measures of these algorithms is shown

in Figure 3.5 (adapted from [88]). The methods are arranged in chronological order,

and it is interesting to note that over the years, the F1-measures have improved.

Li et al. concluded that MCL, RNSC, CORE, COACH and DECAFF attained

the best recall values. MCODE was able to achieve the highest precision, but it

produced very few clusters resulting in very low recall.

Plugging into the “bin-and-stack” classification: We benchmarked these meth-

ods based on their performance on two more recent datasets: the raw (unscored)
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and scored (using Purification Enrichment [36]) networks comprising of data from

Gavin et al. [15] and Krogan et al. [28], as shown in Figure 3.6. For each method,

we show the values before / after scoring. This figure clearly demonstrates that in-

corporating biological information together with affinity scoring significantly boosts

performance. Therefore, our taxonomy has the potential to reveal interesting in-

sights based on the trend of methods.
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3.2 Challenges and lessons from current practice

The review of experimental techniques for inferring protein interactions (Chapter 2),

and computational methods for complex detection reveal several challenges facing

identification of complexes from high-throughput interaction datasets. We have

broadly classified these challenges into two categories: (i) challenges originating

from real biological datasets; (ii) challenges originating from existing computational

techniques.

Challenges from real biological datasets

Even though over the last few years, several independent high-throughput experi-

ments (see Chapter 2 for a survey) have helped to catalogue enormous amount of

protein interactions from organisms such as yeast, these individual datasets are the

best available, they show surprising lack of correlation with each other, and some

bias towards high abundance proteins and against proteins from certain cellular

compartments (like cell wall and plasma membrane) [26,32–34]. Also, each dataset

still contains a substantial number of false positives (noise) that can compromise the

utility of these datasets for more focused studies like complex reconstruction [36].

In order to reduce the impact of such discrepancies, a number of data integration

and affinity scoring schemes have been devised. These affinity scores encode the re-

liabilities (confidence) of physical interactions between pairs of proteins. Therefore,

the challenge now is to detect meaningful as well as novel complexes from protein

interaction (PPI) networks derived by combining multiple high-throughput datasets

and by making use of these affinity scoring schemes.

Challenges from existing complex detection methods

Even though there have been numerous methods developed for complex detection,

all them suffer from low recall, which is mainly due to the lack of sufficient credible

interactions and the presence of noise (spurious interactions) in the datasets.

From the study of existing methods we notice that every method, in one way

or another, relies on the assumption that complexes are embedded among dense

regions of the network. However, the overall recall of the methods is not very
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impressive, indicating that relying too much on this assumption in the wake of

insufficient credible interaction data causes these methods to miss many complexes

that are of low densities in the network.

In addition to this, noise in datasets can also be a limiting factor. But, this

noise can be countered to a certain extent by capitalizing on scoring schemes that

assign reliability scores to the interactions (Chapter 2). However, currently there

are very few methods that capitalize on these scores, and even if they do, these

methods do not perform uniformly across all scoring schemes and are tied to one or

two schemes.

Lessons learnt

We list the “take-home” lessons from this chapter that can help to improve complex

detection:

1. Combining interaction datasets from multiple sources improves interaction

coverage: increases the true positives and reduces the false negatives [36];

2. Adopting reliability scores for interactions is useful to remove many false pos-

itive interactions [36];

3. Incorporating biological information along with topology of PPI networks im-

proves performance (Figure 3.6);

4. The assumption that complexes form “dense” regions in PPI networks is not

entirely valid in the wake of insufficient credible data.

Keeping in mind these lessons, we proceed to the next chapter where we develop

a new computational method to detect complexes from protein interaction net-

works by utilizing core-attachment modularity and capitalizing on reliability scores

assigned to interactions.



CHAPTER 4

Refining Markov Clustering for complex

detection by incorporating

core-attachment structure

You know my method. It is founded upon the observations of trifles.

The Boscombe Valley Mystery, 1892

The Adventures of Sherlock Holmes

- Sir Arthur Conan Doyle

Our approach to reconstruct complexes from protein interaction networks is inspired

from the findings by Gavin et al. (2006) [15] on the “core-attachment” modularity

structure found in yeast and other eukaryotic complexes. The intuition behind our

approach is that if yeast complexes indeed possess this “core-attachment” structure,

most of the dense regions within PPI networks that correspond to real complexes

should adhere to such a structure. Therefore, if we consciously search for such

embedded structures among these dense regions, we should be able to accurately

extract out complexes rather than considering whole of the dense regions as com-

plexes as is done in most methods. This helps to reduce the number of incorrectly

included (loosely-connected) proteins within predicted complexes, and thereby help

to reconstruct complexes with better accuracies.
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For finding the initial set of dense regions within PPI networks, we use the MCL

clustering algorithm [16,62,63]. We then identify the“core”and“attachment”sets of

proteins from the MCL clusters. This gives us two levels of“controls” to be stringent

or lenient while identifying the complex proteins within dense regions. We name

our algorithm as MCL-CAw, where the ‘w’ describes the ability of the algorithm to

work on weighted (scored) PPI networks.

We chose MCL because it is simple, scalable, robust to noise and performs rea-

sonably well for general graph clustering compared to most other clustering algo-

rithms like k-means, super-paramagnetic clustering (SPC) and affinity propagation

(AP) (see Chapter 3 or [86, 87]). Secondly, MCL is a well-studied algorithm both

for general graph clustering as well as complex detection [16, 62, 63, 86–88]. Its ad-

vantages and limitations are well-known under different scenarios. In addition to

these, we also identified some limitations of MCL specific to complex detection,

which further motivate our approach:

1. It is well-known that a protein may be recruited by more than one com-

plex for performing functions [15, 31, 69]. However, MCL produces only non-

overlapping complexes, arbitrarily assigning shared proteins to only one of

them.

2. Our experiments revealed that MCL produces many noisy clusters that either

do not match real complexes or reduce the accuracies of correctly predicted

complexes. For example, when we ran MCL on PPI datasets from Gavin et

al. [15] and Krogan et al. [28], the average Jaccard accuracies of predicted

clusters when matched to the Wodak lab [92] benchmark was only 0.472 and

0.448, respectively (Table 4.1). Upon evaluation of these predicted clusters, we

found that MCL had included several additional (noisy) proteins that reduced

the accuracies of these clusters.

# Clusters Avg Jaccard
PPI Dataset Predicted Matched Missed Predicted Matched Missed

Gavin 2006 232 53 179 0.472 0.694 0.282
Krogan 2006 632 81 551 0.448 0.627 0.173

Table 4.1: Low accuracies of predicted clusters of MCL from Gavin and Krogan
datasets (criteria for a match: Jaccard score ≥ 0.50).
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4.1 Gavin’s “Core-attachment” model of yeast complexes

Even though likely to be expected from eukaryotic complexes and already hy-

pothesized in some earlier works [74], the experiments by Gavin and colleagues

(in 2006) [15] formed the first large-scale assessment that revealed distinct core-

attachment organization of proteins within yeast complexes. Gavin et al. used

a TAP-MS technique [24] to “pull down” complexes from Saccharomyces cerevisae

(budding yeast). Binary interactions were inferred from these TAP-MS complexes

using a combination of “spoke” and “matrix” models, and scored using a ‘socio-

affinity’ index. Clustering these interactions using a matrix-based iterative approach

generated 491 distinct complexes that matched the hand-curated complexes from

MIPS with 83% coverage and 78% accuracy. Careful analyses of these complexes re-

vealed distinct modularity structure vital to the performing of biological functions.

Based on this, Gavin et al. proposed their model of yeast complexes. Complexes are

composed of two distinct groups of proteins - “cores” and “attachments”. The cores

range from 1 - 23 proteins in size (average 3.1 ± 2.5) and form the main functional

parts within complexes, while the attachments aid these cores in performing their

functions. Among these attachments are tightly-coupled subsets of proteins called

“modules” that always function in cohesion.

A note on interpreting the Gavin model for complex prediction: The

Gavin “Core-attachment” model has been interpreted in different ways in compu-

tational works [75, 76, 96] to predict complexes, though the model per se is general

enough to include all interpretations. Works like [75,96] allow the same set of core

Figure 4.1: A pictorial representation of our interpretation of Gavin et al.’s “core-
attachment” model [15] of yeast complexes.
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proteins to participate in multiple complexes: these cores interact with different at-

tachments to form different complexes. On the other hand, works like [76] consider

the cores to be unique to complexes. In our interpretation of the Gavin model, we

inherently put a restriction on the uniqueness of cores, but allow the attachments

to be shared among multiple complexes (depicted in Figure 4.1). Even though the

repetition of the same set of cores across complexes is possible, this is mainly seen

in complex isoforms. These complex isoforms comprise of complexes that have al-

most the same protein compositions and therefore perform very similar functions

(for example, the RNA polymerase complexes I, II and III) and in cohesion. Since

there are very few such cases of complex isoforms relative to the total number of

complexes with distinct sets of proteins (and functions) in eukaryotes, we do not

consider the sharing of whole cores among complexes as a strong property in our

interpretation of the Gavin model. Instead we allow the attachment proteins to be

shared among complexes, which is essential to capture the sharing of proteins among

“non-isoformic”complexes (for example, the sharing of Yor076c among the Exosome

and Ski complexes), which is more important to understand the “cross-talk” among

functional categories. However, a negative effect of not allowing core-sharing is that

we might bundle together complex isoforms into a single cluster during computa-

tional predictions. But, this is not a serious problem because usually the bundled

complexes are very similar in their functionalities and are better studied as a whole

(in fact Gavin et al. also combine together the complex isoforms in their study;

see Figures 1a and 1b in [15]). Nevertheless, in the next chapter we do propose a

way to segregrate the individual complex isoforms from the cluster wherever such a

study warrants.

4.2 The MCL-CAw algorithm

The MCL-CAw algorithm broadly consists of two phases. In the first phase, we

partition the PPI network into multiple dense clusters using MCL. Following this

(in the second phase), we post-process (refine) these clusters by incorporating core

attachment structure to produce the final complexes. This procedure can be divided

into the following steps:

1. Clustering the PPI network using MCL
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2. Categorizing proteins as cores within clusters

3. Filtering away noisy clusters

4. Recruiting proteins as attachments into clusters

5. Extracting out complexes from clusters

6. Ranking the predicted complexes

Our PPI network is represented as G = (V,E), where V is the set of proteins, and

E is the set of interactions between these proteins. For each edge (p, q) ∈ E, there

is a confidence score (weight) 0 ≤ w(p, q) ≤ 1 encoding the affinity between the

proteins p and q. These affinity scores depend on the scoring system used.

Clustering the PPI network using MCL

The first step of our algorithm is to partition (cluster) the PPI network using

MCL [16], which simulates random walks (called a flow) to identify relatively dense

regions in the network. The inflation coefficient parameter I in MCL is used to

regulate the granularity of the clusters - higher the value more finer are the gener-

ated clusters (how to choose I in practice is discussed in the “Results” section). On

PPI networks, MCL has a tendency to produce large clusters (sizes ≥ 25) which

house several smaller complexes. If such large clusters are produced, we iteratively

recluster them (hierarchical clustering) using a higher inflation value.

After MCL-based clustering, we obtain a collection of k disjoint (non-

overlapping) clusters {Ci : Ci = (Vi, Ei), 1 ≤ i ≤ k}, where Vi ⊆ V and Ei ⊆ E.

Categorizing proteins as cores within clusters

Microarray analysis by Gavin et al. [15] of their predicted complex components

showed that a large percentage of pairs of proteins within cores were co-expressed at

the same time during cell cycle and sporulation, consistent with the view that cores

represent main functional units within complexes. Three-dimensional structural

and yeast two-hybrid analysis showed that the core components were most likely

to be in direct physical contact with each other. To reflect these findings in our

algorithm, we expect:
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• Every complex we predict to comprise of a non-empty set of core proteins;

and

• The proteins within these cores to display relatively high degree of physical

interactivity among themselves that with other proteins.

We categorize a protein p ∈ Vi to be a core protein in cluster Ci = (Vi, Ei), given

by p ∈ Core(Ci), if:

• The weighted in-connectivity of p with respect to Ci is at least the average

weighted in-connectivity of Ci, given by: din(p,Ci) ≥ davg(Ci); and

• The weighted in-connectivity of p with respect to Ci is greater than the

weighted out-connectivity of p with respect to Ci, given by: din(p,Ci) >

dout(p,Ci).

The weighted in-connectivity din(p,Ci) of p with respect to Ci is the total weight of

interactions p has with proteins within Ci. Similarly, the weighted out-connectivity

dout(p,Ci) of p with respect to Ci is the total weight of interactions p has with

proteins outside Ci. These are given by din(p,Ci) =
∑

{w(p, q) : q ∈ Vi}
and dout(p,Ci) =

∑
{w(p, q) : q /∈ Vi}, respectively. The average weighted in-

connectivity davg(Ci) of cluster Ci is therefore the average of the weighted in-

connectivities of all proteins within Ci, given by davg(Ci) =
1

|Ci| .
∑
q∈Vi

din(q, Ci).

Filtering noisy clusters

Consistent with the assumption that every complex comprises of a set of core pro-

teins, we consider a cluster as noisy if it does not contain a core of at least two

proteins as per our above criteria. We discard all such noisy clusters.

Recruiting proteins as attachments into clusters

Microarray analysis by Gavin et al. [15] of their predicted complex components

showed that attachment proteins were closely associated with core proteins within

complexes and yet showed a greater degree of heterogeneity in expression levels,

supporting the notion that attachments might represent non-stoichiometric compo-

nents. Also, attachment proteins were seen shared between two or more complexes,
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consistent with the view that the same protein may participate in multiple com-

plexes [31, 69]. On the other hand, the application of MCL to PPI networks yields

clusters that do not share proteins (that is, non-overlapping clusters). Mapping

these clusters back to the PPI network shows that proteins having similar con-

nectivities to multiple clusters are assigned arbitrarily to only one of the clusters.

These proteins might as well be assigned to multiple clusters. To reflect these find-

ings in our algorithm, we expect the attachment proteins to be those proteins within

complexes that are:

• Non-core proteins;

• Closely interacting with the core proteins; and

• May be shared across multiple complexes.

We consider the following criteria to assign a non-core protein p belonging to a

cluster Cj (called donor cluster) as an attachment in an acceptor cluster Ci (the

donor and acceptor clusters may be the same), that is, p ∈ Attach(Ci):

• Protein p has sufficiently strong interactions with the core proteins Core(Ci)

of the cluster Ci;

• The stronger the interactions among the core proteins, the stronger have to

be the interactions of p with the core proteins;

• For large core sets, strong interactions are required to only some of the core

proteins or, alternatively, weaker interactions to most of them.

Combining these criteria, we assign non-core p as an attachment in the acceptor

cluster Ci, that is p ∈ Attach(Ci), if:

I(p,Core(Ci)) ≥ α.I(Core(Ci)).
( |Core(Ci)|

2

)−γ

, (4.1)

where I(p,Core(Ci)) is the total weight of interactions of p with Core(Ci), given

by I(p,Core(Ci)) =
∑

{w(p, q) : q ∈ Core(Ci)}, while I(Core(Ci)) is the to-

tal weight of interactions among the core proteins of Ci, given by I(Core(Ci)) =

1
2 .

∑
{w(q, r) : q, r ∈ Core(Ci)}. The power function is normalized to yield 1

for core sets of size 2. The parameters α and γ are used to control the effects of

I(Core(Ci)) and core size |Core(Ci)|. For a simple illustration, let α = 0.5 and
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γ = 1, and consider all interactions to be of equal weight 1. Therefore, p is attached

to a core set of four proteins, if the total weight of its interactions with the core

proteins is at least 3, which is possible if p is connected to at least three core proteins

(how to choose values for α and γ in practice is discussed in the “Results” section).

This step also ensures that non-core proteins having sufficiently strong interactions

with multiple core sets are recruited as attachments to all those core sets.

Extracting out complexes from clusters

For each cluster we group together its constituent core and attachment proteins to

define a unique complex. We expect all the remaining proteins within the cluster to

have weaker associations with this resultant complex, and therefore categorize them

as noisy proteins. Additionally, since these resulting complexes include attachment

proteins that potentially may be recruited by multiple complexes, our predicted

complexes adhere to the protein-sharing phenomenon observed in real complexes [15,

31, 69]. We discard all complexes of size less than 4 many of which may be false

positives because it is difficult to predict small real complexes purely based on

topological information (also noted in [64,76]).

For each cluster Ci, we define a unique complex Complex(Ci) as:

Complex(Ci) = {Core(Ci) ∪ Attach(Ci)}. (4.2)

Each interaction (p, q) within this complex carries the affinity score (weight) w(p, q)

observed in the PPI network.

Ranking the predicted complexes

As a final step, we output our predicted complexes in a reasonably meaningful order

of biological significance. For this, we rank our predicted complexes in decreasing

order of their weighted densities. The weighted density of a predicted complex C ′
i

is given by [64]:

Weighted density WD(C ′
i) =

∑
p,q∈C′

i
w(p, q)

|C ′
i|.(|C ′

i| − 1)
. (4.3)

The unweighted density of a predicted complex is defined in a similar way by setting
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the weights of all constituent interactions to 1. This blindly favors very small

complexes, or complexes with proteins having large number of interactions without

considering the reliabilities of those interactions. On the other hand, the weighted

density considers the reliabilities of such interactions. If two complexes have the

same unweighted density, the complex with higher weighted density is ranked higher.

4.3 Experimental results

4.3.1 Preparation of experimental data

We gathered high-confidence Gavin and Krogan-Core interactions for yeast de-

posited in the public database BioGrid [54] (http://thebiogrid.org/) (version

as of July 2009). These were assembled from bait-prey and prey-prey relation-

ships (a combination of the ‘matrix’ and ‘spoke’ models) observed by Gavin et

al. [15], and bait-prey relationships (the ‘spoke’ model) observed by Krogan et

al. [28]. We combined these interactions to build the unscored Gavin+Krogan

network (all edge weights set to 1). We then applied the Iterative-CDk [40, 64]

and FS Weightk [39] scorings (with k = 10 iterations) on the Gavin+Krogan

network, and selected all interactions with non-zero scores. This resulted in the

ICD(Gavin+Krogan) and FSW(Gavin+Krogan) networks, respectively. In addi-

tion, we downloaded the Consolidated3.19 and Consolidated0.623 networks (with

PE cut-off 3.19 recommended by Collins et al. [36], and 0.623, the average

PE score) from http://interactome-cmp.ucsf.edu/. We also downloaded the

Bootstrap0.094 network [41] (with BT cut-off: 0.094) from http://www.bio.ifi.

lmu.de/Complexes/ProCope/. The Consolidated network was derived from the

matrix model relationships of the Gavin and Krogan datasets using the PE sys-

tem [36]. The Bootstrap network was derived from the matrix model relationships

using bootstrapped scores [41]. These two networks comprised of additional prey-

prey interactions that were missed in the original Krogan-Core dataset. Table 4.2

summarizes some properties of these networks.

The benchmark (reference or ‘gold standard’) set of complexes was built from

three independent sources: 408 complexes of the Wodak lab CYC2008 cata-

logue [92], 313 complexes of MIPS [90], and 101 complexes curated by Aloy et
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PPI Network # Proteins # Interactions Avg node degree

Gavin 1430 7592 10.62

Krogan ‘Core’ 2708 7123 5.26

Gavin+Krogan 2964 13507 9.12

ICD(Gavin+Krogan) 1628 8707 10.69

FSW(Gavin+Krogan) 1628 8688 10.67

Consolidated3.19 1622 9704 11.96

Consolidated0.623 5423 102393 37.76

Bootstrap0.094 2719 10290 7.56

Table 4.2: Properties of the PPI networks used for the evaluation of MCL-CAw

al. [93]. The properties of these reference sets are shown in Table 4.3. We consid-

ered each of these reference sets independently for the evaluation of MCL-CAw. We

did not merge them into one comprehensive list of complexes because the individual

complex compositions are different across the three sources and some complexes may

also get double-counted (because of different names used for the same complex). An

alternative strategy was adopted by Wang et al. [69] by integrating the complexes

from three sources (MIPS [90], SGD [94] and their own in-house curated complexes)

using the Jaccard score: two complexes overlapping with a Jaccard score of at least

0.70 were merged together - the proteins to be included into the resultant complex

were chosen based on a voting scheme.

# Complexes of size
Benchmark #Complexes # Proteins < 3 3-10 11-25 > 25 Avg density

Wodak 408 1627 172 204 27 5 0.639
MIPS 313 1225 106 138 42 27 0.412
Aloy 101 630 23 58 19 1 0.747

Table 4.3: Properties of hand-curated (verified and bona fide) yeast complexes from
Wodak lab [92], MIPS [90] and Aloy [93]

To be accurate (as well as fair) while evaluating our method on these benchmark

sets, we considered only the set of derivable benchmark complexes from each of the

PPI networks: if a protein is not present in a PPI network, we remove it from the set

of benchmark complexes; by repeated removals, if the size of a benchmark complex

shrinks below 3, we remove the complex from our benchmark set to generate the

final set of derivable benchmark complexes for each of the PPI networks.

In order to evaluate the biological coherence of our predicted complexes, we



4.3 Experimental results 53

downloaded the list of cellular localizations (GO terms under“Cellular Component”)

of proteins from Gene Ontology (GO) [37]. We selected only the informative GO

terms. A GO term is informative if: (a) the term contains more than 30 proteins

annotated to it; and (b) each of the term’s descendants contains less than 30 proteins

annotated to it [95].

4.3.2 Metrics for evaluating the predicted complexes

Let B = {B1, B2, ..., Bm} and C = {C1, C2, ..., Cn} be the sets of benchmark and

predicted complexes, respectively. We use the Jaccard coefficient J to quantify the

overlap between a benchmark complex Bi and a predicted complex Cj :

J(Bi, Cj) =
|Bi ∩ Cj |
|Bi ∪ Cj | . (4.4)

We consider Bi to be covered by Cj , if J(Bi, Cj) ≥ overlap threshold t. In our

experiments, we set the threshold t = 0.5, which requires |Bi ∩Cj | ≥ |Bi|+|Cj |
3 . For

example, if |Bi| = |Cj | = 8, the overlap between Bi and Cj should be at least 6.

We use previously reported [64] definitions of recall (coverage) and precision

(sensitivity) of the set of predicted complexes:

Recall =
|{Bi|Bi ∈ B ∧ ∃Cj ∈ C;J(Bi, Cj) ≥ t}|

|B| (4.5)

Here, |{Bi|Bi ∈ B ∧ ∃Cj ∈ C;J(Bi, Cj) ≥ t}| gives the number of derived bench-

marks.

Precision =
|{Cj |Cj ∈ C ∧ ∃Bi ∈ B;J(Bi, Cj) ≥ t}|

|C| (4.6)

Here, |{Cj |Cj ∈ C ∧ ∃Bi ∈ B;J(Bi, Cj) ≥ t}| gives the number of matched predic-

tions.

We also evaluate the performance of our method by plotting precision versus

recall curves for the predicted complexes. These curves are plotted by tuning a

threshold on the number of predicted complexes considered for the evaluation. The

predicted complexes are considered in decreasing order of their weighted densities

(that is, in increasing order of their complex ranks).
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4.3.3 Metrics for evaluating the biological coherence

A complex can be formed if its proteins are localized within the same compartment

of the cell. So, we use the localization coherence of the predicted complexes as a

measure their quality. Let L = {L1, L2, ..., Lk} be the set of known localization

groups, where each Li contains a set of proteins with similar localization annota-

tions. The co-localization score of a predicted complex Cj is defined as the maximal

fraction of its constituent proteins that are co-localized within the same localization

group among the proteins that have annotations. This is given as follows [64]:

Loc score(Cj) =
max{|Cj ∩ Li| : i = 1, 2, ..., k}
|p : p ∈ Cj ∧ ∃Li ∈ L, p ∈ Li| . (4.7)

Therefore, the co-localization score for the set of predicted complexes C is just the

weighted average over all complexes [64]:

Loc score(C) =

∑
Cj∈C max{|Cj ∩ Li| : i = 1, 2, ..., k}∑
Cj∈C |p : p ∈ Cj ∧ ∃Li ∈ L, p ∈ Li| . (4.8)

4.3.4 Setting the parameters in MCL-CAw: I, α and γ

Before evaluating the performance of MCL-CAw, we describe the procedure used for

setting inflation parameter I for MCL, and α and γ for core-attachment refinement

in order to determine a good combination of parameters for MCL-CAw in practice.

Only the predicted complexes of size ≥ 4 from MCL and MCL-CAw were considered

for setting the parameters as well as in further experiments. We used F1 (harmonic

mean of precision and recall) measured against the MIPS [90], Wodak lab [92] and

Aloy [93] benchmarks as our basis for choosing the best values for these parameters.

Similar procedures based on benchmark complexes were adopted by Brohee and van

Helden [86] and Vlasblom et al. [87] to set parameters in their methods.

We adopted the following four-step procedure on each PPI network:

• Run MCL for a range of I values and choose the I that offers the best F1

measure;

• Set I to the chosen value, set a certain α for MCL-CAw, and choose γ from

a range of values that offers the best F1 measure;
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• Set I and γ to the chosen values, and choose α for MCL-CAw from a range

of values that offers the best F1 measure;

• Set α and γ for MCL-CAw to the chosen values, and reconfirm the value

chosen for I.

Figure 4.2: Setting the inflation I in MCL. We measured F1 against Wodak, MIPS
and Aloy complexes for a range of I = 1.25 to 3.0. We noticed that I = 2.5 gave
the best F1 for both unscored and scored G+K networks. This figure shows sample
F1-versus-I curves for the (a) unscored G+K and (b) ICD(G+K) networks.

Setting I for MCL

Inflation I in MCL determines the granularity of the clustering - the higher the

value more finer are the clusters produced. Typical values used for clustering PPI

networks are I = 1.8 and 1.9 [62,64,86]. For each PPI network, we ran MCL over a

range of I, and measured F1 against the three benchmark sets. We then calculated
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normalized F1 values across all three benchmarks to obtain the I offering the best

F1 measure. In Figure 4.2, we show sample F1 versus I plots for the unscored

Gavin+Krogan and scored ICD(Gavin+Krogan) networks for the range of I = 1.25

to 3.0. We noticed that inflation I = 2.5 gave the best F1 on both unscored and

scored networks. The F1 obtained at I = 1.8 and 1.9 was only marginally less than

that at I = 2.5.

Setting α and γ for CA refinement

For each PPI network, we set I to the chosen value, fixed a certain α, and ran

MCL-CAw over a range of γ. We adopted the same method as above to choose

the value of γ offering the best F1 measure. Figure 4.3 shows sample F1 versus γ

plots on the unscored Gavin+Krogan and scored ICD(Gavin+Krogan) networks for

I = 2.5, α = 1.00 and γ = 0.15 to 1.50. We noticed that γ = 0.75 gave the best F1

on both unscored and scored networks.

Next, we set I and γ to the chosen values, and ran MCL-CAw over a range of

α. Figure 4.3 shows sample F1 versus α plots on the unscored Gavin+Krogan and

scored ICD(Gavin+Krogan) networks for I = 2.5, γ = 0.75 and α = 0.50 to 1.75.

We noticed that α = 1.50 gave the best F1 on the unscored network, while α = 1.0

gave the best F1 on the scored networks.
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Reconfirming I for the chosen values of α and γ

Finally, for each PPI network, we ran core-attachment refinement with the chosen

values of α and γ over a range of I for MCL. Figure 4.4 compares the F1 ver-

sus I plots for plain-MCL and MCL followed by CA refinement on the unscored

Gavin+Krogan and scored ICD(Gavin+Krogan) networks for range I = 1.25 to 3.0.

The plots reconfirmed that the chosen values for α and γ gave the best performance

for CA refinement when I = 2.5 (except for the Aloy benchmark, the smallest

benchmark among the three, for which F1 was best at I = 1.75 and was marginally

lower for I = 2.5). We settled on I = 2.5, α = 1.50 and γ = 0.75 for the unscored

Gavin+Krogan network, and I = 2.5, α = 1.0 and γ = 0.75 for the scored networks

as our final combination of parameters for MCL-CAw.

4.3.5 Evaluating the performance of MCL-CAw

Figure 4.5: Workflow for the evaluation of MCL-CAw.

Figure 4.5 shows the workflow considered for the evaluation of MCL-CAw. The

predicted complexes were tapped at two successive stages:

• After clustering using MCL;

• After core-attachment refinement using MCL-CAw.
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The effect of filtering noisy clusters and segregrating large clusters

Table 4.4 shows the number of complexes predicted at each step of the MCL-CAw

algorithm. The core-attachment refinement discarded all noisy clusters (those with-

out any core proteins). We analysed each of these noisy clusters and found most

to be the artifacts of MCL. These noisy clusters included proteins that had higher

external interactions than internal, yet were grouped together arbitrarily. When we

matched these clusters to benchmark complexes, we found that just 7 (out of 40)

proteins belonged some real complex, indicating either that these proteins were ar-

brarily assigned to these noisy clusters though they deserved to belong to non-noisy

clusters, or some of these clusters in fact represented real complexes but there was

no sufficient topological information to adjudge that. Either way, our investigations

suggested, if not rigorously proved, that our filtering procedure was “safe” - did not

discard any valuable clusters.

#Clusters from MCL #Clusters from MCL-CAw
PPI Network After breaking down Noisy After CA

Total Size ≥ 25 large clusters clusters refinement

G+K 242 7 246 116 130

ICD(G+K) 136 10 181 16 165

FSW(G+K) 120 14 178 17 161

Cons3.19 116 9 147 17 130

Boot0.094 203 12 223 37 186

Table 4.4: Number of clusters produced at each stage of the MCL-CAw algorithm.
Noisy clusters were the clusters without cores.

Next, we considered the clusters of size ≥ 25, and measured the number of clus-

ters that correctly matched benchmark complexes before and after the hierarchical

breakdown (segregation) (Table 4.5). Many small benchmark complexes were em-

bedded within these large clusters, but could not be identified. But, when these

large clusters were broken down into smaller clusters, some of the benchmark com-

plexes were identified with higher accuracies. However, this process also created

several redundant clusters that went on to marginally reduce the final precision.
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PPI #Clusters #Benchmarks derived by
network Large After Large clusters Segregated

(size ≥ 25) segregation (size ≥ 25) clusters

G+K 7 11 1 4
ICD(G+K) 10 29 1 9
FSW(G+K) 14 32 3 9

Cons3.19 9 15 3 7
Boot0.094 12 20 4 9

Table 4.5: Impact of breaking down of large clusters (of size ≥ 25) into smaller
clusters in MCL-CAw.

The effect of core-attachment refinement on the predictions of MCL

The topmost rows for MCL and MCL-CAw in Table 4.6 compares the two methods

on the unscored Gavin+Krogan network. MCL-CAw achieved significantly higher

recall compared to MCL on Gavin+Krogan - on an average 25.76% higher number

of complexes derived than MCL.

In order to further analyse this improvement, we considered two sets of com-

plexes derived from Gavin+Krogan. (a) Set A = {MCL ∩ MCL-CAw}, consisting

of all complexes derived by both MCL and MCL-CAw, but with different Jaccard

accuracies; (b) Set B = {MCL-CAw \ MCL}, consisting of all complexes derived

by MCL-CAw, but not by MCL. There was no complex derived by MCL that was

missed by MCL-CAw. We calculated the increase in accuracies from MCL to MCL-

CAw for complexes in A and B. This increase for A was noticably high, the average

being 7.53% on the Wodak set. The increase for B was significantly high, the aver-

age being 62.26% on the Wodak set. This shows: (a) CA-refinement was successful

in improving the accuracies of MCL clusters; (b) This improvement was particularly

high for low quality clusters of MCL (that is, set B). MCL-CAw was successful in

elevating the accuracies above the threshold t = 0.50 for those clusters that could

not be matched to known complexes using MCL alone. Consequently, MCL-CAw

derived significantly higher number of benchmark complexes than MCL.

Impact of affinity scoring on the performance of MCL and MCL-CAw

Table 4.6 compares different evaluation metrics for MCL and MCL-CAw on the

unscored Gavin+Krogan with the four scored PPI networks. Very clearly, both

MCL and MCL-CAw showed significant improvement in recall on the scored net-
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works - MCL achieved 51.34%, while MCL-CAw achieved 38.53% higher recall

on average on the Wodak benchmark from the four scored networks compared

to the unscored network. MCL also showed significant improvement in preci-

sion on the scored networks. However, the precision for MCL-CAw dropped

marginally for ICD(Gavin+Krogan) and FSW(Gavin+Krogan) networks, while for

the Consolidated3.19 and Bootstrap0.094 networks, there was considerable improve-

ment in precision.

Evaluation on Wodak
PPI #Predicted #Matched #Derivable #Derived

Method Network complexes predictions Precision benchmarks benchmarks Recall

G+K 242 55 0.226 182 62 0.338

ICD(G+K) 136 68 0.500 153 76 0.497

MCL FSW(G+K) 120 69 0.575 153 78 0.510

Cons3.19 116 70 0.603 145 79 0.545

Boot0.094 203 76 0.374 172 85 0.494

G+K 130 69 0.531 182 75 0.412

ICD(G+K) 165 76 0.461 153 84 0.549

MCL-CAw FSW(G+K) 161 72 0.447 153 84 0.549

Cons3.19 130 83 0.638 145 90 0.621

Boot0.094 186 93 0.500 172 97 0.564

Evaluation on MIPS
PPI #Predicted #Matched #Derivable #Derived

Method Network complexes predictions Precision benchmarks benchmarks Recall

G+K 242 35 0.143 177 40 0.226

ICD(G+K) 136 47 0.346 151 60 0.397

MCL FSW(G+K) 120 46 0.383 151 61 0.404

Cons3.19 116 48 0.414 157 63 0.401

Boot0.094 203 44 0.271 168 56 0.333

G+K 130 42 0.323 177 53 0.300

ICD(G+K) 165 49 0.297 151 67 0.444

MCL-CAw FSW(G+K) 161 47 0.292 151 66 0.437

Cons3.19 130 53 0.408 157 67 0.427

Boot0.094 186 53 0.285 168 62 0.369

Among the four scored networks, both MCL and MCL-CAw showed significantly

high precision and recall on the Consolidated3.19 network, directly attributable to

the high quality of this network. However, this high quality of Consolidated3.19 came

at the expense of lower protein coverage (see Table 4.2; also noted in [31]), resulting

in reduced number of derivable complexes (145 Wodak complexes). Therefore, we

lowered the PE cut-off to 0.623 (the average PE score) to gather a larger subset

of the Consolidated network, which accounted for a higher protein coverage (224

Wodak complexes) (see Table 4.7). We noticed the improvement of MCL-CAw

over MCL was significantly higher on Consolidated0.623 compared to that seen on
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Evaluation on Aloy
PPI #Predicted #Matched #Derivable #Derived

Method Network complexes predictions Precision benchmarks benchmarks Recall

G+K 242 43 0.179 76 42 0.556

ICD(G+K) 136 58 0.426 75 56 0.747

MCL FSW(G+K) 120 57 0.475 75 57 0.760

Cons3.19 116 54 0.466 76 55 0.724

Boot0.094 203 56 0.276 76 55 0.724

G+K 130 47 0.362 76 52 0.684

ICD(G+K) 165 63 0.382 75 61 0.813

MCL-CAw FSW(G+K) 161 61 0.379 75 61 0.813

Cons3.19 130 57 0.438 76 55 0.724

Boot0.094 186 64 0.344 76 62 0.816

Table 4.6: (i) Impact of core-attachment refinement on MCL; (ii) Role of affinity-
scoring in reducing the impact of natural noise on MCL and MCL-CAw.

Consolidated3.19. We also noticed that ICD and FSW scoring of Consolidated0.623

drastically reduced the size of this network, reconfirming that this larger subset

included significant amount (∼ 81%) of false positives (noise). These experiments

indicate that any reasonably good algorithm like MCL can perform well on high

quality networks like Consolidated3.19. However, due to the lack of protein coverage

as well as scarcity of such high quality networks, we need to consider larger networks

for complex detection (particularly to be able to detect novel complexes). This in

turn exposes the algorithms to higher amount of natural noise. Therefore, the need

is to develop algorithms that can detect larger number of complexes in the presence

of such noise. In this scenario, our results show that MCL-CAw is able to derive

considerably higher number of complexes than MCL.

PPI Network #Proteins #Interactions Avg node deg #Derived complexes (Recall)

MCL MCL-CAw

Cons3.19 1622 9704 11.96 79 (0.545) 90 (0.621)

Cons0.623 5423 102393 37.76 74 (0.330) 94 (0.419)

ICD(Cons3.19) 1161 8688 14.96 58 (0.408) 63 (0.443)

ICD(Cons0.623) 1273 19996 31.41 52 (0.353) 56 (0.381)

FSW(Cons3.19) 1123 8694 15.48 59 (0.401) 65 (0.442)

FSW(Cons0.623) 1341 20696 30.87 54 (0.360) 57 (0.380)

Table 4.7: The Consolidated3.19 and Consolidated0.623 networks were subsets of
the Consolidated network [36] derived with PE cut-offs 3.19 and 0.623, respectively.
We ran ICD and FSW schemes on these networks. Consolidated0.623 had significant
amount of false positives (∼ 81%) that were discarded by the scoring. MCL-CAw
performed considerably better than MCL on the “more noisy” Consolidated0.623.
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Co-localization scores
PPI MCL MCL-CAw MCL-CAw

Network clusters cores complexes

G+K 0.730 0.890 0.866

ICD(G+K) 0.830 0.936 0.912

FSW(G+K) 0.830 0.931 0.912

Cons3.19 0.790 0.923 0.908

Boot0.094 0.788 0.895 0.874

Table 4.8: Co-localization scores of MCL-CAw complex components.

Biological coherence of predicted complex components

The co-localization scores for the various predicted components (cores and whole

complexes) of MCL-CAw are shown in Table 4.8. The table shows that: (a) The

predicted complexes of MCL-CAw showed high co-localization scores compared to

MCL on both the unscored and scored PPI networks. MCL included several noisy

proteins into the predicted clusters, thereby reducing their biological coherence; (b)

The predicted cores of MCL-CAw displayed higher scores compared to complexes,

indicating that proteins within cores were highly localized; (c) The complexes of

both MCL and MCL-CAw displayed higher scores on the four scored networks

compared to the Gavin+Krogan network, reaffirming the role of scoring.

An analysis of false positive predictions

MCL and MCL-CAw predicted on average 55% false positives from the four scored

networks. About 15% of these false positive predictions matched some benchmark

complexes with low accuracies (between 0.35 and 0.49) due to inclusion of a few

noisy proteins or exclusion of a few complexed proteins from the predictions. Some

instances of such “narrowly missed predictions” are discussed later. Among the

remaining false positives, about 3% showed high (≥ 0.80) coherence in terms of

GO localization and function scores indicating that these might be novel putative

complexes absent in the benchmark sets. One such example comprising of four

proteins {Oca4, Oca5, Siw14, Oca1} is discussed later.

4.3.6 Comparisons with existing complex detection methods

In order to gauge the performance of MCL-CAw relative to some of the other ex-

isting techniques, we selected the following recent algorithms proposed for complex
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detection:

• On the unscored Gavin+Krogan network, we compared against MCL [16,62],

MCL-CA - a preliminary and unweighted version of MCL-CAw (2009), CORE

by Leung et al. (2009) [76], COACH by Wu Min et al. (2009) [75], CMC by

Liu et al. (2009) [64], and HACO by Wang et al. (2009) [69];

• On the affinity scored networks, we compared against MCL, MCL incorpo-

rated with cluster overlaps by Pu et al. (2007) [31] (our implementation of

this, called MCLO), CMC and HACO.
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Table 4.9 summarizes some of the properties and the parameter values used

in these methods. We considered only complexes of size at least 4 from all algo-

rithms in this entire evaluation. We dropped MCL-CA, CORE and COACH for

the comparisons on the affinity-scored networks because these methods assume un-

weighted networks as inputs. Further, we do not show results for older methods

namely MCODE (2003) [14] and RNSC (2004) [77], instead include MCL into all

our comparisons, because MCL has been shown to significantly outperform these

methods [86–88].

Tables 4.10, 4.11, 4.12, 4.13 and 4.14 show detailed comparisons between com-

plex detection algorithms on the unscored and scored networks. Figures 4.6, 4.7

and 4.8 substantiate these results with precision versus recall curves on these net-

works, while Table 4.15 shows the area under the curve (AUC) values for the curves.

Considering ±5% error in AUC values, the table shows that CORE attained the

highest AUC followed by MCL-CAw and CMC on the unscored network, while

MCL-CAw and CMC achieved the overall highest AUC on the scored networks.

The unscored Gavin+Krogan network

#Proteins 2964; #Interactions 13507

Method

MCL MCL-CA MCL-CAw COACH CORE CMC HACO

#Predicted 242 219 130 447 386 113 278

#Matched 55 49 69 62 83 60 78

Wodak Precision 0.226 0.224 0.531 0.139 0.215 0.531 0.281

(#182) #Derived 62 49 75 49 83 60 85

Recall 0.338 0.269 0.412 0.269 0.456 0.330 0.467

#Matched 35 42 42 45 59 41 45

MIPS Precision 0.143 0.192 0.323 0.101 0.153 0.363 0.162

(#177) #Derived 40 42 53 38 59 41 57

Recall 0.226 0.237 0.300 0.215 0.333 0.232 0.322

#Matched 43 41 47 54 59 43 59

Aloy Precision 0.179 0.187 0.362 0.121 0.153 0.381 0.212

(#76) #Derived 42 41 52 37 59 43 59

Recall 0.556 0.539 0.684 0.487 0.776 0.566 0.776

Table 4.10: Comparisons between different methods on the unscored Gavin+Krogan
network. CORE showed the best recall followed by HACO and MCL-CAw.
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Figure 4.6: Comparison of different methods on the unscored Gavin+Krogan net-
work: (a) Precision vs. recall curves using the Wodak benchmark; (b) Proportion
of TP and FP complexes predicted from the methods.
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The ICD(Gavin+Krogan) network

#Proteins 1628; #Interactions 8707

Method

MCL MCLO MCL-CAw CMC HACO

#Predicted 136 121 165 171 104

#Matched 68 73 76 86 68

Wodak Precision 0.500 0.603 0.461 0.503 0.654

(#153) #Derived 76 73 84 86 76

Recall 0.497 0.477 0.549 0.562 0.497

#Matched 47 56 49 65 41

MIPS Precision 0.346 0.463 0.297 0.380 0.394

(#151) #Derived 60 56 67 65 55

Recall 0.397 0.371 0.444 0.430 0.364

#Matched 58 56 63 59 53

Aloy Precision 0.426 0.463 0.382 0.345 0.510

(#75) #Derived 56 56 61 59 53

Recall 0.747 0.747 0.813 0.787 0.707

Table 4.11: Comparisons between the different methods on the
ICD(Gavin+Krogan) network. CMC and MCL-CAw showed the best recall
values.

The FSW(Gavin+Krogan) network

#Proteins 1628; #Interactions 8688

Method

MCL MCLO MCL-CAw CMC HACO

#Predicted 120 108 161 176 99

#Matched 69 61 72 76 68

Wodak Precision 0.575 0.564 0.447 0.432 0.687

(#153) #Derived 78 72 84 84 77

Recall 0.510 0.471 0.549 0.549 0.503

#Matched 46 42 47 49 42

MIPS Precision 0.383 0.388 0.292 0.278 0.424

(#151) #Derived 61 55 66 65 56

Recall 0.404 0.364 0.437 0.430 0.371

#Matched 57 56 61 59 53

Aloy Precision 0.475 0.518 0.379 0.335 0.535

(#75) #Derived 57 56 61 57 53

Recall 0.760 0.747 0.813 0.760 0.707

Table 4.12: Comparisons between the different methods on the
FSW(Gavin+Krogan) network. MCL-CAw showed the best recall followed
by CMC.
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The Consolidated3.19 network

#Proteins 1622; #Interactions 9704

Method

MCL MCLO MCL-CAw CMC HACO

#Predicted 116 119 130 77 101

#Matched 70 80 83 67 57

Wodak Precision 0.603 0.672 0.638 0.870 0.564

(#145) #Derived 79 80 90 67 64

Recall 0.545 0.552 0.621 0.462 0.441

#Matched 48 65 53 56 40

MIPS Precision 0.414 0.546 0.408 0.727 0.396

(#157) #Derived 63 65 67 56 57

Recall 0.401 0.414 0.427 0.357 0.363

#Matched 54 56 57 45 44

Aloy Precision 0.466 0.471 0.438 0.584 0.436

(#76) #Derived 55 56 55 45 45

Recall 0.724 0.737 0.724 0.592 0.592

Table 4.13: Comparisons between the different methods on the Consolidated3.19

network. MCL-CAw showed the best recall followed by CMC.

The Bootstrap0.094 network

#Proteins 2719; #Interactions 10290

Method

MCL MCLO MCL-CAw CMC HACO

#Predicted 203 204 186 203 127

#Matched 76 76 93 110 80

Wodak Precision 0.374 0.372 0.500 0.542 0.630

(#172) #Derived 85 85 97 106 90

Recall 0.494 0.494 0.564 0.616 0.523

#Matched 44 45 53 67 49

MIPS Precision 0.271 0.220 0.285 0.330 0.386

(#168) #Derived 56 57 62 69 63

Recall 0.333 0.339 0.369 0.411 0.375

#Matched 56 55 64 76 59

Aloy Precision 0.276 0.269 0.344 0.374 0.465

(#76) #Derived 55 55 62 63 60

Recall 0.724 0.723 0.816 0.829 0.789

Table 4.14: Comparisons between the different methods on the Bootstrap0.094 net-
work. CMC showed the best recall followed by MCL-CAw.
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PPI network MCL MCLO MCL-CAw CMC HACO COACH CORE

G+K 0.225 NA 0.323 0.271 0.136 0.169 0.361

ICD(G+K) 0.436 0.435 0.472 0.494 0.305
FSW(G+K) 0.431 0.430 0.487 0.481 0.461 NA NA
Consol3.19 0.469 0.463 0.488 0.399 0.367
Boot0.094 0.349 0.353 0.389 0.513 0.317

Table 4.15: Area under the curve (AUC) values of precision versus recall curves for
complex detection methods on the unscored and scored PPI networks.

4.3.7 Ranking complex detection methods

The relative performance of the algorithms is not the same over all the networks,

hence it is difficult to directly pick a clear winner. To offer a reasonable procedure

for ranking, on each network we ranked the algorithms based on their normalized F1

values (with respect to the best performing algorithm on that network), as shown

in Table 4.16. We then summed up the normalized F1 values for each algorithm

across all the networks to obtain an overall ranking of the algorithms as shown in

Table 4.17.

On the unscored network, CMC and HACO performed better than MCL-CAw

in terms of F1. On the affinity-scored networks, the algorithms showed varied

performance with MCL-CAw displaying the best overall performance in terms

of F1. In particular, MCL-CAw performed the best on ICD(Gavin+Krogan),

FSW(Gavin+Krogan) and Consolidated3.19 networks, while HACO performed the

best on Bootstrap0.094 network. There was no single algorithm which performed rel-

atively best on all the scored networks. Having said that, we note that MCL-CAw

was always ranked among the top three on each of the scored networks indicat-

ing that MCL-CAw responded reasonably well to all the four scoring schemes used

here. These results more or less agree with relative ranking obtained using the AUC

curves (Table 4.15).
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PPI Wodak MIPS Aloy
network Method F1 Norm F1 Norm F1 Norm Total Norm

CMC 0.407 1.000 0.283 1.000 0.455 1.000 3.000 1.000
HACO 0.351 0.862 0.216 0.761 0.333 0.731 2.355 0.785
MCL-CAw 0.313 0.768 0.218 0.770 0.270 0.592 2.130 0.710

G+K CORE 0.292 0.718 0.210 0.741 0.256 0.561 2.020 0.673
MCL 0.271 0.665 0.175 0.619 0.271 0.595 1.879 0.626
MCL-CA 0.244 0.601 0.212 0.749 0.278 0.610 1.960 0.653
COACH 0.183 0.450 0.137 0.486 0.194 0.426 1.361 0.454

MCL-CAw 0.567 1.000 0.450 1.000 0.578 0.976 2.976 1.000
ICD(G+K) HACO 0.565 0.995 0.378 0.841 0.593 1.000 2.837 0.953

MCLO 0.533 0.939 0.412 0.916 0.572 0.965 2.820 0.947
CMC 0.531 0.936 0.403 0.897 0.480 0.810 2.642 0.888
MCL 0.498 0.879 0.370 0.822 0.543 0.916 2.616 0.879

MCL-CAw 0.576 0.992 0.423 1.000 0.625 1.000 2.992 1.000
FSW(G+K) HACO 0.581 1.000 0.396 0.935 0.609 0.974 2.910 0.972

MCL 0.541 0.931 0.393 0.929 0.585 0.935 2.795 0.934
MCLO 0.513 0.884 0.376 0.888 0.612 0.979 2.750 0.919
CMC 0.484 0.833 0.338 0.798 0.465 0.744 2.375 0.794

MCL-CAw 0.614 1.000 0.487 1.000 0.576 0.979 2.979 1.000
Cons3.19 MCLO 0.606 0.986 0.471 0.967 0.575 0.977 2.930 0.984

CMC 0.604 0.982 0.479 0.983 0.588 1.000 2.965 0.995
MCL 0.573 0.932 0.407 0.836 0.567 0.964 2.732 0.917
HACO 0.475 0.774 0.379 0.777 0.502 0.854 2.405 0.807

HACO 0.572 0.991 0.380 1.000 0.585 1.000 2.991 1.000
Boot0.094 CMC 0.577 1.000 0.367 0.965 0.515 0.881 2.846 0.952

MCL-CAw 0.447 0.776 0.282 0.742 0.416 0.711 2.229 0.745
MCL 0.426 0.738 0.299 0.785 0.400 0.683 2.207 0.738
MCLO 0.424 0.736 0.267 0.701 0.392 0.670 2.108 0.705

Table 4.16: Relative ranking of complex detection algorithms based on F1 on each
of the PPI networks. The normalized F1 values were obtained by normalizing the
F1 values against the best.

Relative Normalized
Category Method score score

CMC 3.000 1.000
HACO 2.355 0.785
MCL-CAw 2.130 0.710

Unscored CORE 2.020 0.673
MCL 1.879 0.626
MCL-CA 1.960 0.653
COACH 1.361 0.454

MCL-CAw 3.745 1.000
HACO 3.733 0.997

Scored CMC 3.628 0.969
MCLO 3.555 0.949
MCL 3.468 0.926

Table 4.17: Overall ranking of the complex detection algorithms based on F1 for
the unscored and scored categories of networks.
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Taking this further, we ranked the affinity scored networks based on the per-

formance offered to the complex detection algorithms, as shown in Table 4.18.

We used the same ranking methodology as above - using normalized F1 scores

to rank the networks. The Table 4.19 shows that the Consolidated3.19 network of-

fered the best performance to the algorithms, followed by the ICD(Gavin+Krogan),

FSW(Gavin+Krogan) and Bootstrap0.094 networks.

PPI Wodak MIPS Aloy
network Method F1 Norm F1 Norm F1 Norm Total Norm

Cons3.19 0.573 1.000 0.407 1.000 0.567 0.970 2.970 1.000
FSW(G+K) 0.541 0.944 0.393 0.965 0.585 1.000 2.909 0.980

MCL ICD(G+K) 0.498 0.871 0.370 0.908 0.543 0.928 2.706 0.911
Boot0.094 0.426 0.744 0.299 0.733 0.400 0.684 2.161 0.728

Cons3.19 0.606 1.000 0.471 1.000 0.575 0.939 2.939 1.000
ICD(G+K) 0.533 0.879 0.412 0.875 0.572 0.934 2.688 0.914

MCLO FSW(G+K) 0.513 0.847 0.376 0.798 0.612 1.000 2.645 0.900
Boot0.094 0.424 0.700 0.267 0.567 0.392 0.641 1.908 0.649

Cons3.19 0.629 1.000 0.417 1.000 0.546 1.000 3.000 1.000
ICD(G+K) 0.506 0.805 0.365 0.875 0.535 0.981 2.660 0.887

MCL-CAw FSW(G+K) 0.485 0.770 0.348 0.834 0.514 0.942 2.546 0.849
Boot0.094 0.530 0.842 0.322 0.711 0.484 0.887 2.500 0.833

Cons3.19 0.604 1.000 0.479 1.000 0.588 1.000 3.000 1.000
Boot0.094 0.577 0.955 0.366 0.764 0.515 0.877 2.597 0.866

CMC ICD(G+K) 0.531 0.880 0.403 0.843 0.480 0.816 2.538 0.846
FSW(G+K) 0.484 0.801 0.338 0.705 0.465 0.791 2.297 0.766

FSW(G+K) 0.581 1.000 0.396 1.000 0.609 1.000 3.000 1.000
Boot0.094 0.572 0.984 0.380 0.961 0.585 0.961 2.906 0.969

HACO ICD(G+K) 0.565 0.972 0.378 0.956 0.593 0.973 2.902 0.967
Cons3.19 0.495 0.852 0.379 0.957 0.502 0.824 2.634 0.878

Table 4.18: Relative ranking of affinity scored networks for each complex detec-
tion algorithm based on F1 measures. The normalized F1 scores were obtained by
normalizing the F1 measures against the best.

Scored Relative Normalized
network score score

Cons3.19 4.878 1.000
ICD(G+K) 4.526 0.928
FSW(G+K) 4.494 0.921
Boot0.094 4.044 0.829

Table 4.19: Overall ranking of affinity scored networks for complex detection based
on F1 measures.

4.3.8 In-depth analysis of predicted complexes

To facilitate the analysis of our individual predicted complexes, we mapped the

complexes back to the PPI networks and examined the interactions between com-

ponents of the same complex, as well as between components of a given com-

plex and other proteins in the network. We visualized these using Cytoscape



4.3 Experimental results 76

(http://www.cytoscape.org/) [97].

Instances of correctly predicted complexes of MCL-CAw

Figure 4.9: Ski7 (Yor076c) predicted as part of two complexes, the exosome and
Ski complexes, in agreement with available evidence [102].

The first example is of an attachment protein shared between two predicted com-

plexes of MCL-CAw. The subunits of these predicted complexes made up the Com-

pass complex, involved in telomeric silencing of gene expression [98], and the mRNA

cleavage and polyadenylation specificity factor, involved in RNAP II transcription

termination [99]. The shared attachment Swd2 (Ykl018w) formed high-confidence

connections with the subunits of both predicted complexes. On this basis, the

post-processing procedure assigned Swd2 (Ykl018w) to both predicted complexes,

in agreement with available evidence [100] that Swd2 (Ykl018w) belongs to both

Compass and mRNA cleavage complexes.

The next example illustrates the case where a new protein was predicted as a

subunit of a known complex. The attachment protein Ski7 (Yor076c) was included
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into a predicted complex that matched the Exosome complex involved in RNA pro-

cessing and degradation [101]. Additionally, Ski7 (Yor076c) was also included into a

prediction matching the Ski complex (see Figure 4.9). However, the Ski complex in

the Wodak lab catalogue [92] did not include this new protein. A literature search

suggested that Ski7 acts as a mediator between the Ski and Exosome complexes for

3’-to-5’ mRNA decay in yeast [102].

The RNA polymerase I, II, and III complexes (also called Pol I, II, and III,

respectively) are required for the generation of RNA chains [103]. As per Wodak

lab [92], all the three complexes share subunits: Yor224c, Ybr154c, Yor210w and

Ypr187w, while Pol I and Pol III share Ynl113w and Ypr110c. Due to the extensive

sharing of subunits, the corresponding predictions were grouped together into one

large cluster by MCL. On the other hand, MCL-CAw was successful in segregat-

ing the large cluster into three independent clusters that matched the individual

complexes (Pol I - J =0.714, Pol II - J =0.732 and Pol III - J =0.824).

In addition to these cases, a good fraction of already known core-attachment

structures (reported in the supplementary materials of Gavin et al. [15]) were con-

firmed; some examples are worth quoting here. A predicted complex covering the

HOPS complex had all five cores {Ylr148w, Ylr396c, Ymr231w, Ypl045w, Yal002w}
and two attachments {Ydr080w, Ydl077c} matching those reported in Gavin et

al. Experiments show that the cores have the function of vacuole protein sorting,

and with the help of attachments, the complex can perform homotypic vacuole fu-

sion [104]. Next, we identified the ubiquitin ligase ERAD-L complex comprising of

subunits {Yos9(Ydr057w), Hrd3 (Ylr207w), Usa1 (Yml029w), Hrd1 (Yol013c)} that

is involved in the degradation of ER proteins [105]. This matched the Hrd1/Hrd3

(complex m11) purified in Gavin et al.

A novel complex: Finally, four subunits {Oca4, Oca5, Siw14, Oca1} of a pre-

dicted novel complex showed high similarity in functions (oxidant-induced cell-cycle

arrest) and localization (cytoplasmic) when verified in SGD [94]. This complex ex-

actly matched the putative complex 490 reported in Gavin et al. [15].
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Instances depicting mistakes in the predictions of MCL-CAw

Here we discuss an interesting case in which the sharing of subunits was so ex-

tensive and the web of interactions was so dense that separating out the smaller

subsumed complexes purely on the basis of the interaction information was much

harder. It was the amalgamation of the clusters matching the SAGA, SAGA-like

(SLIK), ADA and TFIID complexes. Based on the Wodak lab catalogue [92], the 20

subunits making up the SAGA complex involved in transcriptional regulation [106]

include four subunits (Ygr252w, Ydr176w, Ydr448w, Ypl254w) that are members of

the ADA complex [107] as well. Sixteen components of the SAGA complex includ-

ing the four shared with the ADA complex, are also the components of the SLIK

complex [108]. Additionally, five subunits (Ybr198c, Ygl112c, Ymr236w, Ydr167w,

Ydr145w) of the SAGA complex also belong to the TFIID complex [106]. Because

of such extensive sharing of subunits involved in a dense web of interactions (436

interactions among 31 constituent proteins, as seen on the ICD(Gavin+Krogan) net-

work), MCL-CAw was able to segregrate out only two distinct complexes - SAGA

(accuracy - 0.708) and SLIK (accuracy - 0.625). The clusters matching TFIID and

ADA remained amalgamated together leading to low accuracies (TFIID - 0.370 and

ADA - 0.430).

Matched benchmark #Incorrect proteins in predictions from Accuracy
complex G+K ICD(G+K) J

Name #Proteins Missed Addl Missed Addnl G+K ICD(G+K)

Kornbergs SRB 25 1 0 2 0 0.960 0.920
SWI/SNF 12 3 0 4 0 0.769 0.667
TRAPP 10 0 0 1 0 1.000 0.900
19/22S reg 22 0 4 0 5 0.909 0.815

TRAMP 3 0 1 0 4 0.750 0.429
Alpha-1,6 5 0 4 0 6 0.556 0.455
eIF3 7 2 3 1 8 0.500 0.400
Protein phosp 3 0 2 0 4 0.600 0.333
Cdc73p/Paf1p 7 1 3 0 11 0.556 0.388
Chs5p/Arf-1 6 2 0 2 6 0.556 0.400

Table 4.20: Complexes derived with lesser accuracy or missed by MCL-CAw due to
affinity scoring. The upper half shows sample complexes from Wodak lab derived
with lower accuracies from the ICD(Gavin+Krogan) network compared to those
from the Gavin+Krogan network. The lower half shows those missed from the
ICD(Gavin+Krogan) network.

Instances of complexes missed by MCL-CAw due to affinity scoring: In the next set

of analysis, we compared the derived complexes from the Gavin+Krogan and the

ICD(Gavin+Krogan) networks, and identified cases where MCL-CAw had missed
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a few proteins or whole complexes due to affinity scoring. From the Wodak, MIPS

and Aloy reference sets, there were 13, 18 and 16 complexes, respectively, that

were derived with better accuracies from the Gavin+Krogan network than from the

ICD(Gavin+Krogan) network. And, there were 6, 2 and 2 complexes, respectively,

that were derived from the Gavin+Krogan network, but missed totally from the

ICD(Gavin+Krogan) network. Table 4.20 shows a sample of such complexes from

the Wodak reference set. For the complexes that were derived with lower accuracies

(upper half of Table 4.20), MCL-CAw had missed a few proteins due to low scores

assigned to the corresponding interactions. For example, in the predicted complex

from the ICD(Gavin+Krogan) network matching the SWI/SNF complex, two pro-

teins (Ymr033w and Ypr034w) out of the four missed ones were absent due to their

weak connections with the rest of the members; instead, these proteins were present

in the prediction matching the RSC complex. In the Gavin+Krogan network, these

two proteins were shared between two complexes matching the SWI/SNF and RSC

complexes, which also agreed with the Wodak catalogue [92].

In the cases where MCL-CAw had completely missed some complexes from the

scored network (lower half of Table 4.20), it is interesting to note that MCL-CAw

had pulled-in many additional (noisy) proteins as attachments into the predicted

complexes, which caused the accuracies to drop below 0.5. One such case is of

the predicted complex matching the eIF3 complex with a low Jaccard score of

0.4. The eIF3 complex from Wodak lab consisted of 7 proteins: Yor361c, Ylr192c,

Ybr079c, Ymr309c, Ydr429c, Ymr012w and Ymr146c. The corresponding complex

predicted from the Gavin+Krogan network consisted of 8 proteins (Figure 4.10): 5

cores (Yor361c, Ylr192c, Ybr079c, Ymr309c, Ydr429c) and 3 attachments (Yor096w,

Yal035w, Ydr091c). Therefore, there were 2 missed and 3 additional proteins in the

prediction, leading to an accuracy of 0.5. The corresponding complex predicted

from the ICD(Gavin+Krogan) network consisted of 14 proteins: 6 cores (Yor361c,

Ylr192c, Ybr079c, Ymr309c, Ydr429c, Yor096w) and 8 attachments (Yal035w,

Ydr091c, Yjl190c, Yml063w, Ymr146c, Ynl244c, Yor204w, Ypr041w). Therefore,

there were 1 missed and 8 additional proteins in the prediction, leading to an even

lower accuracy of 0.4. All the core proteins had same or similar GO annotations

(involvement in translation, localized in cytoplasm or ribosomal subunit) [37]. Upon
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Figure 4.10: Example of a complex missed by MCL-CAw from the
ICD(Gavin+Krogan) network, but found from the Gavin+Krogan network. The
eIF3 complex from Wodak lab consisted of 7 proteins: Yor361c, Ylr192c, Ybr079c,
Ymr309c, Ydr429c, Ymr012w and Ymr146c. The predicted complex id#36 from the
ICD(Gavin+Krogan) network consisted of 14 proteins: 6 cores (Yor361c, Ylr192c,
Ybr079c, Ymr309c, Ydr429c, Yor096w) and 8 attachments (Yal035w, Ydr091c,
Yjl190c, Yml063w, Ymr146c, Ynl244c, Yor204w, Ypr041w). Therefore, there were
1 missed and 8 additional proteins in the prediction, leading to a low accuracy of
0.4. Orange: eIF3 from Wodak lab; Orange, Yellow and Pink: predicted complex;
Turquoise: Level-1 neighbors.
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analysing the GO annotations of the 8 attachment proteins, we noticed that only

one (Ymr146c) had the same annotation as the core proteins. This was also part of

the eIF3 complex from Wodak lab [92]. Out of the remaining 7 attachment proteins,

five (Ypr041w, Ynl244c, Yml063w, Yjl190c, Ydr091c) had similar or related GO

annotations (translation initiation, GTPase activity, cytoplasmic, ribosomal sub-

unit) as the core proteins. A literature search revealed that these proteins belonged

to the multi-eIF initiation factor conglomerate (containing eIF1, eIF2, eIF3 and

eIF5) and the 40S ribosomal subunit involved in translation [109]. The remaining

two (Yal035w, Yor204w) were involved in translation activity, but were absent in

the Wodak lab catalogue. These might be potentially new proteins belonging to the

eIF3 or related complexes, and need to be further investigated. We also analysed

the GO annotations of the level-1 neighbors to the predicted complex seen in the

network, none of them had annotations similar to the proteins within the network.

Instances of narrowly-missed complexes by MCL-CAw: We analysed the predicted

complexes of MCL-CAw that matched benchmark complexes with accuracies be-

tween 0.35 and 0.50. This analysis revealed that most of these predictions in fact

included several additional proteins instead of missing a few, thereby lowering the ac-

curacies. Further investigation revealed that these were amalgamated clusters that

were not successfully segregated by MCL-CAw, and therefore embedded multiple

complexes within them. For example, the Swr1p (#proteins: 13) and Ino80p (#pro-

teins: 12) from Wodak lab catalogue [92] share four proteins: Ydr190c, Yfl039c,

Yjl081c and Ypl235w. From the Consolidated3.19 network, MCL-CAw generated a

large cluster (#proteins: 19) containing the “internal” proteins of these two com-

plexes and these four shared proteins. This large cluster matched the two real

complexes with low accuracies of 0.455 and 0.50, respectively. Upon analysis we

found that these four shared proteins interacted densely with the “internal” pro-

teins of these two complexes, leading to the amalgamation. Separating the cluster

using only topological information was difficult.
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4.4 Lessons from MCL-CAw

Harkening back to our “bin-and-stack” chronology-based classification introduced

in Chapter 3, we position MCL-CAw into it, as shown in Figure 4.11. Doing so

reconfirms that incorporating core-attachment structure followed by affinity scoring

has indeed improved complex detection performance.

Though we have moved a step forward in improving the performance, a glance

through Tables 4.10 to 4.14 reveals that all the methods considered for comparison in

this work achieve very low recall on the MIPS reference set compared to the Wodak

and Aloy sets. Table 4.3 shows that the average density of complexes in MIPS is

much lower than that of Wodak and Aloy sets. Only 52 out of 137 (37.95%) derivable

MIPS complexes of size ≥ 5 could be detected from the Gavin+Krogan network by

all methods put together. We analysed the remaining 85 MIPS complexes and found

most of them to have very low densities (average about 0.217) in the Gavin+Krogan

network. For example, the MIPS complex 440.30.10 (involved in mRNA splicing)

went undetected by all the methods even though 40 of its 42 proteins were present in

Gavin+Krogan. There were 144 interactions among these 40 proteins, giving a low

density of 0.184 to the complex in this network. This shows that complex detection

methods generally do not perform well when the embedded complexes are of low

densities. Apart from this limitation, we already saw that existing methods tend

to amalgamate smaller complexes into larger modules causing them to be missed.

These limitations are also seen in MCL-CAw; we list them as follows in decreasing

order of seriousness:

1. Missing complexes of low densities;

2. Amalgamation of densely-interacting complexes;

3. Missing of small complexes (size ≤ 3).

The focus of the next two chapters will be to overcome some of these limitations to

further improve complex detection performance.
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CHAPTER 5

Characterization and detection of sparse

complexes

Euclid taught me that without assumptions there is no proof. Therefore, in any

argument, examine the assumptions.

- Eric Temple Bell, as quoted in [110]

In the previous chapter, we designed and developed MCL-CAw, a method for com-

plex detection by incorporating core-attachment structure into MCL. Our detailed

evaluation of MCL-CAw showed that MCL-CAw performed better or at least as

good as recent methods, and also showed consistent performance across multiple

scoring schemes. At the same time this evaluation also revealed many crucial lim-

itations in complex detection methods. In particular, we noticed that all methods

failed to detect many known complexes, especially those that had low densities in

the networks. For example, MCL missed 65 out of the 123 MIPS complexes present

in the Consolidated3.19 network from Collins et al. [36]. Even the “union” of four

methods, MCL, MCL-CAw, CMC and HACO, missed 52 out of the 123 complexes.

Since the goal in this thesis is to study genome-wide compositions of complexes

(the ‘complexosome’), failure to detect even the known complexes reflects severe

limitations in current methods.
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5.1 Insights into the topologies of undetected complexes

In order to understand the characteristics of these missed complexes, we “su-

perimposed” yeast complexes taken from MIPS [90] onto the high-confidence

Consolidated3.19 yeast PPI network [36] (#proteins: 1622, #interactions: 9704, av-

erage node degree: 11.187). This “superimposition” involves identifying the proteins

of a benchmark complex in the PPI network, and extracting out the subnetwork

induced by those proteins. Figure 5.1 shows this “superimposition” visualized using

Cytoscape [97].

The immediate observation, which is of course typical to most PPI networks,

was that the network comprised of one main large component and multiple disjoint

smaller components of sizes 2 to 50. Out of the 123 MIPS complexes containing at

least four proteins in the network, 89 were completely embedded in the main com-

ponent, and the remaining 34 were “scattered” among more than one components.

When we ran MCL on this network, it was able to recover only 58 of these 123

complexes. Of the 65 undetected complexes, 27 complexes were the ones that were

“scattered”, and 34 complexes, though intact, had very low interaction densities

(< 0.50) in the network. In fact, some of these complexes lacked internal connec-

tivities to an extent that it was impossible for any method to assemble back these

disconnected pieces into whole complexes solely based on topological information.

For example, the MIPS complex 510.190.110 (CCR4 complex) had seven proteins

in the network scattered among four disjoint components (shown within ellipses in

Figure 5.1). This complex remained disconnected with a low density of 0.1905, and

naturally went undetected by all the methods.

Further, most MIPS complexes being small (sizes ≤ 10-15), lacking in just a few

proteins or interactions easily rendered many complexes disconnected or with low

interaction densities, resulting in them going undetected (see Figure 5.2). All these

findings revealed that a potentially strong correlation existed between the “network

constitution”of a complex (the number of member proteins in the network and their

connectivities) and the possibility of it being detected using existing methods.
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A natural thing is to question the underlying assumption: How accurate is

this “denseness” assumption of complexes for computational prediction from PPI

networks? Or alternately, to what extent can we rely on this“denseness”assumption

to predict complexes? It is perfectly appropriate to ask this because, as we saw,

overly relying on this assumption in the wake of insufficient credible PPI data can

cause low density or disconnected complexes to be totally missed. Of course we could

go for devising more “sensitive” models that can cover such low density complexes

(one such attempt is the work by Habibi et al. (2010) [111] that models complexes

as k-connected subnetworks). However, there is a limit to how “sensitive” these

models can get. Too sensitive models can also result in too many false positive

predictions (as noted in Habibi et al.’s work [111]). Therefore, it is also important

to look at other “work-arounds” to detect these low density complexes.

The aim of this chapter is two-fold: (i) to topologically characterize these un-

detected complexes, that is, to quantitatively measure their “network constitution”;

and (ii) to propose a novel “work-around” to aid existing methods in detecting

them satisfactorily. A simple yet elegant “work-around” we propose here is to non-

randomly “fill the gaps” in PPI networks by looking beyond physical interactions to

handle the low density regions of the networks.

5.2 Characterizing sparse complexes

Sticking to our previously adopted terminologies, we represent our PPI network as

G = (V,E), where V is the set of proteins and E is the set of interactions between

the proteins. Each interaction e = (u, v) ∈ E is assigned a weight 0 ≤ w(u, v) ≤ 1

that reflects the confidence of the interaction, which is usually determined using an

affinity weighting scheme (the weight it is set to 1 if no scheme is used). For any

u ∈ V , N (u) refers to the set of neighbors of u. Let B = {B1, B2, ..., Bm} be the set

of benchmark complexes. We propose the term sparse complexes for the undetected

complexes and “very broadly” define them as follows:

Definition 5.1 Sparse complexes: Given a PPI network G and a set of bench-

mark complexes B known to be embedded in G, the subset B′ ⊆ B of complexes

that cannot be satisfactorily detected from G by existing methods are called sparse

complexes.
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5.2.1 Indices for complex derivability from PPI networks

We next propose indices that measure the “derivability” of a benchmark complex

from a given PPI network. These indices capture whether or not a benchmark com-

plex is derivable from a given PPI network, and if so, to what extent. We propose

two kinds of indices here. The first kind defines definitive criteria to categorize a

given benchmark complex as derivable or not from the PPI network, and provides

derivability bounds on the number of such complexes in the network. The second

kind does not strictly categorize the benchmark complex as derivable or not, but

instead assigns a derivability score to the complex.

Derivability indices with bounds

To begin with, a naive yet natural way to categorize a benchmark complex as

derivable from a PPI network is if it satisfies two criteria: (i) it has sufficient

number of proteins in the network; and (ii) it is connected within the network.

We consider a benchmark complex Bi ∈ B to be k-protein-derivable from G if

at least k > 0 of its member proteins are present in G. We consider a k-protein-

derivable complex to be k-network-derivable from G if these member proteins form

a connected subnetwork within G.

Definition 5.2 k-protein-derivable complex: A benchmark complex Bi ∈ B
is k-protein-derivable from network G = (V,E) if |Bi ∩ V | ≥ k, for some k > 0.

The set of k-protein-derivable complexes in G is represented by DP (B, G, k), and

the k-protein-derivability index of G is |DP (B, G, k)|.

Definition 5.3 k-network-derivable complex: A benchmark complex Bi ∈ B
is k-network-derivable from G = (V,E) if |Bi ∩ V | ≥ k for some k > 0, and Bi ∩ V

forms a connected subnetwork in G.

The set of k-network-derivable complexes in G is represented by DN (B, G, k), and

the k-network-derivability index of G is |DN (B, G, k)|.

Derivability indices with scores

From our systematic experiments (see the “side note” below), we found that two

factors strongly contributed to the“derivability”of a given complex from the network
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- the presence of a significant fraction of complex proteins within the same connected

component, and the density of the complex relative to its local neighborhood. Based

on these two factors we next define indices that assign derivability scores to each

benchmark complex to reflect the confidence or extent to which the complex is

derivable from the network.

Component Score CS(Bi, G): In the network G, let any k-protein-

derivable complex Bi be decomposed into several connected components,

{S1(Bi, G), S2(Bi, G), ..., Sr(Bi, G)}, ordered in non-increasing order of size. We de-

fine CS(Bi, G) as the fraction of proteins within the maximal component S1(Bi, G)

among all non-isolated proteins in Bi:

CS(Bi, G) =
|S1(Bi, G)|

|B′
i|

for |B′
i| > 0, else CS(Bi, G) = 0, (5.1)

where B′
i = {p : p ∈ Bi,∃q ∈ Bi, (p, q) ∈ E}.

Edge Score ES(Bi, G): We define ES(Bi, G) as the ratio of the weight of inter-

actions within Bi to the total weight of interactions within Bi and its immediate

neighborhood in G:

ES(Bi, G) =

∑
e∈E(Bi)

w(e)∑
e∈E(NBi)

w(e)
for E(NBi) �= ∅, else ES(Bi, G) = 0. (5.2)

The denominator is the weight of interactions in the subnetwork of G induced

by the member proteins of Bi and their direct neighbors, given by: V (NBi) =

{p : p ∈ Bi}
⋃{q : q ∈ N (p), p ∈ Bi} and E(NBi) = {(p, q) : p, q ∈

V (NBi), (p, q) ∈ E}. Note that the edge score is different from the absolute edge

density of Bi which is not relative to the neighborhood, defined as: d(Bi, G) =∑
e∈E(Bi)

w(e)/(|V (Bi)|.(|V (Bi)| − 1)).

We define the Component-Edge score CE(Bi, G) as the product of the compo-

nent and edge scores of Bi:

CE(Bi, G) = CS(Bi, G) ∗ ES(Bi, G). (5.3)

Definition 5.4 k-ce-derivable complex: Given a threshold 0 ≤ tce ≤ 1, a k-

protein-derivable complex Bi is k-CE-derivable if CE(Bi, G) ≥ tce.
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Therefore, the set of k-CE-derivable complexes in G is given by: DCE(B, G, k, tce) =

{Bi : Bi ∈ DP (B, G, k), CE(Bi, G) ≥ tce}, and the k-CE-derivability index of G is

|DCE(B, G, k, tce)|.

A side note: Here, we give a broad idea of the experiments we performed to observe

the two factors influencing complex derivability. We first constructed an “ideal”

network G′ from the PPI network G by considering only the proteins V ∩ B and

their interactions. We tested the performance of several existing methods on G′

and analysed how many benchmark complexes of B were reconstructed successfully.

As expected, all methods performed well. But, a noticeable pattern was that the

methods were able to reconstruct those complexes better that had a significant frac-

tion of the proteins within a single connected component. We next we constructed

a “slightly hazy” network G′′ by adding the remaining proteins V \ B and their

interactions to G′, and repeated our analysis. We noticed that the methods were

beginning to get “confused”: in cases where the boundary between the embedded

complex and its neighborhood was too obscure to discern clearly. This indicated

that local neighborhood played a vital role in complex identification. Finally we

added the remaining interactions and repeated our analysis, and found that these

additional interactions further “confused” the methods. These findings led us to

define our derivability scores based on the two factors - the presence of a significant

fraction of complex proteins within the same connected component, and the density

of the complex relative to its local neighborhood.

Relationships among the derivability indices

For any k > 0, by definition DN (B, G, k) ⊆ DP (B, G, k). Given a thresh-

old 0 ≤ tce ≤ 1, the relationships between DP (B, G, k) and DN (B, G, k) with

DCE(B, G, k, tce) are as follows. When tce = 0, all k-CE-derivable complexes

are also k-protein-derivable, but because they may not be connected we can

say, DN (B, G, k) ⊆ DCE(B, G, k, tce = 0) ⊆ DP (B, G, k). When tce = 1, all

k-CE-derivable complexes are connected complexes that are disjoint, therefore

DCE(B, G, k, tce = 1) ⊆ DN (B, G, k) ⊆ DP (B, G, k) (see Figure 5.3). Intuitively,

tce can be varied in the entire range [0, 1] to include the “hardest” complexes to

detect (without any internal connectivities) to only the “easiest” complexes to de-
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tect (disjoint connected complexes). These “hardest” complexes to detect can form

“holes” in the network by having zero interactions among their member proteins but

having interactions with their immediate neighbors

5.2.2 Validating the derivability indices against ground truth

We now validate the derivability scores (CS, ES, CE scores and absolute edge

density) of benchmark complexes with respect to the PPI network against the ac-

curacies with which these complexes are actually derived using existing methods.

We use two PPI networks for this validation, the Consolidated3.19 network (a

weighted network) from Collins et al. [36], and the ‘Filtered Yeast Interaction’ (FYI)

network (a literature-validated but unweighted network) from Han et al. [119]. Ta-

bles 5.1 and 5.2 show the Pearson correlation values between these indices and

the Jaccard accuracies of complexes derived from these networks using four com-

plex detection methods, MCL, MCL-CAw, CMC and HACO, and evaluated against

MIPS and Wodak catalogues. The corresponding correlation plots for MCL-CAw

and CMC are shown in Figures 5.4 and 5.5 (the other two methods also displayed

similar plots). The results show the CE scores are strongly correlated with Jaccard

accuracies. This is followed by the ES, CS and edge density scores. This means our

proposed CE-score is a stronger indicator of actual complex derivability compared

to the traditionally adopted indicators like edge density. (Note: There are a few

other indices like Newman and Girvan’s global and local modularity [112], but these

do not capture the notion of proteins being part of the same connected component,

and they perform similar to our edge-score ES).

5.2.3 A measure of sparse complexes

We can now employ our proposed CE-score to give a more quantitative definition

for sparse complexes.

Definition 5.5 Sparse complexes: Given a PPI network G, a benchmark com-

plex Bi and a threshold 0 ≤ tce ≤ 1, the complex Bi is called sparse with respect to

G if CE(Bi, G) < tce.

Notice how the two definitions 5.1 and 5.5 can be “linked” using our CE-score

and threshold tce, which offer a quantitative value to the derivability of complexes.
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Figure 5.3: Relationships among the derivability indices for tce = 0 and tce = 1.
From the “hardest” to the “easiest” complexes to detect.
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The Consolidated3.19 network: #proteins 1622, #interactions 9704

Pearson correlation with Jaccard accuracy

Benchmark Method Edge density CE-score Comp score Edge score

MCL 0.101 0.719 0.511 0.518
MIPS MCL-CAw 0.196 0.785 0.492 0.628
(#313) CMC 0.174 0.649 0.471 0.477

HACO 0.159 0.786 0.472 0.608

MCL 0.141 0.734 0.597 0.623
Wodak MCL-CAw 0.152 0.792 0.611 0.638
(#405) CMC 0.196 0.709 0.479 0.442

HACO 0.168 0.789 0.523 0.612

Table 5.1: Pearson correlation between the derivability indices and Jaccard accura-
cies (on the Consolidated network). The CE-scores show the strongest correlation
with the accuracies.

The Filtered Yeast Interaction (FYI) network: #proteins 1379, #interactions 2493

Pearson correlation with Jaccard accuracy

Benchmark Method Edge density CE-score Comp score Edge score

MCL 0.097 0.699 0.423 0.507
MIPS MCL-CAw 0.116 0.746 0.501 0.621
(#313) CMC 0.198 0.718 0.527 0.649

HACO 0.173 0.772 0.412 0.648

MCL 0.126 0.708 0.554 0.599
Wodak MCL-CAw 0.153 0.718 0.597 0.605
(#405) CMC 0.188 0.689 0.407 0.412

HACO 0.160 0.701 0.512 0.602

Table 5.2: Pearson correlation between the derivability indices and Jaccard accura-
cies (on the Filtered Yeast Interaction network). The CE-scores show the strongest
correlation with the accuracies.

If this value is less than a certain threshold, the complex is highly likely to go un-

detected from existing methods and therefore it is sparse, else it is highly likely

to be detected and therefore it is dense. In general, for the benchmark com-

plexes B, the set of sparse complexes is given by S(B, G, k, tce) = {Bi : Bi ∈
DP (B, G, k), CE(Bi, G) < tce}, and its complementary set D(B, G, k, tce) = {Bi :

Bi ∈ DP (B, G, k), CE(Bi, G) ≥ tce} forms the dense complexes. The threshold tce

defines this “boundary” between the sparse and dense benchmark complexes in the

network. Since we do not know at which value of tce existing methods operate, we

propose an approach that “packs” higher number of dense complexes for all values

of tce ∈ [0, 1] or at least for the larger values of tce.
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5.3 Detecting sparse complexes

We noted in Section 5.1 that existing methods are severely constrained by “gaps”

in crucial topological information required to ensure the two required criteria for

complex derivability namely, component-based connectivity and relative edge den-

sity. In fact, any new method based solely on PPI networks would also face these

constraints. Due to these reasons, a natural approach to aid existing methods or

devise new methods would be to first fill these “topological gaps” in existing PPI

networks.

Even though this seems like a simple enough solution to pursue, we are severely

lacking in the interaction data required to fill these gaps. Current estimates on

yeast [34], put the verified fraction of the physical interactome to ∼70%, which

means we are still lacking in ∼30% reliable interaction data, mainly due to limita-

tions in existing experimental and computational techniques. Consequently, a novel

solution is to look beyond physical interactions to fill these topological gaps. In our

work, we propose to use functional interactions for this purpose, specifically aimed

at improving complex prediction.

5.3.1 Employing functional interactions to detect sparse

complexes

Functional interactions or associations are logical interactions among proteins that

share similar functions [55]. These interactions can be inferred among proteins par-

ticipating in the same multi-protein assemblies (complexes, functional modules and

pathways), or annotated to similar biological functions and processes, or encoded

by genes maintained and regulated together or genes having the same ‘phylogenetic

profile’ (present or absent together across several genomes), etc. [55]. Therefore,

these interactions “encode” information beyond just direct physical interactions. In

fact many of the computational methods developed to predict protein interactions

mainly manage to predict functional interactions.

Functional interactions can be considered more “general” or a “superset” of di-

rect physical interactions: two proteins involved in a stable physical interaction are

functionally related, but two proteins involved in a functional interaction may not
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necessarily interact physically. This means functional interactions have a potential

to effectively complement physical interactions. We capitalize on this complemen-

tarity by non-randomly adding functional interactions to ensure the two required

criteria: (i) Some functional interactions may be direct physical interactions missing

in the physical datasets - these are directly useful to “pull-in”disconnected proteins;

and (ii) Even if some functional interactions do not correspond to direct physical

interactions, if they fall within the same complex, they can“artificially” increase the

density of that complex.

5.3.2 The SPARC algorithm for employing functional inter-

actions

Here, we propose a post-processing based algorithm SPARC to empower existing

methods (provide them the “spark”) to detect SPARse Complexes by using func-

tional interactions. SPARC works as follows (see Algorithm 2). Let GP = (VP , EP )

be the PPI network and GF = (VF , EF ) be the functional network.

Step 1: The input to the algorithm is the set of physical clusters CP from

network GP generated using an existing method. It then calculates the CE-score

CE(GP , Ci) for each cluster Ci ∈ CP . All clusters with CE-scores above a threshold

δ, that is, {Ci ∈ CP : CE(Ci, GP ) ≥ δ}, are output as predicted complexes, while

the remaining are reserved for further processing.

Step 2: We then add-in the interactions of GF to GP to produce a larger network

GA = (VA, EA), where VA = VP ∪ VF and EA = EP ∪ EF .

Step 3 (iterative): For each reserved cluster Cj , the CE-score is recalculated

with respect to GA. If for the cluster Cj , the CE-score improves beyond δ, that

is, CE(Cj , GA) ≥ δ, it is output as a predicted complex. If not, we explore in the

neighborhood of Cj to include proteins that can potentially improve CE(Cj , GA).

We consider the set of direct neighbors N (Cj , GA), and sort them in non-increasing

order of their interaction weights to Cj . We then repeatedly consider a protein

p ∈ N (Cj , GA) in that order such that CE(Cj ∪{p}, GA) > CE(Cj , GA) and add it

to Cj , till the CE-score cannot be improved any further. If the improved CE-score

manages to cross δ, we output the cluster Cj as a predicted complex.

The key idea behind SPARC is as follows. Many complexes have low CE-
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scores in the PPI network. If adding functional interactions can either increase

their internal connectivities or “pull in” the disconnected proteins, we can increase

the CE-scores of these complexes. However, blindly adding functional interactions

can result in many false positive predictions. Therefore, here we selectively utilize

functional interactions only to improve the CE-scores of clusters predicted out of

the physical network. Those clusters that show the improvement correspond to real

complexes.

Algorithm 2 SPARC(GP , GF , CP , t)
for each Ci ∈ CP do

if CE(Ci, GP ) ≥ δ then
Output Ci;

end if
end for

Augment the networks: GA = (VA, EA), where VA = VP ∪ VF , EA = EP ∪ EF .

for each remaining Cj do
if CE(Cj , GA) ≥ δ then

Output Cj ;
else

Sort N (Cj , GA) in non-increasing order of interaction weights to Cj ;
while ΔCE(Cj , GA) > 0 do

Choose the next p ∈ N (Cj , GA);
Cj := Cj ∪ {p};
Recalculate CE(Cj , GA);

end while
if CE(Cj , GA) ≥ δ then

Output Cj ;
end if

end if
end for

Output the final set of predicted complexes;

5.4 Experimental results

5.4.1 Preparation of experimental data

We gathered physical interactions from Saccharomyces cerevisiae (budding yeast)

inferred from the following yeast two-hybrid and affinity purification experiments,

deposited in Biogrid [54]: Uetz et al. [12], Ito et al. [13], Gavin et al. [15,27], Krogan

et al. [28] and Collins et al. [36], to build the protein interaction network, which we

call the Physical network P (therefore, P comprises of the Gavin+Krogan network
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(of Chapter 4) together with Y2H interactions from a few other experiments). The

interactions of P are not scored.

Next, high-confidence functional interactions from yeast were gathered from the

String database [55] to build the Functional network F . These functional interac-

tions showed confidence scores ≥ 0.90 in at least two of the following evidences:

gene neighborhood, co-occurrence, co-expression and text mining (these scores are

available from String).

We combined the two networks to generate a larger network which we call the

Augmented Physical+Functional network P + F . Table 5.3 shows some properties

of these networks. The overlaps between the two networks is shown in Figure 5.6.

Network # Proteins # Interactions Avg node degree

Physical (P ) 4113 26518 12.89

Functional (F ) 3960 18683 10.12

Augmented (P + F ) 5145 43905 17.07

Table 5.3: Properties of the physical and functional networks obtained from yeast.

The presence of noise (false positives) is a severe limiting factor in publicly

available interaction datasets in spite of gathering only high-confidence datasets.

Therefore, we further filtered these datasets, which involves assigning each inter-

action a confidence score (between 0 and 1) that reflects its reliability, and dis-

carding interactions with low scores (< 0.20). Here, we (re)scored the networks

using three scoring schemes, two of which were based on network topology namely,

FS-Weight [39] and Iterative-CD [64], while the third was based on evidences from

Figure 5.6: Overlaps between the physical and functional datasets
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Gene Ontology (GO), called TCSS [46].

Benchmark complexes and GO annotations

The benchmark (or reference or ‘gold standard’) set of complexes was assembled

from two independent sources: 313 complexes of MIPS [90] and 408 complexes

of the Wodak lab CYC2008 catalogue [92]. The properties of these benchmark

sets are shown in Table 5.4. For the evaluation, we considered only the 4-protein-

derivable complexes out of these sets. This is because it is typically difficult to

predict very small complexes (size < 4) with high accuracy by using primarily

topological information [18,64].

Size distribution
Benchmark #Complexes < 3 3-10 11-25 > 25

MIPS 313 106 138 42 27
Wodak 408 172 204 27 5

Table 5.4: Properties of hand-curated (benchmark) yeast complexes from the MIPS
and Wodak CYC2008 catalogues.

The GO annotations for yeast proteins were downloaded from the Saccharomyces

Genome Database (SGD) [94], which include the annotations (not considering the

Inferred from Electronic Annotations or IEA) for three ontologies - Cellular Com-

ponent (CC), Biological Process (BP) and Molecular Function (MF). These anno-

tations were used as evidences in the TCSS scheme [46]. We excluded the branch

corresponding to the GO term ‘macromolecular complex’ (GO:0032991) to avoid

any bias coming from the GO complexes.

5.4.2 Complex detection algorithms and evaluation metrics

We used four complex detecting algorithms mentioned previously, MCL [63],

CMC [64], HACO [69] and MCL-CAw (Chapter 4). Some of their properties and

the preset parameter values are summarized in Table 5.5. These methods are dif-

ferent from one another in the algorithmic techniques employed, and therefore form

a good mix of methods for our evaluation.

Usually, recall Rc (coverage) and precision Pr (sensitivity) are used to evaluate

the performance of methods against benchmark complexes. Here, we use previously

reported [64] definitions for these measures. Let B = {B1, B2, ..., Bm} and C =
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Property MCL MCL-CAw CMC HACO

Principle Flow Core-attach Maximal Hier agglo
simulation refinement clique cluster with

over MCL merging overlaps

Parameters I I, α, γ Merge m, UPGMA
(preset values) (2.5) (2.5, 1.5, 0.75 ) Overlap t, cutoff

Min clust size (0.2)
(0.5, 0.4, 4)

Table 5.5: Existing complex detection methods used in the evaluation.

{C1, C2, ..., Cn} be the sets of benchmark and predicted complexes, respectively.

We use the Jaccard coefficient J to quantify the overlap between a Bi and a Cj :

J(Bi, Cj) = |Bi ∩ Cj |/|Bi ∪ Cj |.
We consider Bi to be covered by Cj , if J(Bi, Cj) ≥ overlap threshold Jmin. In our

experiments, we set the threshold Jmin = 0.50, which requires |Bi ∩Cj | ≥ |Bi|+|Cj |
3 .

For example, if |Bi| = |Cj | = 8, then the overlap between Bi and Cj should be at

least 6. Based on this the recall Rc is given by:

Rc(B,P) =
|{Bi|Bi ∈ B ∧ ∃Cj ∈ C;J(Bi, Cj) ≥ Jmin}|

|B| . (5.4)

Here, |{Bi|Bi ∈ B ∧ ∃Cj ∈ C;J(Bi, Cj) ≥ Jmin}| gives the number of derived

benchmarks. And the precision Pr is given by:

Pr(B,P) =
|{Cj |Cj ∈ C ∧ ∃Bi ∈ B;J(Bi, Cj) ≥ Jmin}|

|C| . (5.5)

Here, |{Cj |Cj ∈ C ∧ ∃Bi ∈ B;J(Bi, Cj) ≥ Jmin}| gives the number of matched

predictions.

5.4.3 Impact of adding functional interactions on complex

derivability

To begin with, we measured the number of derivable benchmark complexes from

the Physical (P ), Functional (F ), Augmented (P + F ) networks and their scored

versions, ICD(P +F ), FSW (P +F ) and TCSS(P +F ), using our proposed deriv-

ability indices.

Table 5.6 shows the number of protein-derivable and network-derivable bench-
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mark complexes from these networks. The findings can be summarized as follows:

(a) The network-derivable complexes were significantly fewer than the protein-

derivable complexes further supporting the claim that many benchmark complexes

remained disconnected within the networks. (b) The number of protein-derivable

and network-derivable complexes were higher for the P + F network than the in-

dividual P and F networks. The significance of this increase was gauged against a

random network R built using the same set of proteins and the average node degree

in F . The P + R network showed fewer network-derivable complexes compared to

P + F . This indicated that F added more interactions to “complexed” regions in P

compared to what the R network added. (c) The number of protein-derivable and

network-derivable complexes in the scored networks, ICD(P + F ), FSW (P + F )

and TCSS(P + F ), were fewer than the P + F network. This is not a concern

because filtering usually discards interaction data leading to smaller networks. (d)

Even though protein-derivable complexes in the scored networks were fewer than

the P +F network, the corresponding decrease in network-derivable complexes was

relatively marginal. This indicated that the scoring schemes retained most interac-

tions among complexed proteins, and discarded mainly the noisy ones.

MIPS (# 313) Wodak CYC2008 (# 408)

#Protein- #Network- #Protein- #Network-
Network derivable derivable derivable derivable

P 155 59 135 81
F 153 28 127 37
P+R 164 61 147 82
P+F 164 68 147 92
ICD(P+F) 122 67 124 91
FSW(P+F) 119 67 95 78
TCSS(P+F) 158 68 143 75

Table 5.6: Impact of augmenting functional interactions on protein-derivability and
network-derivability for k = 4.

Next, Table 5.7 shows the number of CE-derivable benchmark complexes from

these networks for all threshold values tce ∈ [0, 1]. This table does a more fine-scale

dissection of the improvement shown before. For lower values of tce, the number

of CE-derivable complexes was higher for P + F compared to P . But, for higher

values of tce, the number was lower compared to P . Similarly, for lower values

of tce, the number of CE-derivable complexes was higher for P + F compared to
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the three scored networks. But, for higher values of tce, the three scored networks

showed considerably higher CE-derivable complexes than both the P and P + F

networks. These findings indicate that noise had a sizable impact on the CE-

scores of complexes: the improvement obtained by adding functional interactions

was completely canceled out by noise, leading to lower performance of the P + F

network. But, affinity scoring (filtering) considerably alleviated this impact of noise,

thereby improving the CE-derivability of the networks.

MIPS (#313)

# Complexes with CE-score ≥ tce

Threshold tce P F P+F ICD(P+F) FSW(P+F) TCSS(P+F)

0.00 155 153 164 152 119 162
0.10 153 151 162 148 116 160
0.20 149 136 158 145 113 157
0.30 140 108 149 142 110 154
0.40 129 81 135 137 108 148
0.50 101 54 102 112 101 126
0.60 81 21 70 93 87 101
0.70 62 9 55 71 69 86
0.80 39 0 34 44 42 59
0.90 19 0 14 21 21 35
1.00 6 0 3 11 10 18

Table 5.7: Impact of augmenting functional interactions on CE-derivability for
k = 4 (MIPS benchmark).

Wodak CYC2008 (#408)

# Complexes with CE-score ≥ tce

Threshold tce P F P+F ICD(P+F) FSW(P+F) TCSS(P+F)

0.00 135 127 147 124 95 143
0.10 131 112 144 121 93 141
0.20 123 93 129 116 87 135
0.30 112 66 114 113 84 126
0.40 99 31 101 102 77 109
0.50 83 8 75 91 59 94
0.60 71 1 62 78 43 83
0.70 59 0 41 61 39 67
0.80 34 0 21 42 26 44
0.90 12 0 6 29 13 31
1.00 8 0 0 18 8 20

Table 5.8: Impact of augmenting functional interactions on CE-derivability for
k = 4 (Wodak benchmark).
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5.4.4 Improvement in complex detection using SPARC

Table 5.9 shows the performance of the four methods MCL, MCL-CAw, CMC and

HACO on the raw and scored physical networks (we do not show the results on F

because functional interactions are only used to improve the physical clusters, and

not for complex detection by themselves - many of the functional clusters do not

correspond to physical complexes). It shows that scoring helped to reconstruct sig-

nificantly more complexes and with better accuracies (similar results were observed

on the Wodak catalogue) over raw datasets.

Matched against MIPS complexes. Jaccard threshold Jmin = 0.50.
Method Network #Predicted #Matched #Derivable #Derived Pr Rc

Physical P 294 29 155 38 0.098 0.245

MCL FSW(P) 156 31 102 40 0.198 0.333

ICD(P) 167 32 109 40 0.191 0.293

TCSS(P) 172 39 112 41 0.226 0.366

Physical P 297 39 155 49 0.131 0.316

MCL FSW(P) 149 38 102 51 0.255 0.392

-CAw ICD(P) 162 41 109 52 0.253 0.376

TCSS(P) 168 41 112 54 0.244 0.366

Physical P 156 41 155 56 0.263 0.361

CMC FSW(P) 144 31 102 59 0.215 0.313

ICD(P) 165 43 109 60 0.260 0.394

TCSS(P) 128 39 112 59 0.304 0.357

Physical P 414 34 155 41 0.082 0.264

HACO FSW(P) 221 32 102 44 0.144 0.313

ICD(P) 248 37 109 45 0.149 0.339

TCSS(P) 253 46 112 45 0.181 0.410

Table 5.9: Impact of scoring on complex detection methods (evaluation against
MIPS). ‘Derivable’ refers to 4-protein-derivable complexes.

Next, Table 5.10 shows the performance after refining these physical clusters

using functional interactions through SPARC (at δ = 0.40). It shows that post-

processing using raw functional interactions (P+F) led to many noisy clusters,

resulting in lower precision and recall. But, adding filtered (scored) functional

interactions to scored physical datasets (denoted as FSW(P+F), ICD(P+F) and

TCSS(P+F)) through SPARC helped to reconstruct significantly more benchmark

complexes. This shows that scoring combined with SPARC-based refinement sig-

nificantly boosted the performance of all methods.

Table 5.11 does a more finescale analysis of the complexes reconstructed from the

sparse phsyical clusters before and after SPARC-based post-processing. It shows

that many of the “initial” physical clusters that were sparse (CE-score < 0.40)



5.4 Experimental results 106

Matched against MIPS complexes. Jaccard threshold Jmin = 0.50.
Method Network #Predicted Size #Matched #Derivable #Derived Pr Rc

P 294 7.96 29 155 38 0.098 0.245

P+F 338 8.66 19 164 23 0.056 0.140

MCL FSW(P+F) 102 15.88 29 119 38 0.284 0.319

ICD(P+F) 138 17.14 33 122 44 0.239 0.361

TCSS(P+F) 261 10.52 42 158 54 0.161 0.342

Consensus 429 13.01 57 164 56 0.133 0.341

P 297 7.94 39 155 49 0.131 0.316

P+F 342 8.34 25 164 29 0.073 0.177

MCL FSW(P+F) 136 9.46 41 119 57 0.301 0.479

-CAw ICD(P+F) 141 7.44 48 122 61 0.340 0.500

TCSS(P+F) 296 9.98 49 158 61 0.166 0.386

Consensus 484 8.72 81 164 71 0.167 0.432

P 156 11.42 41 155 56 0.263 0.361

P+F 306 14.39 33 164 41 0.108 0.250

CMC FSW(P+F) 136 12.44 36 119 48 0.265 0.403

ICD(P+F) 252 8.91 51 122 63 0.202 0.516

TCSS(P+F) 127 11.66 45 158 60 0.354 0.380

Consensus 429 9.80 80 164 66 0.186 0.402

P 414 5.98 34 155 41 0.082 0.264

P+F 510 6.68 28 164 34 0.055 0.207

HACO FSW(P+F) 111 10.17 39 119 54 0.351 0.454

ICD(P+F) 131 8.90 43 122 60 0.328 0.492

TCSS(P+F) 269 7.49 55 158 67 0.204 0.424

Consensus 419 7.61 79 164 74 0.189 0.451

Table 5.10: Impact of adding functional interactions using SPARC on complex de-
tection methods (evaluation against MIPS). ‘Derivable’ refers to 4-protein-derivable
complexes.

#Predicted clusters #Derived

Sparse Processed Final benchmarks
Method Network Initial (CE < 0.40) by SPARC (Size ≥ 4) Before After

P+F 638 269 8 338 0 2

MCL FSW(P+F) 188 42 16 102 1 9
ICD(P+F) 258 57 18 138 2 9
TCSS(P+F) 380 102 19 261 2 10

P+F 472 212 8 342 0 2

MCL- FSW(P+F) 255 37 19 136 2 11
CAw ICD(P+F) 258 39 21 141 2 13

TCSS(P+F) 408 97 26 296 3 16

P+F 424 186 20 306 0 8

CMC FSW(P+F) 251 32 23 136 2 18
ICD(P+F) 354 44 36 252 2 21
TCSS(P+F) 224 56 41 127 4 27

P+F 389 25 510 338 1 10

HACO FSW(P+F) 53 29 111 102 2 21
ICD(P+F) 59 31 131 138 3 23
TCSS(P+F) 66 43 269 261 6 36

Table 5.11: The number of benchmark complexes recovered by sparse clusters before
and after the SPARC-based processing.
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underwent SPARC post-processing. These post-processed clusters were able to re-

construct significantly higher number of benchmark complexes. Their CE-scores

showed a huge improvement, and the correlation between this improvement and the

improvement in their Jaccard accuracies (when matched to benchmark complexes)

is shown in Figure 5.7.

Note: One interesting point to note in Table 5.10 is that the compositions of

predicted complexes vary based on the scoring scheme used, and therefore we had

to construct a consensus set of complexes from the three scoring schemes for each

of the methods. To do this, we employed a three-way agreement scheme based

on Jaccard overlaps. Let {A,B,C} be a complex triplet, each complex predicted

from a different scored network by the same method. If at least two complex pairs

from {(A,B), (B,C), (C,A)} achieve significant Jaccard overlaps (≥ 0.70), then the

proteins of A, B and C are merged together into a single consensus complex T . Only

the proteins originating from at least two complexes are included in T . We noticed

that this consensus operation further improves the accuracies of the predictions

leading to better reconstruction of benchmark complexes.

An edge density-wise break up study of improvement: Figures 5.8 and 5.9

show an edge density wise break up of complexes derived before and after SPARC-

refinement. We exclude MCL to draw any conclusions, and considering the other

three methods, we note that there are two“bands of impact” (marked in circles) due

to SPARC: (i) The first band is around low density complexes - there is improvement

seen for complexes of densities as low as 0.10, which is due to increase in their

densities and also pulling-in of disconnected proteins. (ii) Even interestingly, there

is improvement seen around 0.70, which is the second band, which is mainly due

to pulling-in of disconnected proteins into the (denser) complexes. This shows that

SPARC has two distinct “bands of impact”, each serving the purpose SPARC was

devised for.

Further, we notice that there are still a large number of very low density (0.10 and

less) complexes that are untouched by SPARC, which fall into the “twilight zone”.

These complexes lack significantly many interactions or proteins, and therefore call

for more effective methods that look beyond interaction networks by combining a

wider variety of biological information effectively.
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5.4.5 Sensitivity ranking of complex detection methods

Apart from measuring the qualities of clusters, the CE-score can used in an inter-

esting way to measure the sensitivities of methods for complex detection - the more

sensitive a method is the more effective it is on low density networks as well as in

countering noise. This can be done as follows. For any given method, we calculate

the average CE-score of all complexes detected at “borderline”, say with Jaccard

accuracies in the range [0.45, 0.55]. The lower this average CE-score (AvgCE) the

more“sensitive”the method is for detecting low density complexes and in countering

noise. We can then compare the relative sensitivies of the methods across different

networks.

MIPS Wodak
Network Method AvgCE 1/(AvgCE) Norm AvgCE 1/(AvgCE) Norm Total Norm

HACO 0.35 2.86 1.00 0.32 3.13 1.00 2.00 1.00
P CMC 0.39 2.56 0.90 0.37 2.70 0.86 1.76 0.88

MCL-CAw 0.41 2.44 0.85 0.40 2.50 0.80 1.65 0.83
MCL 0.44 2.27 0.80 0.43 2.33 0.74 1.54 0.77

HACO 0.41 2.44 1.00 0.41 2.44 1.00 2.00 1.00
P+F CMC 0.44 2.27 0.93 0.43 2.33 0.95 1.89 0.94

MCL-CAw 0.49 2.04 0.84 0.48 2.08 0.85 1.69 0.85
MCL 0.56 1.79 0.73 0.55 1.82 0.75 1.48 0.74

CMC 0.31 3.23 1.00 0.31 3.23 1.00 2.00 1.00
ICD(P+F) MCL-CAw 0.34 2.94 0.91 0.34 2.94 0.91 1.82 0.91

HACO 0.36 2.78 0.86 0.35 2.86 0.89 1.75 0.87
MCL 0.37 2.70 0.84 0.36 2.78 0.86 1.70 0.85
MCL-CAw 0.32 3.13 1.00 0.31 3.23 1.00 2.00 1.00

FSW(P+F) HACO 0.36 2.78 0.89 0.36 2.78 0.86 1.75 0.88
CMC 0.36 2.78 0.89 0.36 2.78 0.86 1.75 0.88
MCL 0.37 2.70 0.86 0.37 2.70 0.84 1.70 0.85

MCL-CAw 0.29 3.45 1.00 0.27 3.70 1.00 2.00 1.00
TCSS(P+F) HACO 0.32 3.13 0.91 0.31 3.23 0.87 1.78 0.89

CMC 0.36 2.78 0.81 0.35 2.86 0.77 1.58 0.79
MCL 0.41 2.44 0.71 0.41 2.44 0.66 1.37 0.68

Table 5.12: Relative ranking of methods based on their sensitivities.

Relative Normalized
Category Method score score

HACO 2.00 1.00
Unscored CMC 1.82 0.91

MCL-CA 1.67 0.84
MCL 1.51 0.75

MCL-CAw 2.91 1.00
Scored HACO 2.64 0.91

CMC 2.56 0.88
MCL 2.49 0.85

Table 5.13: Overall ranking of the methods based on sensitivities.

To go about this we calculated the inverse of average CE-scores (1/AvgCE)
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of the “borderline” complexes detected from each of the methods on each of the

networks, and ranked the methods by normalizing these inverse averages against

the best (as done previously in Chapter 4). Table 5.12 shows the relative ranking of

the four methods on the P , P +F and the scored(P +F ) networks, while Table 5.13

gives the overall ranking. The tables show that HACO is ranked the best on the P

and P + F networks, while MCL-CAw is ranked the best on the scored networks.

In other words, HACO is more effective in detecting low density complexes and also

in countering noise on raw networks, but when the networks are scored, MCL-CAw

is more effective in detecting low density complexes and in effectively making use of

the scoring. This agrees with the findings from Chapter 4 (see Tables 4.16, 4.17).

5.4.6 In-depth analysis of detected complexes

We performed in-depth analysis of some of the predicted complexes using Cy-

toscape [97]. For example, the CCR4-NOT complex is a multifunctional complex

that regulates transcription, plays a role in mRNA degradation, and also regulates

cellular functions in response to changes in environmental signals in yeast [114].

This complex was “scattered” among multiple disjoint components of the Physical

network, and therefore went undetected from all four methods. The addition of

functional interactions facilitated linking together of these components, enabling

the methods to detect it successfully (see Figure 5.10).

While many additional complexes were detected upon employing functional in-

teractions, there were a few complexes that were missed as well. For example, the

RNA polymerase complexes I, II and III, that are involved in the formation of RNA

chains during transcription [103], were bundled into a large dense module together

with some of the TBP-associated factors and TFIID complexes, which are also in-

volved in transcription [115]. Due to the functional similarity between the subunits

of all these complexes, several functional interactions were added among them. Con-

sequently, the methods recovered a large dense module housing all these complexes

from which the individual complexes could not be segregated. The same was the

case with the multi-eIF complexes and the SAGA-SLIK-ADA-TFIID complexes.
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Segregating the amalgamated complexes

The amalgamated clusters do not match benchmark complexes with high Jaccard

accuracies causing difficulty in identifying the individual complexes. One way to

identify these individual complexes is replace to the Jaccard match criteria by a

different criteria as follows. For any amalgamated cluster C and a benchmark

complex B, we just measure the proportion of proteins in B covered by C, that

is, P (C,B) = |C ∩ B|/|B|. If P (C,B) ≥ 0.50, we consider B to be covered by C.

Using this criteria, we can get an idea of the individual complexes bundled together

within the cluster C.

However, if we wish to explicitly segregate out the individual complexes, we need

to post-process these amalgamated clusters. In order to do such a post-processing,

we note that amalgamation is caused when too many functional interactions are

added across the individual complexes. Therefore, selective removal of these func-

tional interactions is one way to segregate out the complexes (Note: In an alternative

approach, Liu et al. [116] removed hubs from the PPI network to prevent methods

from amalgamating complexes. This approach showed reasonable performance im-

provement in CMC, but not in MCL).

For each fused cluster we arrange its functional interactions in non-decreasing

order of their interaction weights. Then we repeately remove the first k interactions

and reprocess the cluster using the same four methods (MCL, MCL-CAw, CMC

and HACO). We apply this procedure for all clusters of size ≥ 20 that are likely to

contain more than one benchmark complex as per the above criteria. There are only

a very few such fused clusters, hence such a simple method is sufficient to identify

the individual complexes. Table 5.14 shows the results of this procedure.

5.5 Lessons from employing functional interactions

In Figure 5.11, we position the detection of sparse complexes using functional inter-

actions into our “bin-and-stack” chronological classification introduced in Chapter

3. We have added an extra “layer” because functional interactions can be inferred

from a variety of biological information apart from those already mentioned in the

lower layers. The F1-values clearly show that detecting of sparse complexes has
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Amalgamated clusters Post-processing of clusters

Complexes #Interactions Complexes
Cluster likely present removed identified

Cluster 1 SAGA, ADA, 10 SAGA, ADA
(#p 27, #i 280) SLIK, TFIID 20 SAGA, ADA

30 SAGA, ADA, TFIID

Cluster 2 10 Pol I, III
(#p 25, #i 198) Pol I, II, III 20 Pol I, III

30 Pol I, III

Cluster 3 10 eIF3
(#p 20, #i 144) eIF1, eIF2, eIF5 20 eIF3

30 eIF3, eIF2, eIF5

Table 5.14: Segregating the individual complexes from amalgamated clusters by re-
moval of functional interactions. Removal of interactions beyond 30 caused clusters
to become too sparse to be processed properly.

indeed been a leap forward in improving complex detection.

In spite of these advantages, there can be some obstacles and limitations in utiliz-

ing functional interactions. Functional interactions can be considered a“superset”of

physical interactions. However, Figure 5.6 seems to be projecting a different picture:

very low overlaps between the Physical and Functional datasets. The differential

curation of the two datasets - the Physical dataset is curated from experimental

techniques, while the Functional dataset is curated from computational techniques

- along with the presence of many missing (true negatives) and spurious (false pos-

itives) interactions, give rise to these low overlaps. Though this is an observation

from only the two yeast datasets considered here, it is worthwhile investigating how

far away are we from the “ideal” picture of physical interactions being a proper

subset of functional interactions in order to make most effective use of the two.

In addition to these, employing functional interactions can potentially “lump

together” several functionally-similar complexes into functional modules, as we saw

in the cases of the Pol-I, II, III, and SAGA-SLIK-ADA-TFIID complexes. In fact,

Table 5.10 show quite a large increase in the average sizes of predicted complexes

indicating that some complexes might potentially be amalgamated together into

larger modules. This is because functional interactions are too “general” for identi-

fying only the physically interacting groups of proteins that correspond to complexes

within these functional modules. Therefore, functional interactions will need a dif-

ferent treatment from physical interactions in complex detection studies.
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The “twilight zone”: The very low density complexes, which cannot be detected

even with addition of functional interactions, form a “twilight zone”, and they call

for newer methods that look beyond interaction network topologies by combining a

wider variety of biological information effectively.

To conclude here, we say that reasonable progress on complex detection has

been done in the previous as well as the current chapter. In the next chapter, we

will dwelve into some of the biological insights obtained from deeper analysis of our

detected complexes in yeast.



CHAPTER 6

Protein essentiality and periodicity in

complex formations

Governing dynamics, gentlemen!

A Beautiful Mind, 2001

Directed by Ron Howard

- John Nash played by Russell Crowe

In the previous chapters, we introduced the method MCL-CAw to predict complexes

from the yeast physical interactome, and further built upon its capabilities to de-

tect sparse complexes by adding functional interactions using SPARC. We critically

evaluated these methods in terms of their precision and recall, and also presented

a few case studies on the predicted complexes. However, these evaluations were re-

stricted mainly to the quantitative performance of the methods. In this chapter, we

employ the detected complexes for gaining possible novel insights into the cellular

machinery, further justifying the applicability of our developed methods.

The PPI network and the complexes predicted from it can provide vital insights

into the cellular organization. For example, Wang et al. (2009) [69] utilized the

complexes predicted from their method HACO to build a ‘ComplexNet’, a network

of complexes and proteins, in order to study the higher level organization of com-

plexes within the cell. In another study, Vanunu et al. (2010) [117] associated

complexes to diseases using physical and functional interactions, and identified a
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significant number of disease-related complexes, a study vital to understanding dis-

eases and their cures. More recently, Isoe et al. (2011) [118] found that knock out

of individual proteins from the COPI complex disrupts the enzyme secretion pro-

cess for digestion of blood in mosquitoes. By experimenting on mosquitoes, they

found that knocking out of COPI killed 90% of those mosquitoes within two days

after feeding on blood, a result very useful to prevent mosquito-borne diseases like

dengue, yellow fever and malaria.

An exhaustive study of complexes from the point of view of gaining novel biolog-

ical insights is out of the scope of this thesis. But, to demonstrate the usefulness of

our developed techniques, here we utilize our predicted complexes to understand the

roles of protein essentiality and periodicity in complex formations. These studies

will be useful to gain deeper insights into the biological phenomena driving complex

formations.

6.1 Role of protein essentiality in complex formations

Some early works by Jeong et al. [10] and Han et al. [119] studied the essen-

tialities of proteins based on pairwise interactions within the interaction network,

and concluded that hub (high-degree) proteins are more likely to be essential (the

“centrality-lethality” rule [10]). However, a deeper insight can be obtained by study-

ing the essentialities at cluster or group level of proteins rather than pairwise in-

teractions. Recently, Zotenko et al. (2008) [120] argued that essential proteins

often group together into densely connected sets of proteins performing essential

functions, and thereby get involved in higher number of interactions resulting in

their hubness property. Therefore, hubness may just an indirect indicator of pro-

tein essentiality. More recently, Kang et al. (2010) [121] studied essentiality of

proteins by generating the reverse neighbor (RNN) topology [122] out of protein

networks. This topology groups those proteins together that are within the reverse

neighborhood of a given protein. Kang et al. concluded that centrality within the

RNN topology is a better estimator of essentiality than hubness or degree in the

interaction network. Studies by Hart et al. [38] showed that essential proteins are

concentrated only in certain complexes, resulting in a dichotomy of essential and

non-essential complexes. Wang et al. [69] concluded that the size of the (largest)
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recruiting complex of a protein may be a better indicator of protein essentiality

than hubness. Pereira-Leal et al. [123] calculated the fraction of essential proteins

among proteins found in multiple complexes, and found a consistent trend across

different datasets showing a large fraction of multi-complex proteins to be essential.

6.1.1 Our study of protein essentiality in complexes

In our analysis, we try to understand the relationship between the essentiality of

proteins and their ability to form complexes. Our analysis is based on the predicted

complexes from MCL-CAw from the four PPI networks studied previously (in Chap-

ter 4) namely, the ICD(Gavin+Krogan), FSW (Gavin+Krogan), Consolidated3.19

and Bootstrap0.094 networks (listed again in Table 6.1).

PPI Network # Proteins # Interactions Avg node degree

ICD(Gavin+Krogan) 1628 8707 10.69

FSW(Gavin+Krogan) 1628 8688 10.67

Consolidated3.19 1622 9704 11.96

Bootstrap0.094 2719 10290 7.56

Table 6.1: PPI networks used in the analysis of protein essentiality and periodicity

In the first set of analysis, we calculated the proportion of essential proteins

present in the complexes, shown in Table 6.2 (the proportion of essential pro-

teins in a complex = #essential proteins/total #proteins in the complex). The

table shows that a high proportion (77.65%, 78.03%, 81.34% and 76.35% from the

ICD(Gavin+Krogan), FSW (Gavin+Krogan), Consolidated3.19 and Bootstrap0.094

networks, respecively) of essential proteins present in the networks belonged to at

least some complex. This indicated that essential proteins are often members of

complexes or co-clustered groups of proteins.

# Essential genes in Yeast Genome Deletion Project [124,125]: 1123

Number (Proportion) of essential genes present in

PPI Network Whole network Predicted cores Predicted complexes

ICD(Gavin+Krogan) 604 (0.537) 510 (0.454) 552 (0.491)

FSW(Gavin+Krogan) 604 (0.537) 510 (0.454) 552 (0.491)

Consolidated3.19 611 (0.544) 568 (0.506) 576 (0.513)

Bootstrap0.094 757 (0.674) 634 (0.564) 676 (0.601)

Table 6.2: Proportion of essential genes in the predicted complexes of MCL-CAw

Next, we binned the complexes based on their sizes and calculated the propor-

tion of essential proteins in all complexes for each bin, shown in Figure 6.1 (a).
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The figure shows that essential proteins were present in higher proportions within

larger complexes. Next, we calculated the proportion of essential proteins within

the top K ranked complexes, shown in Figure 6.1 (b). The figure shows that es-

sential proteins were present in higher proportions within higher-ranked complexes

(that is, complexes predicted with higher reliability). Both these figures hint at the

same finding: essential proteins come together in large groups, some of which are

complexes, to perform essential functions, thereby indicating a strong correlation

between the essentiality of complexes and their ability to take part in complexes.

Figure 6.1: Correlation between essentiality of proteins and their abilities to form
complexes. Proportion of essential proteins within: (a) complexes of different sizes,
predicted from Consol3.19 network; (b) top K ranked complexes.

6.2 Role of protein ‘dynamics’ in complex formations

In a recent (2010) foresightful survey by Przytycka et al. [85], the application of

network dynamics (temporal information) into computational analyses is discussed

at good lengths, particularly on the analysis of protein interaction networks. The
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authors suggest that if sufficient information about the ‘timing activities’ of proteins

can be obtained, the dynamical nature of the underlying organizational principles

in interaction networks can be better understood. This shift from static to dynamic

network analysis is vital to understanding several cellular processes, some of which

may have been wrongly understood due to ignoring dynamic information.

Correlation between topological positioning of proteins in PPI network

and their expression profiles

Based on the analysis using a high-confidence yeast PPI network, Han et al.

(2004) [119] reported an interesting dichotomy of hubs in PPI networks - ‘date’

hubs and ‘party’ hubs. Date hubs interact with a single protein at a given intracel-

lular space and time, while party hubs interact with multiple proteins at the same

space and time. Han et al. reported a strong correlation between the topological

positioning of these hub proteins in PPI networks and their expression profiles -

party hubs are ‘modular’ and are highly coexpressed with their neighbors, while

date hubs are ‘central’ and are not coexpressed with their neighbors. Though this

finding was critically questioned by Batada et al. [126], the existence of such di-

chotomy is now increasingly being accepted [127, 128], and it paved the way for

simultaneous analysis of topologies of networks and their dynamics.

Recently (2007), Komurov et al. [128] studied how proteins with different expres-

sion dynamics were positioned in the yeast PPI network. Komurov et al. calculated

the statistical expression variance (EV) of each gene in the yeast genome across 272

experiments compiled from SGD [94]. An EV close to 0 indicated a gene with low-

est variance (least dynamic), while an EV close to 1 indicated a gene with highest

variance (most dynamic). Using a high-confidence PPI network comprising of 5456

interactions among 2315 proteins, Komurov et al. compared the EVs of proteins

with their neighbors in the network, and found a strikingly high correlation between

EVs of proteins and their neighbor EVs. This suggested that proteins had similar

expression dynamics as their immediate neighbors in the network. This confirmed

earlier findings (2001) [129] that co-regulated proteins frequently interacted with

each other. Carrying this forward, Komurov et al. extended the date-party hub hy-

pothesis of Han et al. [119] by proposing ‘family’ hubs. Komurov et al. reported that
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family hubs were always present in the network and interacted with their neighbors

constitutively, while party hubs were dynamically coexpressed with their neighbors

with which they interacted. Therefore, family hubs formed ‘static modules’ and

party hubs formed ‘dynamic modules’, whereas date hubs organized the network.

Furthermore, they reported that these static and dynamic modules were enriched

with specialized functions.

Yu et al. (2007) [130] studied the topological positioning of hubs in the yeast

PPI network, and said ‘date’ hubs show high betweenness and are therefore inter-

modular, while ‘party’ hubs show high clustering coefficient and therefore intra-

modular.

More recently (2011), Patil et al. [131] classified hubs in PPI networks using a

combination of gene co-expression correlation and co-expression stability among in-

teracting proteins. The co-expression stability measures the extent to which a pair

protein is constitutively co-expressed, that is, how “stable” is the co-expression.

Based on these two measures, Patil et al. found that hubs showing high co-

expression correlation as well as high stability (which they call Category 1 hubs)

with their neighbors were likely to be intra-modular, while hubs showing low co-

expression correlation but high stability (Category 2 hubs) with their neighbors

were likely to be inter-modular. Many of the Category 2 hubs were involved in

transient interactions, and corresponded to ‘date’ hubs.

The ‘dynamics’ of complex formation during the yeast cell cycle

de Lichtenberg et al. (2005) [132] studied the dynamics of complex formations dur-

ing the yeast cell cycle. They constructed a PPI network comprising of 300 proteins

(184 dynamic and 116 static) using Y2H and TAP/MS screens. Extraction of com-

plexes from these screens and comparisons with known complexes from MIPS [90]

revealed 29 heavily intraconnected modules (complexes or complex variants) that

existed at different “time points” during the cell cycle. Further, most complexes

contained both constitutively expressed (static) as well as periodically expressed

(dynamic) proteins. More interestingly, almost all eukaryotic complexes were as-

sembled just-in-time contrary to the just-in-time synthesis observed in bacteria.

Just-in-time assembly meant that most subunits of complexes were pre-transcribed,
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while some subunits were transcribed when required to assemble the final complex

(see Figure 6.2). This was more advantageous than just-in-time synthesis because

only a few components of entire complexes had to be tightly regulated to control the

timing of the final complex assembly. Holding off on the last components enabled

the cell to prevent “switching on” of complexes at the wrong times.

Figure 6.2: “Just-in-time assembly” of eukaryotic complexes, adopted from [132].
The periodically transcribed protein (in green) assembles with static proteins (in
grey) to form an active complex.

More recently (2009), Wu et al. [133] partitioned a high-confidence PPI network

into four “phase sub-networks” based on the cell-cycle phases (G1, S, G2 and M) in

which the dynamic proteins were transcribed. They analysed the properties of hubs

within these sub-networks and found that only 69% of the hubs still acted as hubs in

at least one of the four sub-networks. They also investigated the dynamic properties

of the anaphase-promoting complex and the chromatin-remodeling complex, and

found a network-based explanation for the dynamic assembly of these two complexes

during the yeast cell cycle.

6.2.1 Our study of protein ‘dynamics’ in complexes

It is possible to correlate and study the topological positioning and temporal be-

havior of proteins by combining PPI network topology and gene expression data,

as we saw in the reviewed works above. However, a deeper insight can be obtained

by studying proteins in larger groups than just pairs of neighbors in the network.

Therefore, here we study the temporal behavior of proteins via their complexes.
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To make the analysis simpler, we first “discretize” the expression for each protein

based on the yeast cell cycle phase (G1 → S → G2 → M) in which the expression is

maximum. We call this discretization procedure as Peak Expression Discretization

(PED). This makes the analysis simpler because we can now assign a single ‘phase’ to

each protein in any given complex, and study the order of assembly and disassembly

of that complex - the ordered sequence in which the proteins get together to assemble

into the final complex and disassemble after that.

For computing these phases we took the aid of the Cyclebase database (http:

//www.cyclebase.org/) [134]. Cyclebase averages gene expression data obtained

from multiple microarray studies to compute the approximate phase of peak ex-

pression for each protein (see Figure 6.3). If a protein is expressed maximum in

all four phases, that is, it shows constitutive expression, it is labeled ‘static’, else

it is labeled ‘dynamic’ along with the phase in which it expresses maximum. As of

September 2010, the database has 6114 yeast proteins, out of which 5514 are labeled

‘static’, and the remaining 600 are ‘dynamic’. Out of these ‘dynamic’ proteins, 576

have a peak time, while the remaining 24 are labeled ‘uncertain’.

Figure 6.3: Peak Expression Discretization (PED) for a protein with respect to the
yeast cell cycle phases (taken from Cyclebase [134])

For a start, we integrated the computed cell cycle phases of proteins onto the

PPI network and performed a brief study of network dynamics, as shown in Ta-

ble 6.3. The table shows that the interactions among static proteins dominated

the network (for example, 94.69% in Consol3.19). The static-dynamic and dynamic-

dynamic interactions formed comparatively smaller portions of the networks (for

example, S-D: 4.6% and D-D: 0.716% in the Consol3.19 network). Among the 64
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dynamic-dynamic interactions in the Consol3.19 network, 42 were“intra-phase”, that

is, among dynamic proteins that peaked during the same phase, while the remaining

22 were “inter-phase”, that is, among dynamic proteins that peaked during different

phases.

When we examined the static-dynamic interactions in detail, we noticed many

of the static proteins were involved in transient interactions with dynamic proteins

expressed in different phases. These static proteins were enriched in a variety of

GO terms, the prominent ones being signal transduction and transcription. This

revealed the “multipurpose” nature of these static proteins. This also indicated

that ‘staticness’ or constitutive expression might be linked to the potential ease in

“reusability” of such multipurpose proteins.

Network # Proteins # Interactions
Total Annotated Total Annotated S–S S–D D–D

ICD(G+K) 1628 1613 8707 8296 7612 363 42
FSW(G+K) 1628 1613 8688 8296 7612 363 42
Consol3.19 1622 1613 9704 8941 8466 411 64
Boot0.094 2719 2142 10290 9723 8997 518 79

Table 6.3: Analysis of ‘dynamism’ in four yeast PPI networks. “Annotated” refers
to labeled as ‘static’ or ‘dynamic’ in the Cyclebase database [134].

A workflow for studying ‘dynamics’ in protein complexes

Next, we performed our intended study on protein complexes using cell cycle phase

information. The workflow for this study is shown in Figure 6.4. Essentially, we

collated the predicted complexes and integrated the phase data (from PED) with

these complexes to study their dynamic assembly and disassembly.

A case study of cyclin-CDK complexes:

We first present a case study illustrating complexes formed by the kinase Cdc28.

Upon clustering the Consolidated network using MCL-CAw, we obtained the follow-

ing cluster containing Cdc28 (Ybr160w): {Ybr160w, Ygr108w, Ypr119w, Ydl155w,

Ylr210w, Ypr120c, Ygr109c, Ymr199w, Ypl256c, Yal040c}. When we added the cell

cycle phase data to the proteins in this cluster, we noticed that the proteins were

expressed during different phases: Ybr160w - Static, Ygr108w - M , Ypr119w - G2,

Ydl155w - S, Ylr210w - S, Ypr120c - G1, Ygr109c - G1, Ymr199w - G1/S, Ypl256c
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Figure 6.4: A high-level workflow to study dynamics of protein complex formations

- G1, and Yal040c - M (see Figure 6.5). This revealed the possible existence of mul-

tiple ‘time-based’ complexes within this large cluster. Validation against SGD [94]

confirmed that Cdc28, also named Ybr160w, is a cyclin-dependent kinase (CDK)

that participates in multiple complexes with its cyclin partners. And these SGD

complexes matched the ones we segregated from the cluster by incorporating cell

cycle phase data (see Figure 6.5).

Figure 6.5: Cdc28 and its cyclin-dependent complexes identified by incorporating
cell-cycle phase information. Cdc28 is temporally “reused” among the complexes.

The CDK-cyclin complexes control the passage through the cell cycle in yeast,

and are comprised of cyclins, the regulatory subunits, and CDKs, the catalytic

subunits [135]. The concentrations of cyclins increase and decrease as the cell pro-

gresses through the cell cycle, while the concentrations of CDKs do not fluctuate
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in such a characteristic manner, but they have no kinase activity unless they are

associated with a cyclin. The CDKs associate with different cyclins to form cyclin-

CDK complexes that activate or inhibit several proteins involved in the cell-cycle

progression [135].

This case study revealed two interesting insights:

• Small complexes (such as the Cdc28-cyclin complexes) can be identified by

incorporating additional information (in this case, cell cycle phases) into PPI

network topology;

• The ‘static’ Cdc28 kinase is temporally “reused” across multiple complexes

indicating a possible link between ‘staticness’ and “reusability” of proteins

across complexes.

A global study of temporal “resuability” of proteins in complexes

In order to further understand the temporal “reusability” of proteins, we next per-

formed a global study of all predicted complexes from the yeast PPI network using

MCL-CAw. We performed this study using the “core-attachment” model of com-

plexes proposed by Gavin et al. [15] and adopted in MCL-CAw.

As per the “core-attachment” model of complexes (see Chapter 4 for details of

the model), the core proteins are the main functional units with which the attach-

ment proteins collaborate to form complexes. These attachment proteins may be

shared during the formation of multiple complexes. Among these attachments are

tightly-coupled subsets of proteins called “modules” that are shared in groups as a

whole across these complexes. Therefore, we expect these shared proteins (that is,

attachments and modules) to be enriched higher in ‘staticness’ compared to cores

within complexes. This is to allow for temporal “reusability” of shared proteins

among complexes (see Figure 6.6). We state this as our hypothesis,

Hypothesis 6.1 We expect ‘staticness’ to be more enriched in attachments com-

pared to cores in complexes.

Testing our hypothesis: Let λs(X) denote the number of static proteins in set X,

and λd(X) denote the number of dynamic proteins in X. Using this, we define the

enrichment E for static (dynamic) proteins among attachments and cores in the set
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Figure 6.6: Relating the “core-attachment” model to temporal “reusability”: we ex-
pect the attachment proteins, which are more likely to be shared among complexes,
to be more enriched in ‘staticness’ compared to the core proteins.

of complexes C as follows. For a complex C ∈ C the enrichment in the attachments

Attach(C) is,

Es(Attach(C)) =
|λs(Attach(C))|

|λs(C)| , (6.1)

Ed(Attach(C)) =
|λd(Attach(C))|

|λd(C)| . (6.2)

Therefore, the relative enrichment RE(Attach(C)) of static to dynamic proteins in

the attachments in C is,

RE(Attach(C)) =
Es(Attach(C)
Ed(Attach(C)

. (6.3)

The enrichment and relative enrichment for cores is defined in a similar way. See

an example in Figure 6.7. The overall enrichment and relative enrichment for C is

obtained by averaging over all complexes.

Figure 6.7: Calculating enrichment E and relative enrichment RE.

Table 6.4 shows these values for the predicted (annotated) complexes from
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four yeast PPI networks. The relative enrichment RE values for complexes pre-

dicted from the highly reliable Consolidated network were RE(Attach) = 3.402 and

RE(Core) = 0.839. This shows that the attachment (the shared) proteins were

enriched higher in ‘staticness’ compared to core proteins, thus supporting our hy-

pothesis. When we mapped some of these complexes back onto the PPI network,

we found many of the shared ‘static’ proteins to be involved in “multiphase” inter-

actions - several dynamic proteins transcribed in different phases interacted with

these shared ‘static’ proteins to form periodic complexes. In other words, the static

proteins formed“anchors” for periodic cores to form periodic complexes. These find-

ings supported the biological design principle of temporal “reusability”. The sharing

of static proteins among complexes instead of the dynamic proteins ensured main-

tenance of the generic proteins throughout all phases for their “reusability”, while

only the periodic proteins had to be transcribed just-in-time to assemble the re-

quired complexes, which agreed with the findings by de Lichtenberg et al. [132]. We

analysed some of these shared ‘static’ proteins and found many to be kinases that

were involved in activating or deactivating several complexes (for example, Cdc20

involved in deactivating the Anaphase Promoting Complex/Cyclosome) during the

yeast cell cycle.

PPI Network #Complexes Enrichment E
(annotated) Attach Core

Static Dynamic Static Dynamic
ICD(G+K) 49 0.523 0.179 0.442 0.509
FSW(G+K) 48 0.518 0.177 0.442 0.512
Consol3.19 57 0.626 0.184 0.445 0.530
Boot0.094 52 0.661 0.192 0.562 0.586

Table 6.4: Enrichment of static and dynamic proteins among attachments and cores
of annotated complexes from yeast PPI networks.

Table 6.4 also shows that the enrichments of static and dynamic proteins in

cores were almost equal, indicating that both static as well as dynamic proteins

were equally capable of being part of cores. These are specialized (non-reused)

sets of proteins that may be either static or dynamic, and form functional parts

of complexes. This agreed with the findings by Komurov et al. [128] that both

static as well as dynamic proteins were capable of forming functional modules - the

static proteins formed ‘static modules’ while the dynamic proteins formed ‘dynamic
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modules’, both of which were involved in vital functions of the cell.

Relating our findings to previous studies

Based on the analyses here, we relate our findings to previously discussed studies

on combining PPI network and gene expression data by Han et al. [119], Kumorov

and White [128], Yu et al. [130] and Patil et al. [131], and the work on essential

proteins by Pereira-Leal et al. [123]. We classify proteins based on participation

in complexes into static “reused” and static/dynamic specialized (non-resused) pro-

teins, and relate this classification to that of hubs by the previous works, as show

in Table 6.5.

Reused Specialized Previous works

Static ‘Date’ hubs ‘Family’ hubs Han et al., 2004; Komurov and White, 2007
Inter-modular Intra-modular Yu et al., 2007
Category 2 Category 1 Patil et al., 2011
Essential Pereira-Leal, 2006

Dynamic ‘Party’ hubs Han et al., 2004; Komurov and White, 2007
Intra-modular Yu et al., 2007

Table 6.5: Relating our classification of based on participation in complexes into
static “reused” and static/dynamic specialized proteins to the classification of hubs
by previous works

The hub proteins that Han et al. and Kumorov and White categorized as ‘date’

and ‘party’ hubs correspond to the static “reused” proteins and the dynamic spe-

cialized proteins within complexes, respectively, in our study. The static “reused”

proteins among complexes interact transiently with different sets of proteins to

form different complexes (for example, Cdk kinases), and thereby correspond to

‘date’ hubs. The dynamic proteins get together to form dynamic complexes at a

particular time and disintegrate after that correspond to the ‘party’ hubs (for exam-

ple, dynamic proteins forming the APC/C complex in G1/S phases). The ‘family’

hubs of Kumorov and White correspond to the static specialized proteins that form

(static) complexes (for example, the ribosomal complexes). Further, the Category

2 and Category 1 hubs of Patil et al.’s studies correspond to our static “reused” and

static specialized proteins, respectively. Relating to Yu et al.’s characterization of

hubs into inter-modular and intra-modular, we note that the static “reused” hubs

are shared among complexes and therefore inter-modular, while the static/dynamic
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specialized hubs are found within complexes and therefore intra-modular. Finally,

relating to Pereira-Leal et al.’s findings, we note that many of our “reused” proteins

are kinases, which are known to be essential proteins.

To summarize, our study provides alternative explanations and additional evi-

dence based on participation in complexes to the classification of hubs from previous

studies.

A novel putative role for RAD53 in polarized cell growth

Incorporating phase information into complexes also led us to provide further evi-

dence for a novel putative role for the kinase Rad53. Rad53 is known to be involved

in DNA damage/replication response - required for cell-cycle arrest in response

to DNA damage, and also plays a role in DNA replication [94]. We combined a

recent yeast dataset enriched in interactions involving kinases-phosphatases from

Breitkreutz et al. (2010) [47] with the Gavin+Krogan network (from Chapter 4),

and analysed the Rad53-mediated complexes derived from this combined network.

MCL-CAw derived a cluster comprising of Rad53 and the Septins, which indi-

cated a possible role of Rad53 in mediating the Septins (see Figure 6.8). Septins

are proteins known for their roles in cytokinesis, they form a ring-like scaffold at

the mother-bud neck to recruit proteins to form complexes during cytokinesis [94].

However, we could not find any complexes containing Rad53-Septins in the Wodak-

lab [92] and MIPS [90] databases, and neither any evidence in SGD [94] or GO [37]

for the combined roles. Detailed literature search revealed that very recently Wang

et al. (2009) [136] noticed interactions between Rad53 and Sep7 (Ydl225w) and hy-

pothesized the role of Rad53 in polarized growth via the Septins. Our observations

provided further evidence to support Wang et al.’s hypothesis.
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Figure 6.8: A cluster comprising of Rad53 (Ypl153c) and the Septins indicated a
possible role of Rad53 in mediating the Septins. This was also observed by Wang
et al. [136], who hypothesized that Rad53 may have a role in polarized cell growth
via the Septins.
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6.3 Concluding remarks

In this chapter, we utilized the predicted complexes from MCL-CAw to gain deeper

insights into some of the cellular mechanisms driving complex formations. The

investigations in this chapter were basic and non-exhaustive, yet they hinted at

interesting biological phenomena driving complex formations, reflecting the appli-

cability of our computational methods in deciphering the cellular machinery.

This chapter provides an apt sign off to MCL-CAw and other techiques devel-

oped in this thesis, and paves the way for the final conclusion in the next chapter,

where we summarise the significance of main results in this thesis and list possible

ventures for further research on related problems.



CHAPTER 7

Conclusion

The most exciting phrase to hear in science, the one that heralds new discoveries,

is not “Eureka!” but “Thats funny.”

- Issac Asimov, as quoted in [137]

Protein complexes are one of the fundamental functional units responsible for many

biological mechanisms within the cell. Their identification is therefore necessary

to understand the cellular organization and machinery. With the advent of “high-

throughput” techniques in molecular biology (some of them reviewed in Chapter 2)

large-scale identification of interactions among proteins has become feasible, which

in turn has paved the way for in silico discovery of complexes from protein in-

teraction networks. Over the last few years, many computational methods have

been developed for detecting complexes of organisms such as yeast (exhaustively

reviewed in Chapter 3). Even though promising, complex detection still requires

careful attention in handling errors and noise and reconstructing complexes with

high accuracies. In this respect, this thesis focused on devising and developing sev-

eral techniques and algorithms for accurate complex detection. The results shown

in this thesis were motivated by the following desirable properties:

1. Detecting possibly all complexes and with high accuracies.

2. Effective countering of noise observed in experimental datasets.
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3. In-depth analyses of detected complexes to gain deeper and possibly novel

insights into biological phenomena.

In order to achieve the aforesaid results, the thesis proposed effective methods

(Chapters 4, 5 and 6) that integrate a variety of biological information with the

topology of PPI networks to detect complexes.

7.1 Significance of the main contributions

Specifically, this thesis contributed several new principles and procedures of inquiry

into complex detection, which can be summarized as follows:

1. A ‘foresightful’ survey and taxonomy of computational methods: Chapter 3

presented an elaborate taxonomical survey of techniques developed for com-

plex detection over the last decade. Though there have been several surveys

from time-to-time [86–88], a taxonomy that provides a “sense of time” - when

the methods were developed and links them to experimental improvements

- has not been presented in any of these works. Our taxonomy condensed

the history of complex prediction, and we believe has the potential to “drive”

future research by providing vital insights. For example, it revealed that in-

corporating biological information and capitalizing on reliability scoring sig-

nificantly boosts up performance, an insight that inspired us to develop MCL-

CAw (in Chapter 4). Further, as and when we developed new techniques in

this thesis, we positioned them as new “data points” and/or “layers” in our

proposed taxonomy further reinforcing its usefulness.

2. A new complex detection method using core-attachment structure: Inspired

by the core-attachment modularity structure revealed by Gavin and col-

leagues [15], Chapter 4 presented a novel complex detection method (called

MCL-CAw) incorporating the core-attachment insight into the topological

structure of PPI networks. We demonstrated that MCL-CAw performed bet-

ter or at least as good as several recent methods, and showed consistently

good performance across a variety of reliability scoring schemes.

The thesis presented the first ever comprehensive comparison of complex de-

tection methods across networks scored using a variety of scoring schemes.
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Doing so demonstrated that scoring boosts the performance of methods.

3. A quantitative definition to the notion of complex “derivability”: Through our

Component-Edge (CE) score (introduced in Chapter 5), the thesis presented

a quantitative measure of complex “derivability” that correlates better with

actual prediction accuracies compared to several previously adopted measures

like absolute edge density. The CE-score says that even if a complex has low

absolute edge density, but a significant portion of its proteins are connected

within the same component and its edge density is higher relative to its im-

mediate neighborhood, then the complex has a high chance of being detected.

The CE-score therefore helps to identify likely factors that influence com-

plex derivability. Such a score certainly has strong applicability in developing

future complex detection algorithms.

4. Detection of sparse complexes and the use of functional interactions: Sparse

complexes have been hardly studied in prior works mainly due to the inherent

assumption that complexes are embedded within dense regions of the network,

which may be weak in the wake of insufficient PPI data. In Chapter 5, the

thesis presented a novel characterization of sparse complexes using the CE-

score. Further, it presented a novel algorithm SPARC employing functional

(logical) interactions to detect sparse complexes. This is a novel contribu-

tion because it looks beyond physical interactions to bolster PPI networks for

detecting complexes.

5. Novel biological insights deciphered on complex formations: Finally (in Chap-

ter 6), utilizing the complexes detected from MCL-CAw, the thesis presented

two interesting insights into complex formations in yeast: (i) A strong corre-

lation between the essentiality of proteins and their ability to form complexes;

and (ii) The relatively higher enrichment of ‘staticness’ (constitutively ex-

pressed) in proteins shared among ‘time-based’ complexes hinting towards

the biological design principle of temporal “reusability” of ‘static’ proteins for

complex formations.

Therefore, this thesis is a valuable contribution in the area of computational molec-

ular and systems biology.
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7.2 Limitations of the research

All the experimental results, analysis and inferences in this thesis are based on

complexes detected for Saccharomyces cerevisiae (yeast). This is because yeast is

the most widely studied organism with fairly complete data available on interac-

tions for computation, and bona fide complexes for evaluation, and also auxiliary

information such as literature reports, gene annotation data, cell-cyle phase data,

etc. for further analysis. Though the studies on yeast are an important step to-

wards understanding eukaryotic cellular mechanisms, it is vital to perform similar

studies on higher eukaryotes such as human. The identification, cataloguing and

comparative analysis of human complexes will be vital to understand novel biolog-

ical phenomena, causes and cures of diseases and in drug development. Based on

this we recommend the following avenues for future research.

7.3 Recommendations for further research

1. Detection of complexes from other organisms, particularly human: An impor-

tant avenue for research is to test the current methods and where necessary

develop new methods to detect complexes from the human interactome. From

a technical aspect, this can involve “retrofitting” of current methods onto hu-

man datasets, which as things stand currently, are significantly sparser as well

as noisier than yeast datasets. However, the analysis required on the predic-

tions from human datasets can be very different from yeast. To give an essense,

the methods on yeast can be evaluated by calculating the recall (sensitivity)

against a ‘gold standard’ set of yeast complexes (like MIPS [90] and Wodak

CYC2008 [92]) because this ‘gold standard’ is fairly complete. However, in

the case of human, the ‘gold standard’ is largely incomplete and hence even

a very high recall may not make much sense. Instead alternative validation

of the unmatched predictions will be more crucial in order to identify novel

complexes that can potentially complete the ‘gold standard’.

Another interesting aspect to study here is the evolutionary conservation of

complexes across organisms. Several interesting questions and hypotheses can
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be put forth here that can provide vital insights into complex evolution -

for example, whether “core” proteins are more conserved than “attachment”

proteins?; how do complexes lose or gain components during evolution and

how is the ‘rewiring’ done?; etc.

2. Prediction of membrane protein complexes: The focus of this thesis has been

the identification of all possible complexes from the interactome. However,

interaction networks corresponding to specific proteins can be isolated, and

complexes involved in specific functions can be detected and studied. Such

focused studies are vital for understanding specific phenomena that may not

be general across all complexes.

For example, the conventional Y2H and TAP/MS screens are not effective

in detecting membrane, membrane-associated and extracellular protein inter-

actions (see Chapter 2). This is because Y2H is confined to the nucleus for

testing interactions, while TAP screens cannot capture membrane complexes

due to the insoluble or hydrophobic nature of membrane proteins as well as

the ready dissociation of subunit interactions. To counter these limitations,

recently specialized screens like split ubiquitin-based membrane Y2H system

(MYTH) have been developed to identify interactions among membrane pro-

teins [138]. The study of the membrane protein subinteractome will be use-

ful to identify membrane complexes. The formation of membrane complexes

involves chaperone-assisted ordered assembly of intermediaries, as well as a

complicated mechanism of ‘dynamic exchange’ of proteins among the com-

plexes, phenomena which cannot be understood by studying the entire set of

complexes in general.
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