
i

B. COMP DISSERTATION

Rapid Hypothesis Testing and Exploration

By: Ang Yan Sheng, Mark

Department of Computer Science

School of Computing

National University of Singapore

2014/2015

Project Code: H114380

Project Supervisor: Dr. Wong Lim Soon

Deliverables:

Report: 1 Volume

Program: 1 Zipped File

ii

Table of Contents
B. COMP DISSERTATION .. i

Abstract .. v

Acknowledgement .. vi

Abbreviations / Terminology .. vi

1. Introduction... 1

1.1 Statistical Testing for the untrained ... 1

1.2 Typical problems faced in statistical testing .. 1

1.3 Correlation: A data feature .. 2

1.4 Overall objective .. 3

2. Design / Scope ... 4

2.1 Overall Design .. 4

2.2 Hypothesis Input .. 4

2.3 Display of results .. 4

2.4 Demonstration of correlation .. 5

2.5 Scope .. 6

3 Concept ... 6

3.1 Hypothesis Testing and Descriptive Statistics? Error! Bookmark not defined.

3.2 Outlier Handling ... 7

3.3 Discovery of correlations ... 8

3.4 How to correct for a variable? ... 8

3.5 How to display variable correction? .. 10

3.6 Other features .. 11

4 Design Considerations ... 12

4.1 Challenges .. 12

4.2 How to design for the untrained? .. 12

4.3 Alternative Designs .. 13

4.2.1 Data Explorer .. 13

4.2.2 Stratified Testing .. 13

5 Implementation ... 15

5.1 Software, Libraries Used .. 15

iii

5.2 Overall UI Architecture .. 16

5.3 Notable UI Objects ... 17

5.3.1 Main Window ... 17

5.3.2 Statement Builder .. 18

5.3.3 Group Builder ... 19

5.3.4 Results Explorer .. 21

5.4 Notable non-UI objects .. 22

5.4.1 Data Manager ... 23

5.4.2 Statement ... 23

5.4.3 Rule ... 23

5.4.4 Group .. 24

5.3.5 Test Logic / Correlation Report ... 24

5.4.5 HNStats / Typedef .. 24

5.5 Notable interactions between objects .. 25

5.5.1 Main Window – Statement Builder .. 25

5.5.2 Statement Builder – Group Builder .. 26

5.4.3. Group Builder – Group Selector ... 26

5.3.4. Main Window – Results Explorer ... 27

5.3.5 Main Window – DM Parser ... 27

5.3.6 Statement Builder – Parser ... 28

5.3.7 Results Explorer – Correlation Report ... 28

6 A simple use case .. 29

6.1 Scenario .. 29

6.2 Sample Data ... 29

6.3 Use Experience ... 30

7 Recommendations for future work ... 34

7.1 Improving on correlation model .. 34

7.2 Automatic Data Exploration ... 35

iv

7.3 Making this project market-worthy ... 35

8 Conclusions.. 36

9 Appendices .. 37

Appendix A: .. 37

Results Explorer screens: .. 42

Appendix B: .. 45

v

Abstract

Statistical testing is a powerful tool used to strongly prove observed trends and users’

assertions using real-world data. With more data being widely available, there is a great

motivation to harness it. For example, much work is done in the medical field to discover

patients’ responses to various drugs, therapies, and identify groups within the population

which require the most research attention.

Unfortunately, the processes that trained data analysts perform in order to make valid

conclusions are not clear to the untrained user. Issues within the statistical testing realm like

the handling of outliers are foreign concepts to people who want to analyse data, but did

not undergo the necessary training to avoid the risk of having their own data mislead them.

Untrained users, not understanding the importance of initial data exploration, would not

know if there are any confounding data variables that could influence each other’s

behaviors, and come to inaccurate conclusions about their data.

My program aims to not only expose simple statistical analysis to untrained users, but

automatically handle outliers within the data used, and give users some insight into possible

confounding variables that correlate with observed test statistics.

Subject Descriptors:

Descriptive Statistics

Linear Regression

Keywords:

Linear Regression, Human-Computer Interaction

Implementation Software and Hardware:

Windows 8.1, Python 3.4.1, PyQt 4.8.6

vi

Acknowledgement

I thank God for seeing me through to finish this project.

I would also like to thank my supervisor, Dr. Wong Lim Soon, for keeping me on track

and bring the project to where it currently is.

I would also like to thank Dr. Li Jialiang, whose invaluable assistance filled the gaps in

my statistics knowledge. His familiarity with how data analysts perform data analysis, being

a data analyst himself, shaped the vision I had for my program’s user experience.

A heartfelt thanks goes to my family for supporting me through the whole project,

even during the times that I felt daunted by the challenges I faced in making the project

happen. They have, as they always had, my gratitude for keeping me going amidst every

challenge.

Abbreviations / Terminology

UI – User Interface

ANOVA – Analysis of Variance

RPN – Reverse Polish Notation

1

1. Introduction

1.1 Statistical Testing for the untrained

Statistical testing arose from the inability to collect complete population data against

the need to assess those populations. For example, a bottling factory might want to know if

its bottles are being made of a certain thickness or more. Since it produces tens of

thousands of bottles daily, it would not be feasible to measure every bottle. Instead, it

would pick a reasonable number of bottles at random, measure them, and then perform a

statistical test on these bottles, assuming that their thicknesses can represent all the bottles’

thicknesses.

In order to extrapolate statistics from the sample to the population, some leeway is

given such that the sample’s observed statistics can possibly differ from the actual

population’s statistics. In many tests, this leeway comes in the form of the assumption that

the sample’s statistic, or in our case, the bottle’s thickness, follows some model of random

distribution.

 Statistical testing helps people to assess population statistics quickly, but not

measuring the entire population opens up a different set of problems. For example, the

sample must fairly represent the population. For example, if all the sample’s bottles came

from the same machine, then the sample cannot represent the factory’s entire output since

the other machines’ outputs are not reflected in the sample.

 The understanding of these concepts does not come naturally, and must be taught

to people who wish to obtain solid results from data analysis. However, not only will some

people lack the resources to undergo this training, they may even ignore the importance of

verifying that their data can represent the population properly.

1.2 Typical problems faced in statistical testing

The data analyst faces a host of unknowns when he first receives his data, which he

has to understand before he can make any concrete claims using the data.

To illustrate this, let’s take a hypothetical case of Company ABC being accused of

being sexist, paying women unfairly less than men. In response, the company commissions a

data analyst to sift through its employees’ data and investigate the allegation. The naïve

2

analyst, checking to see if men’s salaries were indeed greater than women’s salaries, would

simply compare men’s average salaries against women’s average salaries in the company,

and find that men’s salaries are indeed greater than women’s.

However, the naïve analyst has not considered many things which could confound

his analysis. His analysis assumes that all men and women have equal demographic

distributions (Aside from being men and women). For example, say managers are paid much

more than other occupations in this company, and the majority of managers in this

company are men. In the light of this knowledge, it is possible that men are paid more on

average because they are managers, as opposed to simply being men.

Furthermore, the possibility of anomalous or even incorrect data points can skew

the overall assessment. It would be prudent in many situations to consider the removal of

such outlying points thus.

1.3 Correlation: A data feature

One of the aims of this project is to automate discovering and isolating possible

influences of variables within the population on the observed test statistics. To achieve this,

we focus on two key features: Linear regression and analysis of variance (ANOVA).

Linear regression is the assessment of the likelihood of two variables sharing a linear

correlation. It is used to determine if two continuous variables correlate with each other.

For example, we could use linear regression to determine if salaries of employees increase

along with age (Or even decrease with age!)

ANOVA is the assessment of the likelihood of different sample groups coming from

the same (or different) test statistic distributions. For example, we could use an ANOVA to

determine if clerks, managers, and supervisors all share the same distributions of salaries.

By using these tests, we are able to model the relationships between variables

against the test statistic.

Once we model these relationships, we can control for them by adjusting the

observed statistics according to their respective controlled variable. For example, if the

observed value comes from a clerk, and the control occupation is ‘Manager’, we adjust the

statistic to simulate the test statistic as if it had come from a manager.

3

It is important to note that correlation does not imply causation. This project does

not attempt to identify causal relationships; rather, by discovering correlations, the user can

then be prompted to perform further investigation for causality.

1.4 Overall objective

Given the increasing ease of data collection, many people who have not received

data analysis training stand to benefit from leveraging on statistical analysis to make

informed decisions using their data. My project thus aims to expose statistical analysis to

people who do not know how to perform statistical testing properly.

Since statistical data itself is prone to possible issues such as outliers, my project

aims to automatically handle them.

As a step towards automating descriptive data analysis, this project also aims to help

the user identify correlations between variables in the data against the test statistics, and

adjust the test statistics to account for these correlations.

To summarise, my project aims to:

 Expose statistical analysis to the untrained user.

 Automatically handle outliers in the user’s data.

 Provide simple variable elimination functionality.

4

2. Design / Scope

This section will discuss the overall design and architecture of the program, as well

as decisions made in the course of the project.

2.1 Overall Design

Care was taken in designing this program to keep the number of UI windows to a

minimum. Please see Appendix A for an overall architecture diagram, as well as Section 5 for

more discussion on the design of the user interface.

2.2 Hypothesis Input

Since our target user is not trained in data analysis, he might not know how to

translate his inquiry to fit a statistic test, or what test to use for that matter.

Thus, my program set out to abstract this problem away from the user by exposing

means difference tests by allowing the user to input 2 infix test expressions in the form of a

comparison statement; one for each sample. For example, the user may type in not only

type in “Salary” into the statement, he could also type in “Salary * 1.25” or “Salary + (Bonus

/ 12)”. Note that up to one side may have a fixed value; the test will be a 1-sample location

test in those cases.

By using simple mathematics to hide the actual test selection process, the program

aids in the hypothesis input process by providing the user a more intuitive way to input his

hypothesis.

Due to the nature of the test expression being limited to having only two sides, the

project handles one-sample and two-sample location tests.

This project is limited to comparing of continuous variables as the proposed variable

correction method cannot be directly applied to categorical variables; more work can be

done to extend the method to handle categorical variables, possibly via machine learning

methods.

2.3 Display of results

Throughout the project, two modes of display were considered: Text and Visual

Graphics. The final product uses both modes for different aspects in the program.

5

Figure 1: Example graph showing test statistic
distributions before and after correction

Initially, a pure-text display was planned, due to the challenges associated with

having to implement the graphs correctly. During the course of the project, however, the

amount of data to be shown to the user began to grow (With stratified testing, many tests

with many results would have to be shown).

It was discovered then that a pure-text

display would either show the user too much

text (and numbers) for him to make sense of, or

be forced to hide potentially interesting

information from the user. Hence, the decision

was made to implement visual graphs.

To display the test results, a graph

showing the distributions of the test statistics is

plotted for the user to view and compare. For

example, this graph shows the distribution of

test statistics for a Dependent T-test style of

hypothesis.

Simpler features such as verification reports are displayed via text browsers.

2.4 Demonstration of correlation

Demonstrating the concept of correlation to untrained users was a little tricky, since

it has to be assumed that the user does not understand the concept of correlation, let alone

appreciate the use of correcting for variables using their correlations to the test statistics.

To guide the user towards understanding and appreciating correction of test

statistics against some variables, a text print summarizing the effects of a variable against

the test statistics and a series of graphs essentially telling the story of how the program

performs this variable elimination was produced within the program. This was done to not

only demonstrate the correlation and its possible influence on the test statistics, but to

teach users about how variables can appear to influence the test statistics in a narrative

6

manner. More details on this can be found in Section 3.4: “How to display variable

correction?”

2.5 Scope

As mentioned in Section 2.2, my project is limited to analysis of continuous variables.

The decision to do this was made in order to fully demonstrate variable correction.

In addition, my project aims to demonstrate correction of individual variables, as

opposed to handling multiple variables simultaneously. While the benefits from performing

the latter are appreciable, they might not be easily demonstrated to the untrained user.

Furthermore, for basic analysis purposes it would be less confusing to show elimination of

individual variables and allow the user to find the variable which seems to exhibit the largest

influence on the test statistics. More discussion on this topic can be found in Section 5:

Recommendations for future work.

One of the features initially planned for the program was to automatically stratify

the data, splitting the data into many sub-categories and testing each sub-category in

anticipation of each sub-category having different distributions. For example, men and

women may appear to have similar heart attack history distributions, but upon further

splitting of data we may find that men and women smokers (and non-smokers) have

different heart attack history distributions. To discover these relations, the goal was to split

all the data by every category as far as possible whilst maintaining the validity of each sub-

group to perform a test on it, and perform a test for each sub-group to produce a large

collection of tests for further analysis.

 However this feature was eventually dropped in favor of displaying individual data

points as either a scatter or a histogram due to complications discovered during the project.

This feature is discussed more in Section 3.1.

3 Concepts

This section discusses the statistics concepts used in the project.

7

3.1 Outlier Handling

One of the aims of the project is to automatically discover and eliminate outliers.

To identify outliers, Grubb’s outlier test is used iteratively along each continuous

variable in the dataset, until no more data entries are picked up by the test.

Grubb’s test is an outlier detector test which operates on one outlier at a time. For

each possible outlier, it performs a one-sided location test on either the minimum value or

the maximum value of the dataset against the mean of the dataset, with the null hypothesis

being that no outliers exist, and the alternate being that at least one outlier exists (I.e. The

target value, and possibly others). The target value is considered an outlier if the confidence

value is significant enough (The threshold used is <5% confidence to the null hypothesis).

Basically, if the target value is considered too far from the rest of the data, then it’s

considered an outlier.

Once the outlier is detected, it is removed from the dataset, and the test is repeated

sans the removed outlier. In this implementation, the minimum value is checked first,

followed by the maximum value. This is repeated until either not enough data points exist to

perform the outlier test meaningfully, or no outlier is detected on both the minimum and

maximum values.

Currently, the outlier removal operates on all the continuous variables within the

dataset. Grubb’s test assumes that the data is normally distributed. This poses some

challenges since this project aims to detect multiple normally distributed populations in the

data.

For example, men and women might present different salary distributions. If the test

is performed without checking for men and women distributions, the test might assume too

many points to be outliers because they would all be too far away from the mean (which is

somewhere in between the men’s and women’s distributions) anyway.

Future developers might be able to overcome this problem by detecting data

clusters using an unsupervised machine learning algorithm such as hierarchical clustering,

removing clusters with very small sizes (such as single-element clusters). Such an

8

implementation would resolve most of the issues faced when using a limited technique such

as Grubb’s test.

Nonetheless, Grubb’s test was chosen for its ease of implementation, and as no

specific outlier detection test was included in the standard Python libraries.

3.2 Discovery of correlations

Discovering correlations of the variable against the test statistic is done using either

of two tests: Linear regression and the one-way analysis of variance (ANOVA). If the

confidence value of the test is sufficiently significant, the user is informed of a likely

correlation between the variable and the test statistic. Linear regression is a well-known

technique of establishing correlations between variables, and ANOVA is a well-known

technique to determine if a set of samples do (or do not) have identical distributions.

If the variable to be tested against the test statistic is continuous (Like height or

weight), a linear regression test is performed between the variable against its corresponding

test statistic. The linear regression test’s p-value is used to determine if said variable

exhibits a strong correlation with the test statistic.

If the variable to be tested against the test statistic is categorical (Like gender or

occupation), a one-way ANOVA is performed instead. As with the linear regression test, the

p-value is used to determine if the occurrence or non-occurrence of different variables

within a column can influence the test statistic distribution.

3.3 How to correct for a variable?

Once a correlation is discovered, the program will attempt to correct for the variable

by simulating the test statistics as if they all had the same variable category / value (I.e. As if

all entries have same height/gender).

For numeric values, the program consider the variable in question to share a linear

relationship with the test statistic. This linear relationship is discovered using linear

regression on all the variables against their corresponding test statistics in the entire

dataset, and the relationship modeled using the following equation:

T = mV + c

9

Where T is the test statistic, m is the linear correlation between the variable and the

test statistic, and V is the variable.

C is an arbitrary value that is unique to each entry due to the stochastic nature

(randomness) of the measured data.

The linear regression discovers the value of m.

Now for every test statistic T0 and its associated V value V0, we apply the same

relationship, but this time use our pre-calculated m value on the equation.

T0 = mV0 + C0

To perform the correction, we replace the V0 value with some arbitrary common

value V1 (In this project, we use the mean of all the V0 values in the entire dataset), holding

m and C0 constant. Once done, we calculate corrected test statistic T1 using the formula:

T1 = mV1 + C0

For categorical variables (Gender, Smoker/Non-smoker), the formula is different

since linear correlation cannot be established on distinct categories. For every test statistic T

and its associated V category, we model their behavior using the following equation:

T = x * Mean(T(V))

Where x is an arbitrary value that is unique to each entry due to the stochastic

nature (randomness) of the measured data, and Mean(T(V)) is the mean of the test statistics

for the entire subpopulation of category V.

For some test statistic T0, we find its corresponding x value by firstly dividing T0 by its

corresponding Mean(T(V0)).

X0 = T0 / Mean(T(V0))

Once X0 is found, the corrected value T1 is found by multiplying X0 by some arbitrary

common value(In this project, this is the mean of the test statistics in all the data),

producing the final formula:

10

Figure 3: Graph showing the different age

means of men and women. A large mean
difference indicates a skew in the distributions of
this variable.

Figure 2: Relation of entries' variable against
their corresponding test statistics.

T1 = X0 * Mean(All T)

While this model is simple to implement, it is prone to issues. For example, this

model does not take into account negative values for individual entries whose sub-

population means are positive, which may cause X0 to become negative. The correction

performed on negative X0 values would simulate wildly inaccurate corrected statistics. A

more robust model might take into account the variances of the sub-populations’ test

statistics and the differences of the observed test statistics from their respective sub-

populations’ test statistic means. This can be accounted for in future work.

3.4 How to display variable correction?

Once a correlation is discovered and accounted for, the user will be shown the data

points before and after correction to demonstrate the strength of correlation between the

variable and the test statistics.

To facilitate this, a total of 3 graphs are

displayed.

The first graph shows the relation of the variable in

question against their corresponding test statistics.

If the variable is continuous, a linear regression is

performed as per Section 3.3, and the discovered

equation is shown as a dashed line. If the variable is

categorical, the means of the categories’ test

statistics are displayed instead. This graph will

demonstrate how the occurrence or behavior of the

variable can appear to influence the test statistics.

For example, if taller people are found to earn more

money, this section will show it.

The second graph shows the variables’

distributions within sub-groups of data split by a

different user-defined variable (the splitting variable). This graph will show any skew of the

distribution of data between subpopulations.

11

If the splitting variable is continuous, the sub-groups will be split into 3 groups:

Lower quartile, Inter-quartile range, and Upper quartile. If the splitting variable is a text

variable, the sub-groups will be split by the categories within the variable. For example, if

the user checks for gender, and women are significantly shorter than men, this section will

show it.

If the variable in question is continuous, the means of this variable in the different

sub-groups are displayed. If the variable is categorical, then the different counts of

categories within this variable is shown instead. For example, if the user checks for

smokers/non-smokers, and more men smoke than

women, this section will show it.

Finally, for the demonstration of the potential

correction of the influence of this variable against the

test statistics, the third graph shows the data points

before and after correction will be generated.

For one-sample tests, this is given as a list of

histograms before and after correction, with each

histogram generated by dividing the data by a user-

defined category.

For two-sample tests, this is shown as either 2

lists of histograms, corresponding to the Left-Hand Side

and Right-Hand Side. If the data points from both

sides are exactly the same, a graph with X-axis

corresponding to the Left-Hand Side and Y-axis to

Right-Hand Side will be used, and two scatter plots

for before and after correction will be generated

(In this graph, ‘Before’ values are displayed using

‘+’ symbols and ‘After’ values are displayed as

circles).

3.5 Other features

Figure 4: Graph showing distributions of
a 1-sample test statistic before and after
correction.

12

Other auxiliary functions such as simple

sample data verification are performed, such as

checking if there is partial overlap between the two input test samples. Other functions such

as checking if the distributions of the data were as the statistical test required (Goodness-of-

fit tests) were implemented, but not used due to the shift away from hypothesis testing.

The program also determines what statistical test best fits the user’s input

hypothesis, although the test is no longer actually performed as explained in Section 3.1.

This information is displayed in the Results Explorer, under the ‘Overall’ tab.

4 Design Considerations

4.1 Challenges

There were some challenges realized from the beginning of the project, as well as in

the course of it. This section discusses these challenges, and how they were overcome.

Firstly, the student working on this project was a Computer Science major with little

background in statistics. There was much ground to cover regarding the statistics concepts

of the project, as well as discovering what design would best help untrained data analysts in

learning more about his data. To overcome this, the student worked closely with NUS’s

Statistics Counseling Centre to ensure that his work not only applied the statistics correctly,

but also to obtain feedback to further improve the flow of the program.

Furthermore, the initial goal of stratified testing was replaced with correcting of the

test statistics against variables. A good amount of the work done to support stratified

testing was no longer useful to the project. In anticipation of such problems, a good portion

of the code was written to be easily re-usable and extendable, thus becoming an

appreciable demonstration of the benefits of good software engineering practices.

Nonetheless, this shift mid-project left some bugs and unexpected behaviors unresolved

due to the lack of time to fully account for all of them.

4.2 How to design for the untrained?

The dual goals of exposing statistical analysis to untrained analysts and correcting for

potential influences of individual variables on the test statistics presents a unique problem:

Figure 5:Graph of values before and after
correction for a 2-sample test.

13

How can the latter goal be not only achieved, but presented to the untrained user in a

meaningful and easily appreciable way?

To this end, a series of graphs were produced in the Results Explorer window,

designed to ‘tell a story’.

Say the program is testing if varying the height can potentially influence the test

statistic. The first graph would show how the test statistics would vary when plotted against

height. The second graph would show how sub-groups of data (Say, men and women)

exhibit different height distributions. The final graph would show the test statistics before

and after correcting for height.

In addition, a text browser verbally discussing the above three graphs’ results is

produced alongside the graphs.

4.3 Alternative Designs

4.2.1 Data Explorer

One feature considered early in the project was a data browser and explorer, giving

the user a quick overview of the data with basic statistic features such as means and modes.

The user would also be able to compare different subsets of data by viewing the different

statistic features, as well as compute their respective test statistics. Its purpose was to allow

the user to better understand the data before he makes his hypothesis.

However, this ran counter to our original goal of exposing statistical analysis to the

untrained user, since even exploring data requires some degree of statistical knowledge to

understand what the values mean. Furthermore, given limited time and resources, it was

decided that it would be more prudent to focus on producing the correlation feature, which

is one of the main goals of this project.

4.2.2 Stratified Testing

Another feature that persisted in the early stages of the project was the concept of

stratified testing; That is, to re-apply the hypothesis on subsets of data, differentiated

according to different data filters and restrictions. For example, rather than testing all the

data, if there is a ‘Gender’ column with both Male and Female entries, two tests will be

performed, one with male-only samples and one with female-only samples. This is

14

compounded with increasing numbers of columns, requiring the program to split the data

by potentially all the columns.

The motivation behind this concept is that with different sub-groups having different

distributions, there should be some tests on sub-groups which exhibit significantly different

distributions when compared side-by-side. For example, tall men smokers could have higher

chance of death by heart attack than tall women smokers. The project would then find

these tests and alert the user of these different distributions.

However, it was discovered mid-project that this approach may produce significant

results from many tests (The test sample data, containing 6 variables, caused the program

to perform more than 100 tests). At the number of columns increase, so too will the number

of potential tests, and the sample sizes for each test on average will decrease given equal

sample sizes. Due to the assumed random nature of data, with more tests done and

reduced sample sizes per test, some tests will ultimately produce significant confidence

values even if the distributions between the test samples are actually the same. Stratifying

the data also increases the risk of encountering non-normal distributions due to simply not

having enough data to fully represent these strictly defined sub-populations.

Simply put, if you perform enough hypothesis tests on different subsets of data, you

will eventually find a test that produces statistically significant results, even if the samples

are taken from the same population.

Furthermore, stratifying the data, while offering a stronger means of determining

different sample populations, does not actually tackle the problem of figuring out which

variables correlate with the test statistics. Ideally, different tests’ statistics could be

compared (For example, we could compare the test statistics for men-only and women-only

test results). However, this opened up a host of issues that made using this approach too

cumbersome to implement.

On the other hand, the alternative of using individual entries as data points was

simpler to implement. Using individual entries as data points was also helpful in determining

the distribution of the data, allowing the user to visually determine how the test statistics

are distributed instead of showing test results under the assumption of some distribution

15

(which again may not be true for the subset of data, especially if the subset of data is of a

small size).

Overall, it was found that stratified testing introduced a list of complications, making

its implementation untenable within the time period given to this project. It was decided

thus that a simpler means of display, eschewing hypothesis testing in producing the data

points, would be used instead.

5 Implementation

This section discusses the implementation details of the project. Software and

libraries used will be discussed here, as well as the data objects used and created to

facilitate the project.

5.1 Software, Libraries Used

This project was programmed on Windows 8.

Python 3 was used as the programming language of choice in this project due to its

ease of use and extensive library support, especially in the fields of statistical analysis. Most

of the statistical tests used were just a library function away, and only the one-location Z-

test and the Grubb’s outlier test had to be implemented manually. As with many Python

programs, Numpy and Scipy were used for data handling.

Anaconda’s included Spyder Integrated Development Environment (IDE) was chosen

for programming as the student was familiar with the interface, eliminating the teething

problems associated with having to learn to code using an unfamiliar IDE.

For the GUI, Qt Designer was used to code all the statically generated front-end

interface features, with conversion of the Designer’s .ui files to Python code via the pyuic4

module. The GUI is run on Python using the PyQt4 library. Any dynamically generated front-

end interface features (Checkboxes corresponding to categories in a column, for example,

have to be generated on-the-fly) are manually coded into the pyuic4-generated python file.

Graphs were plotted using Python’s Matplotlib library. Although other libraries like

seaborn produce more visually pleasing plots and offer more powerful functions, Matplotlib

16

was used as the project did not require complex graphs, and to make any future conversion

of the project into an executable file using a library such as py2exe easier.

5.2 Overall UI Architecture

The above diagram outlines the overall UI Architecture of the program. The

individual interactions between the different components will be discussed in more detail in

the upcoming sections.

Since the overall purpose of the project is to expose statistical analysis to untrained

analysts, the windows were kept to a minimum, and as simple as possible for ease of use. In

addition, the window hierarchy was kept simple to make the process flow as clear to the

user as possible.

In addition, it was realized early in the project that each window should have a clear

purpose (E.g. Statement Builder builds statements, Group Builder builds groups). If the UIs

were to be combined to serve multiple purposes, this would lead to large modules which

are not only unwieldy to manage, but could be difficult to extend should user requirements

change (E.g. What if Statement Builder and Group Builder are combined in one large

interface, but Groups are no longer needed? Removing one module is easier than finding

out which codes need to be removed).

17

The overall layout for each UI window also complements the expected process flow

of the program, such that the features which the user should use first are always placed

higher up in the layout. This was done to ensure consistency and ease of use throughout the

program as this matches with how users visually process information (Like reading a book,

or a menu).

5.3 Notable UI Objects

This section discusses the functions of the UI windows and dialogs created for use in

this project.

5.3.1 Main Window

The Main Window is the first screen the

user will see, and serves a few functions:

1) To load the sample data (a CSV file

with headers). To load the file, click on the

‘Open Sample File’ button (1) and select the

file using the file dialog. Note that the other

functions cannot be performed without

loading of the sample data.

2) To store the statement. To go to the

Statement Builder dialog, click on the button

labelled ‘Click to Change Test Expression’ (2).

If no sample data is loaded, an error message

will be displayed instead.

3) To display the loaded statement. Once a statement is loaded, it will be displayed in

the statement display box (3).

4) To call the Result Explorer. To call the Result Explorer, click on the button labelled

‘Test Now’ (4). If no sample data is loaded or no statement is loaded, an error

message will be displayed instead.

This module is named main.py, and is the root module within the package.

Figure 6 Main Window

18

5.3.2 Statement Builder

Figure 7: Statement Builder window

The Statement Builder is the second screen the user will see, and serves as the

interface for the user to translate his inquiry into a comparison expression for testing

purposes.

There are a few functions that the user can perform in this window:

1) Input a simple math expression with which the test statistic is calculated, using the

text input box (1). This function is to be performed for both sides of the comparison

expression.

The input expression can be either a function of a single or multiple variables in the

data, or a fixed value, although both expression boxes cannot contain fixed values

simultaneously (There wouldn’t be anything meaningful to test then)

In addition, a basic auto-completer is implemented on both boxes. The auto-

completer’s dictionary comprises of the names of the columns in the data, and will

only prompt the user to auto-fill to those strings only. Currently it cannot handle

auto-completing for, say, the last word of the string.

2) Call the Group Builder dialog to select categories and rules to filter the data in one

side of the comparison expression. Note that this can be performed for both sides of

the comparison expression. Call the Group Builder dialog by clicking on the ‘Change

Group’ button (2).

3) Call a simple dialog displaying the variables that may be used within the test

expression (3).

19

4) Toggle the comparator used in the text expression (4).

Note: This feature is currently non-functional since hypothesis tests are no longer

performed directly on the dataset.

5) The well-known ‘OK’ and ‘Cancel’ dialog buttons. ‘OK’ saves the test expression and

group data in a Statement object (After checking if the relevant fields are valid) and

exits the dialog, returning the user back to the main window. ‘Cancel’ discards all

changes done in the Statement Builder and returns the user back to the main

window.

This module is named StatementBuilder.py.

5.3.3 Group Builder

Figure 8: Group Builder window states. The window changes state depending on the type of data used in the column. If
the column is categorical (E.g. Gender) the left window is shown. If the data is numeric, the right window (E.g. Age) is
shown.

The Group Builder is the third screen the user will see, and is used to define the

filters used to filter the dataset used for either side of the test expression. It is called from

the Statement Builder window and upon successful exit, returns a Group object to

Statement Builder if ‘OK’ was pressed.

The functions the user can use to create the group are as follows:

20

1) Select the column to setup a rule for. The column is selected using the column

selection combo box (1).

2) If the selected combo is of type text, the dialog will show a list of possible categories

to keep when filtering data using the group. These categories can be selected using

the checkboxes (2). Alternatively, all checkboxes can be selected or unselected using

the ‘Select All’ and ‘Unselect All’ buttons (3)

3) If the selected combo is of type numeric, the dialog will show a list of possible rules

to apply.

Currently, only 2 rules exist: ‘Greater Than’, which keeps data entries whose values

are greater than its own input value, and ‘Less Than’, which keeps data entries

whose values are less than its own value.

The rules can be activated by checking their respective boxes (4), their input values

can be input in their respective entry fields (5), and the option for the rule to include

the input value itself can be toggled using their respective ‘Inclusive’ checkbox (6).

4) The group can also be named by the user via a text input (7). This name (ideally)

serves as a title to remind the user of what subset of data the group refers to.

5) The user can save groups. Saving the group is done by pressing the ‘Save Group’

button (8).

6) The user can also load saved groups. Loading is done by pressing the ‘Load Group’

button. Pressing this button opens a dialog to select a previously saved group to

load.

Saved groups can be modified by modifying the group, and saving it with the same

name as the group to be modified.

There is currently no function to delete groups, although all groups are erased upon

terminating the program. Group persistence after program termination is possible using

python’s pickle library, but opens up a range of problems that deemed working on this

feature disruptive to the project.

This module is named GroupBuilder.py.

21

5.3.4 Results Explorer

Figure 9: Results Explorer window. The Text tabs are on the left, and the Graph tabs are on the right.

The Results Explorer is the final screen the user will see. It displays the statistical

analysis performed by the program, and is called by the Main Window.

The Results Explorer window can be split into two sections, the text section on the

left and the graph section on the right. For a list of diagrams illustrating the window’s

various tabs, please see Appendix A: Results Explorer Screens.

 There are 4 tabs in the Text Section:

1) The overall tab. This tab shows the number of data points used in the test, as well as

basic information about the data.

Since this project was originally written with hypothesis testing in mind, most of the

verification functions were written to verify the hypothesis tests before performing

them. No hypothesis tests are actually performed now (No confidence values

derived), but the verification tests are still performed.

2) The filter tab. This tab allows the user to further filter the data points used in the test

for further analysis.

22

3) The Group Comparisons tab. This tab shows the textual report of any correlation that

might exist between individual variables against the test statistics. The user can

select the report of each variable using the variable selection combo box in this tab.

4) The Options tab. This tab allows the user to toggle removal of outlying data points,

as well as select the column by which to divide the data into different categories of.

There are 3 tabs in the Graph Section, each corresponding to one part of the

correlation report.

1) Part One shows the relationship between the data entries’ variable with their

corresponding test statistics. If both sides of the test are not fixed, both will be

plotted on the same graph.

This graph’s purpose is to show if the variable correlates with the test statistic(s).

2) Part Two shows the means of this variable against each sub-group, categorized

according to a column selected in the Options tab.

If there are significant differences between the variable’s behaviors between sub-

groups, this graph will show it.

3) Part Three shows the test statistic(s) before and after correcting for the variable. If

the sub-groups seem to be distinct before correction and appear to merge after,

then it is suggested that there exists a strong correlation between this variable and

the test statistic, and that differences between sub-groups’ test statistics could be

explained by their different variable distributions rather than the categories of the

sub-groups themselves.

This module is named ResultsExplorer.py in the package.

5.4 Notable non-UI objects

The non-UI objects contain many variables which would be too disruptive to this

report if discussed here. Please see Appendix B for a list of variables and functions used by

the objects.

23

5.4.1 Data Manager

‘Data Manager’ contains all the static information obtained from pre-processing the

data-set. It is generated using a special dmParser object (dmParser.py) called by the Main

Window. The ‘Data Manager’ object’s reference is then parsed over to every dialog and

referenced as needed.

In this project, the only modifications performed on Data Manager after it is created

are to its ‘groups’ dictionary, and only by the Group Builder dialog.

This class is defined within the Typedef.py module.

5.4.2 Statement

‘Statement’ is a command object used to communicate the hypotheses created

using the Statement Builder to Results Explorer.

 This class is defined within the StatementBuilder.py module.

5.4.3 Rule

‘Rule’ is an object that stores user-defined rules used to filter data entries.

Two different types of ‘Rule’ objects extend from the ‘Rule’ object:

1) RuleNum, which deals with numeric columns.

2) RuleText, which deals with text columns.

These two rules, although extending from a common Rule object, do not apply the

software engineering principle of polymorphism due to the different natures of handling

numeric and text data types. Although this was done for ease of development, this may not

be a desirable state for future developers who would prefer to adhere to such software

engineering principles for extension purposes.

RuleNum applies two rules:

1) Is the entry’s variable greater than (or equal to) some input number?

2) Is the entry’s variable less than (or equal to) some (other) input number?

This provides a simple way to filter values.

24

RuleText applies one rule:

1) Does the entry’s variable exist in my set of variables?

This too is a simple method to filter values.

These classes are defined within the GroupBuilder.py module.

5.4.4 Group

‘Group’ is an object that stores ‘Rule’ objects and filter data entries by user-defined

rules on each category.

This class is defined within the GroupBuilder.py module.

5.3.5 Test Logic / Correlation Report

‘Test Logic’ is the object responsible for performing the hypothesis tests. It would

perform Z-Tests and T-tests, and recursively perform stratified testing, returning the

complete list of test results. However, since the hypothesis testing is no longer actually

done, this aspect of the ‘Test Logic’ is no longer used.

With the scope adjusted towards discovering correlations and correcting test

statistics for individual variables, many helper functions within Test Logic were still

applicable within this new scope. Hence the decision was made to keep the old Test Logic

object (leaving the option to use stratified statistical hypothesis testing open for future

work), and make the Correlation Report an extension of the Test Logic object.

Being the cornerstone of this project’s logic, many functions are performed by this

function, some of which are shared out to Typedef.py and HNStats.py modules. For a

complete list of these functions, please see Appendix B.

The ‘Test Logic’ object is defined within the TestLogic.py module, and the Correlation

Report object is defined within the CorrelationReport.py module.

5.4.5 HNStats / Typedef

Some scripts require common, typically lower-level functions such as verifying data-

types, as well as global variables. Rather than redundantly copying all the functions and

variables onto every script, the functions are written into a helper module, which performs

25

these functions on behalf of the caller scripts. In this project, HNStats.py contains the

functions, while Typedef.py maintains all the global variables.

Note that HNStats and Typedef are not objects, but are a collection of functions (for

HNStats) and variables (for Typedef). HNStats is found in HNStats.py, and Typedef is found

in Typedef.py.

5.5 Notable interactions between objects

This section discusses general interactions between different objects within the

project.

Note: For the following diagrams, the white object (also situated on the right) always

calls the black object, not the other way round. (Or as they say in chess, ‘White starts first’)

5.5.1 Main Window – Statement Builder

The Main Window, upon calling the Statement Builder, sends a reference to the Data

Manager to the Statement Builder object. It also sends an optional Statement if it already

has received one from a previous call of Statement Builder.

If the Statement Builder processes successfully (The user presses ‘OK’ and the input

values are valid), it returns the input statement to the Main Window. If the process fails

(The user presses ‘Cancel’), a ‘None’ value is returned.

26

5.5.2 Statement Builder – Group Builder

 The Statement Builder, upon calling Group Builder (when the user clicks on a

‘Change Group’ button), sends its Data Manager reference to the Group Builder object. It

also sends an optional group to the Group Builder if already has received one from a

previous Group Builder call.

Similar to how Statement Builder responds to Main Window, if Group Builder

processes successfully (The user presses ‘OK’ and the input values are valid), it returns the

input group to the Statement Builder. If the process fails (The user presses ‘Cancel’), a

‘None’ value is returned.

5.4.3. Group Builder – Group Selector

 The Group Builder, upon calling Group Selector, parses its Data Manager reference

to the Group Selector object.

 If the Group Selector processes successfully (The user presses ‘OK’ and a group is

selected), then the input group is returned to Group Builder.

27

5.3.4. Main Window – Results Explorer

Main Window parses its Data Manager reference and Statement into Results

Explorer. Results Explorer then proceeds based on data from both sources accordingly.

Results Explorer is not expected to return any data to Main Window.

5.3.5 Main Window – DM Parser

 Main Window sends the file path of the sample data (in CSV file form) to the DM

Parser.

 DM Parser then sends back a Data Manager object containing the processed data

contained within the sample data.

28

5.3.6 Statement Builder – Parser

The Statement Builder sends infix expressions to the Parser.

The Parser then returns a list of tokens representing the in-sequence RPN version of

the input expression.

5.3.7 Results Explorer – Correlation Report

Results Explorer sends the Data Manager and Statement objects to the Correlation

Report for processing.

After processing, Results Explorer will make calls for data from Correlation Report to

populate its graphs and text reports, which the Correlation Report will furnish. The nature of

these graphs is duly explained in Sections 2 and 3.

29

6 A simple use case

This use case illustrates how a typical user might use the program, and the processes

he will perform during his analysis.

6.1 Scenario

Every half-year, Company Techno Koay sends its employees through a general

aptitude assessment test as part of their drive to “improve staff skills”. Just before their

latest assessment test, though, the company sent 100 of its employees through a 3-day

intensive productivity workshop. The HR manager wants to quickly assess if their staff

benefited from the workshop using their aptitude assessment tests as a gauge of the staff’s

skills. He decides that the two values to compare are the scores before and after the

workshop.

He surmises that if the test scores after the workshop are significantly higher than

the test scores before, then the workshop does indeed improve the company staff’s skills.

The HR manager begins by collating employee details from the database. Details like

their scores before and after attending the workshop are included, as well as details such as

the employees’ gender, age, and even height and weight (Techno Koay is quite thorough

about employee data collection). Once the data has been collated into a CSV file (with

relevant column headers), he can begin using this program.

Note: A possible confounding factor is that people could have performed better on

the second test than on the first regardless of whether they attended the workshop (The

second test could have been easier than the first, so people who took both tests generally

score better on the second than the first). To eliminate this confounding factor, the HR

manager must also separately analyze the scores of those who didn’t attend the workshop,

and verify that these people either didn’t score better on the second test, or didn’t show as

much improvement as those who attended the workshop.

6.2 Sample Data

The sample data used in this scenario is generated using the generateSampleData.py

module.

Some key features about the data to note:

30

Figure 10: Main Window

1. Score Before is set to be distributed equally between men and women, with a

mean of 5000.

2. Score After is set to be distributed unequally between men and women, with

men about 5050 and women about 4850.

3. Age is set to be distributed unequally between men and women, with women

around 30 and men around 40.

4. Salary distribution correlates with the age distribution via the equation:

Salary = 2000 + (100*Age)

Other factors are equally distributed between men and women.

6.3 Use Experience

When the user runs the program, he will be greeted

by

the

Mai

n

Win

do

w.

The first thing he must do is load the sample file. He does so by either pressing the

‘Open Sample File’ button, or pressing the tool button next to the sample filename display

(Figure 12, Labeled ‘1’).

 Pressing the button opens a file dialog which he can then use to locate and select his

file (Figure 11). Once the file is selected, he is brought back to the Main Window, with the

file loaded.

 After loading the file, the user can proceed to modify his hypothesis.

Figure 11: Open FIle Dialog

31

The program allows users to input hypotheses via the use of test expressions. The

user proceeds to do so by firstly clicking on the ‘Click to Change Test Expression’ button

(Figure 12, Labeled ‘2’). Doing so opens the Statement Builder window.

Figure 12: Statement Builder window

Once in the Statement Builder, the user can begin to setup his hypothesis. Since he is

comparing the employees’ scores before and after the workshop, he inputs this into the test

expression by typing ‘Score Before’ into the left-hand side, and ‘Score After’ into the right-

hand side (The fields labeled ‘1’)

Once done, the user can confirm his statement by pressing ‘OK’. This brings him back

to the Main Window. In the Main Window, the test expression that the user just input will

be displayed in the expression display box.

To check the program’s analysis, the user clicks the ‘Test Now!’ button (See previous

page, Figure 12, Labeled ‘4’). This brings the user to the Results Explorer window.

32

Figure 13: Results Explorer window upon loading

The Results Explorer window shows the distribution of the test results. To view this,

the user selects the graph tab labeled ‘3: Test Results’ (circled in above figure, right side)

33

Figure 14: The Results Explorer window with Group Comparisons tab and the Test Results tab open.

The Results Explorer window also shows the user how the test statistics can be

corrected for the possible influence of an individual variable. This variable can be selected

by selecting the text tab labeled ‘Group Comparisons’ (Circled in above figure, left side), and

selecting the variable to be corrected for under the combo box in this tab (Underlined in

above figure, left side). Once the variable is selected, the text box below it will display the

correlation report describing this variable’s correlation with the test statistics and the

potential for the data to cause this variable to impact the test statistics’ behaviors, in the

text box titled ‘The Story to be Told’.

34

Figure 15: When the user clicks on the Options Tab from Fig. 15's screen, the Options Tab is opened to show this.

If the user wants to select which categories of data to view, he does so by entering

the ‘Options’ tab (Circled in above diagram), and selects the column he wants to colour the

data on the graph by with the ‘Colour Data Points By:’ combo box (Underlined in above

diagram). Doing so groups the data according to categories within the selected column,

allowing him to see if the data groups exhibit separate test statistic distributions before and

after correction.

7 Recommendations for future work

7.1 Improving on correlation model

One possible improvement to the current correlation model is to expand the list of

correlation types. Currently, the project only considers linear correlations for continuous

variables. With relatively minor modifications to the program, it should also be able to

handle simple logarithmic and quadratic regressions. With various functions in the

Statsmodels library, this project could be furthered to handle more complex regression

models.

35

In addition, as suggested in Section 2.5, this project could be extended to attempt to

correct for categorical test statistics.

7.2 Automatic Data Exploration

One feature considered but eventually dropped, as discussed earlier, is the initial

data exploration module. For the benefit of those who are interested in exploring the data

before making hypotheses, this project could be furthered by extending it with a data

exploration module.

In addition, this data exploration module could be used to apply more complex

statistic models to the data, and automatically discover which models best fit certain

behavior within the data.

7.3 Making this project market-worthy

Although the project intends to assist untrained data analysts, in the interest of

proving the statistical concepts, some functions expected of a market-quality statistics

product were unfortunately left out of the program. Relatively simple features such as

reading Excel files and packaging the project into an executable file were not done. While

the project sufficiently demonstrates the use of variable correction in statistics, many more

user-experience related functions need to be implemented before this program can truly

begin to help people.

In addition, as the storyboard of graphs was envisioned quite late into the project, it

was inevitable that some bugs could not be ironed out in time. These bugs include, but are

not limited to:

- Results Explorer’s Graph 3 displaying a scatter plot instead of boxplots when the

test expression and its data follows an Independent T-test pattern.

- Tests get performed multiple times with a change of the column to colour the

data by, causing unexpected behavior such as multiple overlapping boxplots

being drawn.

In addition, many things can be improved in the program, such as:

- Making the graphs clearer and more aesthetically pleasing using graphing

libraries such as seaborn.

36

- Sample data storage using the program. This opens the doors to other practical

functions such as saving of persistent filter groups to the program.

- Removal of unused features such as the comparator selection button in the

Statement Builder (as suggested in Section 5.2.2)

Indeed, this project only scratches the surface of what can be performed

automatically, and much more work can be done towards automatically exploring data.

8 Conclusions

Creating a general user-facing standalone application is not an easy task. Not only

must the conceptual groundwork be solid, it must be conveyed to the target users in a

simple-to-understand manner. Features to expose to the user must be prioritized by

importance, and the less useful features must be hidden away or abstracted away from the

user altogether, so as to not overload the user with unimportant information.

Although this project has a long way to go before it can serve people effectively, it

establishes a good base for further work towards bridging the knowledge gap between

those untrained in data analysis with trained data analysts. Allowing untrained people

access to the power of statistical analysis of increasingly available data is key to unlocking

new insights into data by people from all walks of life.

This project also impressed the importance of software engineering principles upon

the student. Even a relatively small client program such as in this project is not feasible

given this amount of time without the application of principles such as helper methods,

abstraction, and command objects. The student has gained an appreciation of these

principles through applying them in the course of this project.

37

9 Appendices

Appendix A:

Overall Architecture Diagram (Diagram 1)

38

Main Window Screen:

Open File Window (Opens when user selects ‘Open Sample File’ button):

39

Statement Builder

Usable Variables Popup (Opens when user clicks ‘Click here to see available column

variables’):

40

41

Group Builder:

(When selected column is of text type) (When selected column is of numeric type)

42

Results Explorer screens:

General Layout (Text Tabs on left, Graph Tabs on right)

Results Explorer Text Tab 1: Overall Results Explorer Text Tab 2: Filter

43

Text Tab 3: Group Comparisons Text Tab 4: Options

Graph Tab 1: Correlation Graph Tab 2: Sub-Group Differences

44

Graph Tab 3: Test Results Before and After Correction

45

Appendix B:

Data Manager API:

Function Description Return(s)

getGroups() Returns the dictionary of saved
groups.

Dict(String =
Group)

getGroupNames() Returns the list of saved groups’
names.

List(String)

getNumColumns() Returns the number of columns in
the dataset.

Int

getColType(token) Returns a column type according to
the corresponding column in token.
If the token is of integer type, that
column index’s corresponding type
is returned.
Else if the token is a string, the
column name’s corresponding type
is returned.

Int

getEntries() Returns the full list of entries
obtained from the sample data.

List(list(string))

getColumnTypes() Returns the full list of column
types, ordered by their
corresponding column.

Numpy array

getColumnNames() Returns the full list of column
names, ordered by their sequence
in the data.

List(string)

getColumnNameOfIndex(index) Returns the name of the column of
given index.

string

getColumnIndexOfName(token)

Returns the index of the column of
given name.

Int

getTextSet(token) Returns the textSet of the column
of given name, if token is a string.
If token is numeric, then the
textSet of the column of given
index is given instead.
If the given name or index does not
have a textSet, ‘None’ value is
returned.

Set(string) /
None

getTextSets() Returns the dictionary of textSets. Dict(string =
set(String))

addGroup() Adds the given group groupData of
given groupName into the group
dictionary.
No value is returned.

None

46

Statement API:

Function Description Return(s)

getTestData() Returns the test data. List(list(string))

setTestData(data) Sets the test data. -

getLHSInfix() Returns the infix expression on the
left-hand side of the expression.

String

getLHSTokens() Returns the RPN tokens for the left-
hand side of the expression.

List(string)

getLHSGroup() Returns the group applied on the
left-hand side of the expression.
If there is no group applied, this
function returns ‘None’.

Group / ‘None’

getExpression() Returns the comparison operator
used by the expression.

String

getRHSInfix() Returns the infix expression on the
right -hand side of the expression.

String

getRHSTokens() Returns the RPN tokens for the
right-hand side of the expression.

List(string)

getRHSGroup() Returns the group applied on the
right -hand side of the expression.
If there is no group applied, this
function returns ‘None’.

Group / ‘None’

getStmtPrint() Returns a string describing the test
expression, as well as the applied
filter groups on both sides of the
test expression.

String

Group API:

Function Description Return(s)

getName() Returns the name of the group. String

setName(name) Sets the name of the group. -

Filter(data) Returns the filtered list of entries. List(list(String))

getRules() Returns the list of rules in this
group.

List(Rule)

changeRule(rule, index) Changes the rule of that index -

isEqualTo(group) Compares this group with the input
group, checking if the rules are the
same. Returns True if same, false
otherwise.

Boolean

printGroup() Returns a detailed print of the
group and its rules.

String

47

IsEmpty() Returns True if the group allows all
data entries through, false
otherwise.

Boolean

ruleIsEmpty(index) Returns True if the rule of column
number ‘index’ is empty, False
otherwise.

Boolean

getSetOfRuleIndices() Returns the set of non-empty rules’
corresponding indices.

Set(int)

Rule API:

Note: Rule’s functions are non-functional. These functions must be overloaded by its

children. Future developers must take note of this when using Rule as a parent class.

Function Description Return(s)

isEmpty() Returns True if the rule is empty, False
otherwise.

Boolean

setIsEmpty() Sets the rule’s empty state depending on
the information within the group.

-

Filter(data) Returns the filtered list of entries. List(list(String))

getColNum() Returns the column number of the
column this rule influences.

Int

getColName() Returns the name of the column this rule
influences.

String

printGroup() Returns a print describing the rule. String

printTitle() Returns a shorter print summarizing the
rule (for graph display purposes)

String

includedInGroup(entry) Returns True if the entry passes this rule’s
criteria, False otherwise.

Boolean

isEqualTo(rule) Returns True if this rule is functionally
equal to the input rule, False otherwise.

Boolean

RuleNum API:

RuleNum uses all the functions in Rule’s API.

RuleText API:

RuleText uses all the functions in Rule’s API, and this function:

Function Description Return(s)

getIncludedElems() Returns the set of elements that this rule
passes for.

Set(String)

48

TestLogic API:

TestLogic was originally designed to perform stratified testing. However, the shift

from stratified testing to correlation discovery and correction led to many of the functions

being either commented out or re-purposed to fit the new functional requirements.

Function Description Return(s)

setMinSampleLength(int) Sets the minimum sample size.
Note: This function is currently unused.

-

setRemoveOutliers(Boolean) Sets the remove outliers mode to True or
False as per the input state.

-

getTestType() Returns the type of test received by Test
Logic in a string form.
The string’s corresponding type is defined
in Typedef.

String

getValidationPrint() Performs validation tests on the data, and
returns a print representing the results of
the validation tests.

String

performTest() Performs the test defined by the
statement TestLogic has.
Note: This function is overloaded in
Correlation Report, and is non-functional
in TestLogic.

-

Correlation Report API:

 Correlation Report, the spiritual successor of Test Logic, extends on the functionality

of Test Logic to also perform testing for correlations and correct test statistics to account for

the possible influence the confounding variable could have on the test statistics.

Function Description Return(s)

getCorrectingColIndex(int) A list of integers is given to Results
Explorer. Given the index of the list,
return the corresponding integer.

int

getCorrelationTitles(index) Returns a list of titles for the correlation
reports of every column index except the
input index in string form.

List(string)

getCorrelation(index) Returns the correlation of the column of
given index against the test statistic(s).
This is either a list containing the
regression line’s info as 3 floats, or a list
containing a p-value (float) and a
dictionary representing the variable’s
different category counts (A counter-type

List(float) /
List(float,
Counter)

49

Dictionary object)

If the test type is a 2-sample test, a tuple
of two such objects, one for each sample,
is returned.

getCorrelationPrint(hold,
correcting)

Returns the correlation print associated
with the potential confounding variable
of column ‘correcting’ against sub-groups
split by variable of column ‘hold’

String

performTest() Performs the test defined by the
statement CorrelationReport has,
generating the correlations for future
internal use.

-

getVals(hold, correcting,
correctionEnabled)

Gets the graph values of the test statistics
for different groups, split by the variable
of column ‘hold’.
If correctionEnabled is true, the graph
test statistics are also corrected by the
variable of column ‘correcting’.

List(String,
List(float),
List(float))

getVarVsTestStats(colNum) Gets the list of coordinates of entries’
variable (of column index ‘colNum’)
against their corresponding test statistics,
as two lists of values (XVals, YVals).
Only works if the ‘colNum’ column is
numeric.

List(float),
List(float)

getDiffCategoryMeans(splitCol,
correctCol)

Gets the lists of variable means for the
variable of column index ‘correctCol’.
Each list is split according to the variable
of column index ‘splitCol’.
If column ‘correctCol’ is of type text, a
Counter representing the distribution of
the variable categories within each
category is returned instead.

List(List(String,
float))

OR

List(List(String,
Counter))

HNStats API:

HNStats is a module housing the collection of functions. The functions used in the latest

version of the program are listed here.

Function Description Return(s)

isNumeric(token) Returns True if the token can be
converted into a numeric value
successfully, False otherwise.

Boolean

evaluate(LHS, RHS, operator) Evaluates the params as if they were an
infix math expression in the order (LHS,

float

50

operator, RHS), returning the expression’s
result as a value.

checkSampleOverlap(testData,
group1, group2)

Checks the samples (obtained by filtering
the testData using group1 and group2) for
overlap, and returns a string of the
sample overlap report.

Also returns a Boolean. True if samples
show full overlap or zero overlap, False if
partial overlap.

String,
Boolean

removeOutliersInCol(entries,
colNum)

Performs Grubb’s outlier test using the
variable in column ‘colNum’, removing
entries that are found to be outlying.
Returns the entries remaining after the
test is performed.

List(list(string))

performTest() Performs the test defined by the
statement TestLogic has.
Note: This function is overloaded in
Correlation Report, and is non-functional
in TestLogic.

-

Parser API:

 The Parser serves only one function: To parse infix expressions and convert them

into Reverse Polish Notation (RPN) form, as an ordered list of string tokens.

Function Description Return(s)

parse(string) Given an infix math expression, return a list
of tokens representing the ordered RPN
form.

List(string)

