
Negative Generator Border for Effective Pattern
Maintenance

Mengling Feng,1 Jinyan Li,1 Limsoon Wong,2Yap-Peng Tan1

1Nanyang Technological University & 2National University of Singapore
1{feng0010, jyli, eyptan}@ntu.edu.sg & 2wongls@comp.nus.edu.sg

Abstract. In this paper, we study the maintenance of frequent patterns
in the context of the generator representation. The generator representa-
tion is a concise and lossless representation of frequent patterns. We effec-
tively maintain the generator representation by systematically expand-
ing its Negative Generator Border. According to our literature review,
no prior work has studied the maintenance of the generator represen-
tation. To illustrate the proposed maintenance idea, a new algorithm is
developed to maintain the generator representation for support threshold
adjustment. Our experimental results show that the proposed algorithm
is significantly faster than other state-of-the-art algorithms. This pro-
posed maintenance idea can also be extended to other representations of
frequent patterns as demonstrated in this paper.

1 Introduction

Frequent patterns, also called frequent itemsets, refer to patterns that appear
frequently in a particular dataset [1]. The discovery of frequent patterns can be
formally defined as follows. Let I = {i1, i2, ..., im} be a set of distinct literals
called “items”, and also let D = {t1, t2, ..., tn} be a transactional “dataset”,
where ti (i ∈ [1, n]) is a “transaction” that contains a non-empty set of items.
Each subset of I is called a “pattern” or an “itemset”. The “support” of a pattern
P in a dataset D is defined as sup(P,D) = |{t|t ∈ D ∧ P ⊆ t}|. A pattern P is
said to be frequent in a dataset D if sup(P,D) is greater than or equal to a pre-
specified support threshold ms. The support threshold, ms, can also be defined
in terms of percentage, in which a pattern P is said to be frequent in a dataset D
if sup(P,D) ≥ ms×|D|. The collection of all frequent patterns in D is called the
“space of frequent patterns” and is denoted as F(D,ms). The task of frequent
pattern discovery is to find all the patterns in F(D,ms). Figure 1 shows an
example of transactional dataset and the corresponding frequent pattern space
when ms = 1.

Datasets are dynamic in nature. From time to time, new transactions/items
may be inserted; old and invalid transactions/items may be removed; and the
support threshold may be adjusted to obtain the desirable sets of frequent pat-
terns. Repeating the discovery process every time the dataset is updated is a
naive and definitely inefficient solution. Thus, there is a strong demand for ef-
fective algorithms to maintain frequent patterns for data updates and support
threshold adjustment.

(b)

 a b : 1

{}

c d : 1

a c d : 1

b c : 1

a b c : 1 b c d : 1a b d : 1

Maximal
patterns

Closed
patterns

Generators

ms = 1

d : 3

b d : 2

a : 4 c : 3

a b c d : 1

b : 2

a c : 3 a d : 2

Sample Dataset

a, b, c, d
b, d
a, d
a, c

a, c

(a)

Fig. 1. (a) An example of transactional dataset. (b) The pattern space of the sample
dataset in (a), and the concise representations of the pattern space.

Most of the current maintenance algorithms can be grouped into two major
categories: Apriori-based and sliding window filtering (SWF). Both the Apriori-
based and SWF approaches are developed based on the candidate-enumeration-
and-elimination framework. Apriori-based algorithms [2, 6] enumerate new can-
didates iteratively based on the a priori property. SWF algorithms [5, 11] slice a
dataset into several partitions and then employ a filtering threshold in each par-
tition to generate candidate patterns. The Apriori-based algorithms and SWF
algorithms aim to update and maintain the entire frequent pattern space. How-
ever, the undesirable large number of frequent patterns greatly limits their per-
formance. To break the bottleneck, concise representations of frequent patterns,
more importantly, efficient maintenance of the concise representations are highly
desired. In this paper, we focus our investigation on the maintenance of the gen-
erator representation [14] — a concise and lossless 1 representation of frequent
patterns.

In the literature, algorithms have been proposed to maintain two types of
concise representations under some unfavorable restrictions. Moment [7] is one
example. Moment dynamically maintains the frequent closed patterns [14]. How-
ever, Moment is proposed on the hypothesis that there are only small changes
to the frequent closed patterns given a small amount of updates. Due to this
strict constraint, the performance of Moment degrades dramatically when the
amount of updates gets large. ZIGZAG [15] is another example, which effectively
maintains the maximal patterns [3]. ZIGZAG updates the maximal patterns by
a backtracking search, which is guided by the outcomes of the previous mainte-
nance iteration. Although the maximal patterns can concisely represent frequent
patterns, they do not provide support information for other frequent patterns.
That is, the maximal patterns are a lossy representation. In this work, unlike
ZIGZAG for the maximal patterns, our maintenance algorithm is for a lossless
representation; unlike Moment which bears some unfavorable assumptions, our
maintenance algorithm aims to handle wide range of changes efficiently.

We propose to maintain the generator representation by expanding the Nega-
tive Generator Border. The expansion of the negative generator border is guided
by a systematic technique, which ensures the expansion is complete and yet

1 We say a representation is lossless if it is sufficient to derive and determine the
support of all frequent patterns without accessing the datasets.

2

involves no redundancy. To better illustrate the idea, we focus on the update
scenario where the support threshold is adjusted. A novel algorithm — Support
Threshold Update Maintainer (STUM) — is proposed. Although support thresh-
olds can be defined in terms of either counts or percentages, (STUM) applies to
both definitions. We further show that the proposed maintenance idea can be ex-
tended to other concise representations that share common characteristics with
the generator representation.

2 Generators and Negative Generator Border: A Concise
Representation

The concept of generator, also known as the key pattern, is first intro-
duced in [14]. The generators, together with the close patterns and maximal
patterns, are commonly used concise representations of the frequent pattern
space. Figure 1 (b) demonstrates how these representations are applied to the
frequent pattern space of the sample dataset in Figure 1 (a). Other types of fre-
quent pattern representations are also available such as the free-sets [4] and the
disjunctive-free sets [10]. But the support inference by these representations is
very complicated. Details of these representations can be found in the Appendix
(http://www.ntu.edu.sg/home5/feng0010/appendix.pdf).

To effectively maintain the frequent patterns, we propose to represent the
space of frequent patterns with both the frequent generators and the negative
generator border. For ease of discussion, this representation is referred as the
generator representation for the rest of the paper.

Definition 1 (Generator). Given a dataset D, a pattern P is a “generator”
iff for every P ′ ⊂ P , it is the case that sup(P ′,D) > sup(P,D).

For a dataset D and support threshold ms, the set of frequent generators,
FG(D,ms), includes all generators that are frequent. On the other hand, the
negative generator border, NBd(FG(D,ms)), refers to the set of the minimal
infrequent generators, and it is equivalent to the set of 0-free-sets [4].

Definition 2 (Negative Generator Border). Given a dataset D and sup-
port threshold ms, NBd(FG(D,ms)) = {G|G �∈ FG(D,ms) ∧ (∀G′ ⊂ G,G′ ∈
FG(D,ms))}.

Generators in the negative generator border are named negative border
generators. For a dataset D and support threshold ms, the generator rep-
resentation includes: the set of frequent generators, FG(D,ms), the negative
generator border, NBd(FG(D,ms)), and their corresponding support values.
Following Definition 1,2 and the a priori property of frequent patterns, we have
the following corollary.

Corollary 1. Given a dataset D and support threshold ms, (1) a pattern P is
infrequent iff ∃G|P ⊇ G ∧ G ∈ NBd(FG(D,ms)); (2) a pattern P is frequent
iff � ∃G|P ⊇ G ∧ G ∈ NBd(FG(D,ms)); and (3) for any frequent pattern P ,
sup(P,D) = min{sup(G,D)|G ⊆ P,G ∈ FG(D,ms)}.

3

Corollary 1 implies that the generator representation is sufficient to deter-
mine all frequent patterns and their support values. Therefore, the generator
representation is a lossless concise representation. We also observe that gen-
erators follow the a priori property as stated in FACT 3. When datasets are
updated, the a priori characteristic of generators allows us to effectively enu-
merate newly emerged generators based on the negative generator border. The
negative generator border acts conveniently as a start point for us to resume the
pattern enumerations.

Fact 3 (Cf. [12]) Let P be a pattern in D. If P is a generator, then every
subset of P is also a generator in D. Furthermore, if P is a frequent generator,
then every subset of P is also a frequent generator in D.

Another advantage of the generator representation is that it can derive max-
imal patterns and closed patterns easily. One can derive frequent closed patterns
from the frequent generators with the “closure” operation [14]. For a particular
generator G, the “closure” operation is to find the maximal pattern C such that
C and G always appear together in the dataset. Li. et al [12] have proposed
some efficient techniques to conduct the “closure” operation. For frequent maxi-
mal patterns, they are basically the longest frequent closed patterns. Therefore,
following the similar procedure as the derivation of closed patterns, one can also
derive frequent maximal patterns easily from the frequent generators.

By concisely representing the frequent patterns using the generator repre-
sentation, we greatly reduce the number of involved patterns and thus the com-
plexity of the frequent pattern maintenance problem. Instead of maintaining the
large number of frequent patterns, we only need to maintain the generators and
the negative generator border. Moreover, the a priori characteristic of generators
allows us to generate new generators and update the negative generator border
effectively by expanding the exiting border.

3 Negative Generator Border in Pattern Maintenance

We investigate in this section how the concept of negative generator border
can be employed to facilitate the maintenance of the generator representation.
In this paper, we focus on the update scenario where the support threshold
is adjusted. We also introduce systematic enumeration techniques to ensure the
maintenance process with the negative generator border is complete and efficient.
It is also discovered that the proposed maintenance idea can be generalized to
other more complicated representations of frequent patterns, e.q. the free-sets
[4] and disjunctive-free sets [10].

3.1 Support threshold adjustment maintenance

Setting the right support threshold is crucial in frequent pattern mining. Inade-
quate support threshold may produce too few patterns to be meaningful or too

4

many to be processed. It is unlikely to set the appropriate threshold at the first
time. Thus the support threshold is often adjusted to obtain desirable knowl-
edge. Moreover, in the case where the support threshold ms is defined in terms of
percentage, data updates, such as transaction insertion and deletion, also induce
changes in the absolute support threshold. Transaction insertions cause increases
in the data size |D| and thus increases in the absolute support threshold, which
is calculated as ms×|D|. Likewise, transaction deletions lead to decreases in the
absolute support threshold.

When the support threshold increases, some existing frequent generators be-
come infrequent, and the frequent pattern space shrinks. The generator rep-
resentation of frequent patterns can be maintained by first removing existing
generators that are no longer frequent. The negative generator border is then
reconstructed with the minimal patterns among the newly infrequent genera-
tors and the original negative border generators. The maintenance process is
quite straightforward and can be efficiently accomplished with the developed
systematic enumeration method. Details will be discussed later.

When the threshold decreases, new frequent generators may emerge, and
the frequent pattern space expands. In this case, the maintenance problem be-
comes more challenging, as little is known about the newly emerged generators.
We resolve this challenge efficiently based on the concept of negative generator
border.

Negative generator border is defined based on the the idea of negative border.
The notion of negative border is first introduced in [13]. The negative border of
frequent patterns refers to the set of minimal infrequent patterns. Maintenance
algorithm Border [2] is proposed based on the idea of negative border. In Border,
newly emerged frequent patterns are enumerated level-by-level from the negative
border. However, Border aims to maintain the whole set of frequent patterns and
thus suffers from the tremendous size of frequent patterns.

On the other hand, the negative generator border, as formally defined in
Definition 2, refers to the set of minimal infrequent generators. The negative
generator border records the nodes, where the previous enumeration of genera-
tor stops, as shown in Figure 2 (b). It thus serves as a convenient starting point
for further enumeration of newly emerged generators when the support thresh-
old decreases. This allows us to utilize previously obtained information to avoid
redundant generation of existing generator and enumeration of unnecessary can-
didates.

Proposition 1. Given a dataset D and a support threshold ms, let FG(D,ms)
denote the set of frequent generators and NBd(FG(D,ms)) be the correspond-
ing negative generator border. Suppose the support threshold is adjusted to
msupd, where msupd < ms. For every newly emerged generator G (G �∈
FG(D,ms) ∧ G ∈ FG(D,msupd)), there exists G′ ∈ NBd(FG(D,ms)) and
G′′ ∈ NBd(FG(D,msupd)) such that G′ ⊆ G ⊆ G′′.

Proof. The proposition can be proven easily based on the a priori property of
generators, and thus it is not included here.

5

{}

1a 2b
8d 4c

3ba 5ca 6cb

7cba

9da 10db 12dc

11dba 13dca 14dcb

15dcba

(a) (b)

Notation: iN : x refers to an node in SE-tree with x as
support, and i refers to its enumeration order.

{}

1a : 4 2c : 3

3a : 3 5a : 2 6c : 1

4d : 3

7a : 1

8b : 2

9a : 1 10c : 1 12d : 2

11a : 1

15a : 1

14c: 113a : 1

ms = 2

Fig. 2. (a)A set-enumeration tree of items {a, b, c, d} with ordering d <0 c <0 b <0 a.
(b)The set-enumeration tree for the sample dataset with suppose threshold ms = 2;
the solid line separates the frequent patterns from the infrequent ones; the patterns in
bold form the generator representation; and the generators between the solid and the
dotted lines form the negative generator border.

Proposition 1 shows that, when the support threshold decreases, every newly
emerged generator falls in between the original and the updated negative gen-
erator border. This implies that all newly emerged generators can be generated
without extra overhead, as we enumerate the updated negative generator border
from the original border. This further simplifies the maintenance task to the
update of the negative generator border.

We update the negative generator border based on the candidate-
enumeration-elimination framework. Candidates of new frequent generators and
border generators are enumerated iteratively based on the a priori characteris-
tic of generators. Thus the next question is: how we can efficiently enumerate
candidates?

Systematic pattern enumeration method is the answer to this question. In
this paper, we employ the “Set-enumeration Tree”, a conceptual data structure,
to facilitate the candidate enumeration for the update of the negative generator
border.

Let the set I = {i1, ..., im} of items be ordered according to an arbitrary
ordering <0 so that i1 <0 i2 <0 · · · <0 im. For itemsets X, Y ⊆ I, we write
X <0 Y iff X is lexicographically “before” Y according to the order <0. We say
an itemset X is a “prefix” of an itemset Y iff X ⊆ Y and X <0 Y . We write
last(X) for the item α ∈ X, if the items in X are α1 <0 α2 <0 · · · <0 α. We say
an itemset X is the “precedent” of an itemset Y iff X = Y − last(Y).

A set-enumeration tree (SE-Tree) is a conceptual organization on the subsets
of I so that {} is its root node; for each node X such that Y1, ..., Yk are all its
children from right to left, then Y1 <0 · · · <0 Yk; for each node X in the set-
enumeration tree such that X1, ..., Xk are siblings to its left, we make X ∪ X1,
..., X ∪ Xk the children of X; |X ∪ Xi| = |X| + 1 = |Xi| + 1; and |X| = |Xi| =
|X ∩ Xi| + 1.

6

We also induce an enumeration ordering on the nodes of this SE-Tree so
that given two nodes X and Y , we say X <1 Y iff X would be visited before
Y when we visit the set-enumeration tree in a left-to-right top-down manner.
Since this visit order is a bit unusual, we illustrate it in Figure 2 (a). Here, the
number besides the node indicates the time at which the node is visited. Note
that; although SE-tree is defined with an arbitrary item order <0, to reduce the
number of nodes to be generated and visited in the SE-tree and thus the time
complexity of the enumeration, we, as shown in Figure2 (b), organize items in
ascending frequency order.

When the support threshold decreases, the SE-tree effectively ensures that
the enumeration of the new frequent generators and negative border generators
is complete and non-redundant. Another advantage of SE-tree is that: for ev-
ery pattern P , all its subsets are enumerated before it. This allows us to judge
whether P is a generator at the same time as we enumerate P . Take pattern
{a, c, d} in Figure 2 (b) as an example. As shown, the subsets of {a, c, d}, includ-
ing {a}, {c}, {d}, {a, c}, {a, d} and {c, d}, are enumerated before {a, c, d}. When
{a, c, d} is enumerated, we can decide immediately that it is not a generator, for
one of its subset, {a, c}, is not a generator.

In addition, the SE-tree can also serve as an efficient storage structure for the
generator representation, as shown in Figure 2 (b). When the support threshold
increases, the SE-tree greatly facilitates the scanning through of the existing
frequent generators and the update of the negative generator border. Take Fig-
ure 2 (b) as an example again. Suppose only the frequent generators and the
negative border generators are stored and ms is increased to 3. According to the
enumeration order, we first check through generators {a}, {c} and {d}, and we
find that all of them remain frequent. We then check generator {a, d}. We find
that {a, d} is no longer frequent but it is a minimal infrequent generator (all
subsets of {a, d} are frequent). Thus {a, d} is removed from the set of frequent
generators and included in the updated negative generator border. Applying
the similar logic, the entire generator representation can be effectively updated.
With the SE-tree, the maintenance of the generator representation for support
threshold raise is quite straightforward, and thus it is omitted in the subsequent
discussions.

Combining the above findings, a novel algorithm is proposed to maintain
the generator representation of frequent patterns for support threshold adjust-
ment. The proposed algorithm is named as the “Support Threshold Update
Maintainer” (STUM), and it is discussed in Section 4.

3.2 Generalization & extension

It is discovered that the proposed maintenance method can be generalized to
other types of frequent pattern representations, as far as the representation fol-
lows the following two characteristics:

– the representation is composed with both the frequent representation pattern
(e.q. frequent generator) and its corresponding negative border (e.q. negative
generator border).

7

Algorithm 1 Proposed algorithm STUM
Input: N = {G1, G2, ..., Gm}, the negative generator border, where G1 >0 G2 >0 ... >0 Gm; FG,

the existing frequent generators; and ms′, the new support threshold.
Output: FG′ the updated frequent generators; and N ′ the updated negative generator border.
Method:
1: FG′ := FG; {Initialization.}
2: for all Gi ∈ N do
3: ExpandNBGenerator(Gi, ms′);

{Expand from the negative border generators.}
4: end for
5: return FG′ and N ′;

Procedure 2 ExpandNBGenerator
Input: G, a negative border generator or a newly emerged frequent generator; ms′, the new support

threshold.
Output: FG′ the updated frequent generators; and N ′ the updated negative generator border.
Method:
1: if sup(G) >= ms′ then
2: G → FG′ {Newly emerged generator}

{Enumerate new generators from G}
3: for all i >0 last(G) do
4: G′ := G ∪ i;
5: if G′ is a generator then
6: ExpandNBGenerator(G′, ms′)
7: end if
8: end for
9: else
10: G → N ′ {Update negative generator border.}
11: end if
12: return FG′ and N ′;

– the representation pattern follows the a priori property.

The free-sets [4] and the disjunctive-free sets [10] are two representations
that follow the above characteristics. The detailed definitions of these two rep-
resentations are included in the Appendix (http://www.ntu.edu.sg/home5/
feng0010/appendix.pdf).

4 Support Threshold Update Maintainer (STUM)

The proposed maintenance algorithm, STUM, is presented in Algorithm 1 and
Procedure 2. When the support threshold decreases, some negative border gener-
ators emerge to be frequent. We treat these border generators as starting points.
The basic idea of STUM is to expand the frequent pattern space from these
starting points. For a particular negative border generator G, the expand pro-
cess is to enumerate new frequent generators from G. The enumeration follows
the enumeration order of SE-tree, which ensures to be complete and efficient.

4.1 Complexity analysis

According to Algorithm 1 and Procedure 2, the time complexity of STUM is
proportional to the number of candidates enumerated during the generation of

8

Table 1. Approximate number of enumerated candidates by STUM and Border when the support
threshold is adjusted to half of the original one. Here ms denotes the original support threshold.

accidents gazelle mushroom T10I4D100K BMS-POS pumsb star
ms = 50% ms = 0.5% ms = 0.5% ms = 1% ms = 0.5% ms = 20%

STUM 5K 58 27K 173 8K 100K
Border 36K 3K 533K 16K 30K 122K

newly emerged frequent generators. Thus the complexity of the proposed algo-
rithm can be modelled as O(NGenCan), where NGenCan refers to the number of
enumerated generator candidates. According to the complexity study, we fore-
see that STUM is more efficient than some of the previous algorithms, such
as Border [2]. The computational complexity of Border is O(NFreqCan), where
NFreqCan refers to the number of candidates enumerated during the generation
of newly emerged frequent patterns. In general, NGenCan NFreqCan, as shown
in Table 1.

4.2 Implementation

As shown in Procedure 2, for every enumerated generator candidates, we need to
retrieve its support value. To avoid multiple scans of datasets, we employ a prefix-
tree and a header table to summarize the dataset. Figure 3 (a) demonstrates
how the sample dataset is compressed and stored in a prefix tree. (Details on
the construction of prefix tree can be found in [9].) With the prefix tree and the
header table, support values of patterns can be retrieved without data scanning.
Let us take the sample dataset in Figure 3 as an example. Suppose we need
to obtain the support of pattern {a, b}. We first need to look for all the paths
that contain item b based on the linked list pointers in the header table. Then,
for each path that contains b, we travel up and search for item a. In this case,
only one path contains both items b and a, and the support of the path is 1.
Therefore, we have sup({a, b},D) = 1.

The prefix tree structure also facilitates effective candidate pruning. Accord-
ing to Procedure 2, the generator candidates are produced based on the enu-
meration order of SE-tree. Given a generator G, only items i >0 last(G) are
enumerated. This greatly reduces the number of unnecessary enumerations. On
top of that, with the concept of local prefix tree, we can completely avoid gener-
ating unnecessary candidates. For example, Figure 3 (b) shows the local prefix
tree for generator {d}. Suppose ms = 2. Based on the local prefix tree, we know
immediately that the enumeration of candidate {c, d} is not necessary, for its
support is below ms.

5 Experimental Evaluation

The computational effectiveness of the proposed algorithm, STUM, is tested on
several benchmark datasets from the FIMI Repository [8]. STUM is evaluated
with various degrees of support threshold adjustment.

9

Sample Dataset

a, b, c, d
b, d
a, d
a, c

a, c

(a)

b : 1

{}

c : 3
a : 4 d : 1

d : 1
b : 1

d : 1

Header
Table

a : 4
c : 3
d : 3
b : 2 P = {d}

(b)

Header
Table

a : 2
c : 1

{}

c : 1
a : 2

Fig. 3. (a) Global prefix tree and header table for the sample dataset with ordering
b <0 d <0 c <0 a; and (b) local prefix tree and header table for pattern {d}.

STUM is compared with some state-of-the-art frequent pattern discovery and
maintenance methods, including GC-growth [12], ZIGZAG [15] and Border [2]. GC-
growth is an effective algorithm that generates frequent generators. ZIGZAG is
one of the recently proposed frequent maximal pattern maintenance algorithm.
Border is a frequent pattern maintenance algorithm proposed based on the con-
cept of negative border. The original implementation of Border requires multiple
data scans. This induces heavy I/O overhead. To better justify the effective-
ness of the proposed method, we improved the implementation of Border. We
employ a prefix-tree structure in Border to summarize the dataset and thus to
avoid multiple data scans. We name the improved implementation of Border as
Border(prefixTree). All the experiments are run on a PC with 2.8 GHz processor
and 2 GB RAM.

Figure 4 compares the computational time of STUM against the one of other
methods. We observe that, in general, STUM outperforms the rest considerably.
However, it is also observed that, compared to the frequent generator discovery
algorithm GC-growth, the advantage of STUM drops as the change of support
threshold gets larger. This is because large variation in support threshold logi-
cally leads to dramatic changes in the frequent pattern space. Thus it is more
expensive to update, and the advantage of STUM is found to diminish when the
change of support threshold gets larger. It is inevitable that when the support
threshold is adjusted to a certain extent, the change induced to the pattern space
becomes so significant that it becomes more efficient to re-discover the patterns
than to maintain and update them.

We also measure the ”speed-up” achieved by STUM against other methods.
The speed-up is calculated as the ratio between the computational time of the
comparing method and that of the proposed method. Table 2 summarizes the
average speed-up we have achieved on various datasets. Since Border suffers from
heavy I/O overhead, STUM outperforms Border significantly. It can also been
seen that, by employing the prefix-tree structure, the improved implementation
of Border is much faster than the original implementation. STUM performs the
best on dataset T10I4D100K. It is faster than the other methods by at least an
order of magnitude.

10

5 10 15 20 25 30 35 40 45 50
10

−1

10
0

10
1

10
2

10
3

10
4

Δ
ms

/ms
org

 (%)

T
im

e
(s

ec
.)

accidents, ms
org

 = 50%

STUM(proposed)
GC−growth
ZIGZAG
Border
Border(prefixTree)

5 10 15 20 25 30 35 40 45 50
10

−2

10
−1

10
0

10
1

10
2

Δ
ms

/ms
org

 (%)

T
im

e
(s

ec
.)

gazelle, ms
org

 = 0.5%

STUM(proposed)
GC−growth
ZIGZAG
Border
Border(prefixTree)

5 10 15 20 25 30 35 40 45 50
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

Δ
ms

/ms
org

 (%)

T
im

e
(s

ec
.)

mushroom, ms
org

 = 0.5%

STUM(proposed)
GC−growth
ZIGZAG
Border
Border(prefixTree)

5 10 15 20 25 30 35 40 45 50
10

−2

10
−1

10
0

10
1

10
2

10
3

Δ
ms

/ms
org

 (%)

T
im

e
(s

ec
.)

T10I4D100K, ms
org

 = 1%

STUM(proposed)
GC−growth
ZIGZAG
Border
Border(prefixTree)

Fig. 4. Comparison of computation time of the proposed algorithm — STUM, GC-
growth, ZIGZAG, Border and Border(prefixTree).

6 Closing remarks

In this paper, we investigated the maintenance of the generator representation of
frequent patterns. We studied the characteristics of the generator representation
and found that generators follow the a priori property. Using this property, we
proposed to maintain the generator representation by expanding the negative
generator border.

Based on the concept of negative generator border, a new algorithm, STUM,
is proposed to maintain the generator representation for support threshold ad-
justment. Extensive experiments are conduced to evaluate the effectiveness of
the proposed algorithm. The experimental results show that, in general, STUM
outperforms the other methods significantly. For some particular datasets, STUM
is faster than the state-of-the-art methods by more than an order of magnitude.

In addition, we theoretically demonstrated that the concept of negative gen-
erator border can also be applied to the maintenance of other data updates.
We also show that the proposed method can be extended to two other frequent

11

Table 2. Average speed-up achieved by STUM. Tcomp denotes the computational time of the com-
paring algorithms, and TST UM is that of the proposed algorithm.

Tcomp/TST UM accidents gazelle mushroom T10I4D100K
ms% = 50% ms% = 0.5% ms% = 0.5% ms% = 1%

ZIGZAG 2.8 19.4 10.8 19.5
GC-growth 31 17.2 11.6 31.5

Border 230 828 1334 927
Border(prefixTree) 3.7 2.5 4.4 87.8

pattern representations — the free-sets and disjunctive-free sets. The realization
of these theoretical ideas could serve as potential future works.

References

[1] R. Agrawal, T. Imielinski, A. N. Swami. Mining association rules between sets of
items in large databases. In SIGMOD, pages 207–216, 1993.

[2] Y. Aumann, R. Feldman, O. Lipshtat, H. Manilla. Borders: An efficient algorithm
for association generation in dynamic databases. In JIIS, (12) page 61–73, 1999.

[3] R. J. Bayardo. Efficiently mining long patterns from databases. In SIGMOD, pages
85–93, 1998.

[4] A. Bykowski, C. Rigotti. A condensed representation to find frequent patterns. In
PODS, 2001.

[5] C. Chang, et al. Enhancing SWF for incremental association mining by itemset
maintenance. In PAKDD, pages 301–312, 2003.

[6] D. Cheung, J. Han, V. T. Y. Ng, C. Y. Wong. Maintenance of discovered association
rules in large databases: an incremental update technieq. In ICDE, pages 106–114,
1996.

[7] Y. Chi, H. Wang, P. S. Yu, R. R. Muntz. Moment: Maintaining closed frequent
itemsets over a stream sliding window. In ICDM, pages 59–66, 2004.

[8] Frequent Itemset Mining Dataset Repository. http://fimi.cs.helsinki.fi

[9] J. Han, J. Pei, Y. Yin. Mining frequent patterns without candidates generation.
In SIGMOD, pages 1–12, 2000.

[10] M. Kryszkiewicz. Concise representation of frequent patterns based on disjunction-
free generators. In ICDM, pages 305–312, 2001

[11] C-H. Lee, C-R. Lin, M-S. Chen. Sliding window filtering: An efficient method for
incremental mining on a time-variant database. Information Systems, 30(3):227-
244, 2005.

[12] H. Li, J. Li, L. Wong, M. Feng, Y-P. Tan. Relative risk and odds ratio: A data
mining perspective. In PODS, pages 368–377, 2005.

[13] H. Mannila, H. Toivonen. Levelwise search and borders of theories in knowledge
discovery. In Data Mining and Knowledge Discovery, 1(2):241–258,1997.

[14] N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal. Discovering frequent closed itemsets
for association rules. In ICDT, pages 398–416, 1999.

[15] A.A. Veloso, W.Meira Jr., M.B. de Carvalho B. Possas, S. Parthasarathy,
M.J. Zaki. Mining frequent itemsets in evolving databases. In SIAM, 2002.

12

